{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "\n", "# matplotlib.style.use('ggplot')\n", "%matplotlib inline\n", "from scipy import stats\n", "import os\n", "# plt.style.use('dark_background')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"data_test.csv\", sep = ',', encoding='cp1251')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
battle_idunit_1unit_2unit_3unit_4lenbalance_mark
0103921топорлукбулавалук17.35before
1117214посохпосохлуклук21.84before
2115502мечпосохбулаватопор16.00before
3110102булавалуклукбулава17.22before
4104989мечпосохбулавапосох19.20before
\n", "
" ], "text/plain": [ " battle_id unit_1 unit_2 unit_3 unit_4 len balance_mark\n", "0 103921 топор лук булава лук 17.35 before\n", "1 117214 посох посох лук лук 21.84 before\n", "2 115502 меч посох булава топор 16.00 before\n", "3 110102 булава лук лук булава 17.22 before\n", "4 104989 меч посох булава посох 19.20 before" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
battle_idunit_1unit_2unit_3unit_4lenbalance_mark
0103921топорлукбулавалук17.35before
1117214посохпосохлуклук21.84before
2115502мечпосохбулаватопор16.00before
3110102булавалуклукбулава17.22before
4104989мечпосохбулавапосох19.20before
........................
19995108834посохбулавалукпосох26.37after
19996119941посохмечлукпосох23.73after
19997112911топорпосохбулаватопор27.73after
19998111684мечтопорпосохмеч24.20after
19999103437луклукбулавабулава22.83after
\n", "

20000 rows × 7 columns

\n", "
" ], "text/plain": [ " battle_id unit_1 unit_2 unit_3 unit_4 len balance_mark\n", "0 103921 топор лук булава лук 17.35 before\n", "1 117214 посох посох лук лук 21.84 before\n", "2 115502 меч посох булава топор 16.00 before\n", "3 110102 булава лук лук булава 17.22 before\n", "4 104989 меч посох булава посох 19.20 before\n", "... ... ... ... ... ... ... ...\n", "19995 108834 посох булава лук посох 26.37 after\n", "19996 119941 посох меч лук посох 23.73 after\n", "19997 112911 топор посох булава топор 27.73 after\n", "19998 111684 меч топор посох меч 24.20 after\n", "19999 103437 лук лук булава булава 22.83 after\n", "\n", "[20000 rows x 7 columns]" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array(['топор', 'посох', 'меч', 'булава', 'лук'], dtype=object)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# посмотрим на оружие\n", "df.unit_1.unique()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# проверим, что нашли все оружие\n", "set(df.unit_1.unique()) == set(df.unit_2.unique()) and set(df.unit_1.unique()) == set(df.unit_3.unique()) \\\n", " and set(df.unit_1.unique()) == set(df.unit_4.unique())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "unit_1 unit_2 unit_3 unit_4 balance_mark\n", "булава булава булава булава after 19.811667\n", " before 