

Вероятностное моделирование

лекция 2

Артур Игнатьев CS Space, МКН СП6ГУ, ИТМО

Владимир Евменов

CS Space, Huawei

Оценка разброса

- А если мы хотим оценивать характеристику не только одним числом?
- Среднее число клиентов в день находится в каком-то интервале с большой вероятностью
- Бизнес вопрос. Сколько проект заработает за месяц?
 - Можно дать оценку суммарного дохода за месяц
 - А можно сказать, что с большой вероятностью доход будет от a до b

Монте-Карло

- Уже умеем оценивать характеристики
- ullet Если можем сэмплировать из X
- 1. Генерируем N выборок $x_{[n],1},...,x_{[n],N}$ размера n.
- 2. Для каждой из них считаем нужную нам характеристику $\phi_i^{\star} = \phi^{\star}(x_{[n],i}).$
- 3. У полученной выборки $\phi_{[N]}^*$ считаем дисперсию, доверительный интервал.
- ullet Выборки x_n^\star и ϕ_N^b называются бутстраповскими.

Бутстрап

- ullet Всегда ли мы можем сэмплировать из X?
- Если можем проводить эксперимент много раз, то круто
- А если с.в. это данные, например, из бизнеса
- Бутстрап (bootstrap) это метод Монте-Карло, примененный к какой-либо аппроксимации \mathscr{P}_X (например, к $\mathscr{P}_{[n]}^*$).
- Усредненный рецепт такой:
- 1. Генерируем N выборок $x_{[n],1}^{\star}, ..., x_{[n],N}^{\star}$ размера n из X^{\star} . Для генерации одной выборки $x_{[n],i}^{\star}$ нужно взять n случайных элементов исходной выборки $x_{[n]}$.
- 2. Для каждой из них считаем нужную нам характеристику $\phi_i^b = \phi^\star(x_{[n],i}^\star)$.
- 3. У полученной выборки $\phi^b_{[N]}$ считаем дисперсию, доверительный интервал.
- Выборки x_n^{\star} и ϕ_N^b называются бутстраповскими.

Ошибка бутстрапа

Ошибка бутстрапа складывается из двух слагаемых:

- устранимая ошибка из-за того, что мы взяли N выборок, а не ∞ ,
- неустранимая ошибка из-за того, что мы взяли $\mathscr{P}_{[n]}^{\star}$ вместо \mathscr{P}_{X} .

Интервальные оценки

×

Вместо того, чтобы приблизить значение ϕ точечно, мы хотим оценить область, в которой лежит истинное значение.

Доверительный интервал

x &

• Пара статистик $(\phi_L^\star,\phi_R^\star)$ называется доверительным интервалом для $\phi(\mathcal{P}_X)$ с уровнем доверия γ если

$$P(\phi_L^{\star}(X_{[n]}) \le \phi(\mathscr{P}_X) \le \phi_R^{\star}(X_{[n]})) = \gamma$$

- Если сгенерировать N выборок из распределения \mathscr{P}_X и для каждой из них построить доверительный интервал, то примерно γN из них накроют истинное значение $\phi(\mathscr{P}_X)$.
- Конкретный доверительный интервал $(\phi_L^*(x_{[n]}), \phi_R^*(x_{[n]}))$ либо накрывает истинное значение, либо нет, никакой вероятности у этого события нет: нельзя говорить «Этот интервал с вероятностью 90% содержит истину».

Эфронов доверительный интервал

X

• Пусть $\phi_L^\star - \alpha_1$ -квантиль бутстраповской выборки $\phi_{[N]}^\star$, а $\phi_R^\star - 1 - \alpha_2$ -квантиль. Тогда $(\phi_L^\star, \phi_R^\star)$ это асимптотический доверительный интервал с уровнем доверия $1 - \alpha_1 - \alpha_2$.

Пример

Контрольная группа	А	Б
Размер групппы	893	923
Число купивших	34	28
Конверсия	3.81%	3.03%

- Ого, выигрыш в 26%, время идти просить премию, или нет?
- Аналитический можно показать, что разница мат. ожиданий лежит в интервале (-0.93%, 2.48%) с вероятностью 0.95
- Давайте предположим, что у нас нету возможности дать ответ аналитический. Воспользуемся бутстрапом.
- 10 000 раз сэмплируем из обоих групп, считаем разницу средних, далее строим доверительный интервал по распределению разницы.
- Получаем (-0.89%, 2.4%)