18.518125\n", " лук after 24.562381\n", " before 21.400588\n", " меч after 20.456667\n", " ... \n", "топор топор топор меч before 20.541500\n", " посох after 24.838462\n", " before 20.475500\n", " топор after 19.969167\n", " before 18.891667\n", "Name: len, Length: 1250, dtype: float64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['unit_1', 'unit_2', 'unit_3', 'unit_4', 'balance_mark'])['len'].mean()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Функции определяются так.\n", "def two_histograms(x, y):\n", "# После определения функции полезно бывает добавить её описание в таком стиле.\n", "# Тройные кавычки -- для обрамления многострочных строковых литералов.\n", " \"\"\"\n", " Функция, которая построит две гистограммы на одной картинке.\n", " Дополнительно пунктирными линиями указываются средние значения выборок.\n", " x: вектор pd.Series,\n", " y: вектор pd.Series\n", " \"\"\"\n", " x.hist(alpha=0.5, weights=[1./len(x)]*len(x))\n", " y.hist(alpha=0.5, weights=[1./len(y)]*len(y))\n", " plt.axvline(x.mean(), color='red', alpha=0.8, linestyle='dashed')\n", " plt.axvline(y.mean(), color='blue', alpha=0.8, linestyle='dashed')\n", " plt.legend([x.name, y.name])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "16\n", "18\n" ] } ], "source": [ "mask = np.logical_and(df.unit_1 == 'булава', df.unit_2 == 'булава')\n", "mask1 = np.logical_and(mask, df.unit_3 == 'булава')\n", "mask2 = np.logical_and(mask1, df.unit_4 == 'булава')\n", "\n", "conf = df[mask2]\n", "conf_before = conf[conf.balance_mark == 'before']\n", "conf_after = conf[conf.balance_mark == 'after']\n", "\n", "x = conf_before.len\n", "y = conf_after.len\n", "\n", "print(conf_before.shape[0])\n", "print(conf_after.shape[0])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbhklEQVR4nO3dfZBU9Z3v8ff3ToBRwUExjAnDw5hAjG4QZQRM1AyphUByI0ltZMnjPpmJu8vVWOt19VpJKmWlkqi51hrdReKS2o0xFHkgkl0SoW7sS1xFHhKCAvIgDjKiouADjQ4P+r1/dOPtDN09Z3pOn9+ZM59XVVf3nHN+53x+0zPfOfPr0782d0dERLLrv4UOICIi9aVCLyKScSr0IiIZp0IvIpJxKvQiIhn3jtAByjnrrLN8woQJoWNUdfjwYU477bTQMRLX737v2VO4Hz8+nkAxqxZPz/ngMtD6vXHjxpfc/Z3l1qWy0E+YMIENGzaEjlFVLpejvb09dIzE9bvfHR2F+8WLY8kTt2rx9JwPLgOt32a2p9I6Dd2IiGRcKs/oJcOuuip0gqpSHk+kJir0kqxp00InqCrl8URqokIvydqxo3A/aVLYHBWkPJ70w7Fjx+jq6qK7uzvS9k1NTWzbtq3OqfqusbGRlpYWhgwZErmNCr0k6/bbC/cpfTE25fGkH7q6uhgxYgQTJkzAzHrd/tChQ4wYMSKBZNG5OwcOHKCrq4vW1tbI7fRirIgMCt3d3YwaNSpSkU8rM2PUqFGR/ys5QYVeRAaNgVzkT6ilDyr0IiIZp0IvIpKQ4cOHBzmuXoyVZC1cWHX1Hat3xH7I62ZFv4Sml3giA5LO6CVZkycXbimV8niSIbfddhsXX3wxkydP5utf/zoAnZ2dvP/97+dLX/oS559/PrNnz+aNN97o97F0Ri/J2ry5cJ/SapryeBKnExMblZo1C668Erq7GXbNNdDzWvVPfKJwe+UVuOGGP17Xh2tyV61axc6dO1m3bh3uzhVXXMGaNWsYN24cO3fu5Mc//jHf//73mT9/Pj/72c/4/Oc/X0MH/z8VeknWXXcV7lN6oXrK40lGrFq1ilWrVnHhhRcCkM/n2blzJ+PGjaO1tZUpU6YAMHXqVDo7O/t9PBV6ERmcqv01b2zkyJ13MrTSG6ZGjuzX2YC7c9NNN/HlL3/5j5Z3dnYybNiwt79uaGiIZegm0hi9mc0xs+1mtsvMbiyzfp6ZbTazTWa2wcwujdpWRGSw+ehHP8qSJUvI5/MAPPvss+zfv79ux+v1jN7MGoC7gVlAF7DezFa4+9aSzf4PsMLd3cwmA8uAcyO2FREZVGbPns22bdu45JJLgMJll/fddx8NDQ11OV6UoZtpwC533w1gZkuBecDbxdrd8yXbnwZ41LYiIoPFiTN4gGuvvZZrr732pG2eeOKJtx9ff/31sRw3SqEfA+wt+boLmN5zIzP7FPAtYDTw8b60LbbvADoAmpubyeVyEaKFk8/nU5+xHvrb71MuuwyANyrsY0z3kZr3XUkuty/ytpdddkqxzcnjonrOB7ampiYOHToUefs333yzT9snqbu7u0/PSZRCX25iBT9pgftyYLmZXQ7cAvxp1LbF9ouBxQBtbW2e9o/wGmgfMxaXeve7Hm+Ymt8ez5zDes4Htm3btvVpNso0zl55QmNj49tX7EQR5cXYLmBsydctQMVTJHdfA7zHzM7qa1sZBNatK9xSKuXxRGoS5Yx+PTDRzFqBZ4EFwGdLNzCz9wJPFV+MvQgYChwAXumtrQwy995buE/pRzmlPJ5ITXot9O5+3MwWAg8CDcASd99iZlcX1y8C/gz4opkdA94A/tzdHSjbtk59ERGRMiK9YcrdVwIreyxbVPL4O8B3orYVEZHkaFIzEZGEhJqmWIVeRCTjNNeNJOvmm0MnqCrl8SRDbrvtNpYtW8aRI0f41Kc+xTe+8Q06OzuZO3cul156KY888ghjxozhgQce4JRTTunXsVToJVnjx4dOUFXK40mMepmlmGuuGVavWYo1TbFk3Jo1hfvLLw+bo4KUx5OM0DTFkm333Ve4T2klTXk8iVEvsxRz551HGDFiaNn1/ZylOJ3TFIuISHxSN02xiIjEK43TFIuISAxCTVOsoRsRkYzTGb0k65ZbQieoKuXxRGqiQi/Jam4OnaCqlMeTfnJ3zMp9TMbAUZgvsm80dCPJWrWqcEuplMeTfmhsbOTAgQM1Fcq0cHcOHDhAY2Njn9rpjF6S9dOfFu5nzw6bo4KUx5N+aGlpoaurixdffDHS9t3d3X0uqElobGykpaWlT21U6EVkUBgyZAitra2Rt8/lcn36uL4009CNiEjGqdCLiGScCr2ISMZpjF6SdeutoRNUlfJ4IjVRoZdkjRwZOkFVKY8nUhMN3UiyfvnLwi2lUh5PpCYq9JKslFfSlMcTqYkKvYhIxqnQi4hkXKRCb2ZzzGy7me0ysxvLrP+cmW0u3h4xswtK1nWa2eNmtsnMNsQZXkREetfrVTdm1gDcDcwCuoD1ZrbC3beWbPY08GF3f9nM5gKLgekl62e6+0sx5hYRkYiiXF45Ddjl7rsBzGwpMA94u9C7+yMl268F+jbjjgwed94ZOkFVKY8nUhPrbcpOM/s0MMfdryp+/QVgursvrLD99cC5Jds/DbwMOHCPu5f97HQz6wA6AJqbm6cuXbq0th4lJJ/PM3z48NAxElfvfu8/dCT2fY4eMSyW/eg5H1wGWr9nzpy50d3byq2LckZfbpb+sn8dzGwm8DfApSWLP+Tu+8xsNLDazJ509zUn7bDwB2AxQFtbm7e3t0eIFk4ulyPtGeuh3/3+yU8K91deWXb1Hat31L7vCua3T4q8bbV4es4Hlyz1O8qLsV3A2JKvW4B9PTcys8nAvcA8dz9wYrm77yve7weWUxgKksFq9erCLaVSHk+kJlEK/Xpgopm1mtlQYAGwonQDMxsH/Bz4grvvKFl+mpmNOPEYmA08gYiIJKbXoRt3P25mC4EHgQZgibtvMbOri+sXAV8DRgH/XPw8xuPFsaJmYHlx2TuA+93913XpiYiIlBVpUjN3Xwms7LFsUcnjq4CryrTbDVzQc7mIiCRH74wVEck4TVMsyVpc9ura1Eh5PJGa6IxeRCTjVOglWT/8YeGWUimPJ1ITFXpJ1m9/W7ilVMrjidREhV5EJONU6EVEMk6FXkQk43R5pSSrsTF0gqpSHk+kJir0kqyUT/ie8ngiNdHQjYhIxqnQS7LuvbdwS6mUxxOpiQq9JGvdusItpVIeT6QmKvQiIhmnQi8iknEq9CIiGafLKyVZI0eGTlBVyuOJ1ESFXpJ1662hE1SV8ngiNdHQjYhIxqnQS7LuuqtwS6mUxxOpiYZuJFmbN4dOUFXK44nURGf0IiIZp0IvIpJxKvQiIhkXqdCb2Rwz225mu8zsxjLrP2dmm4u3R8zsgqhtZZBpbi7cUirl8URq0uuLsWbWANwNzAK6gPVmtsLdt5Zs9jTwYXd/2czmAouB6RHbymByyy2hE1SV8ngiNYlyRj8N2OXuu939KLAUmFe6gbs/4u4vF79cC7REbSsiIvUV5fLKMcDekq+7gOlVtv8b4Fd9bWtmHUAHQHNzM7lcLkK0cPL5fOoz1kN/+92ybBkAXfPnl10/pvtIzfuuJJfbF3nbZcsK5yjz53edtE7P+eCSpX5HKfRWZpmX3dBsJoVCf2lf27r7YgpDPrS1tXl7e3uEaOHkcjnSnrEe+t3v++8H4L0V9nHH6h2177uC+e2TIm9bjEd7+3tPWqfnfHDJUr+jFPouYGzJ1y3ASadIZjYZuBeY6+4H+tJWRETqJ8oY/Xpgopm1mtlQYAGwonQDMxsH/Bz4grvv6EtbERGpr17P6N39uJktBB4EGoAl7r7FzK4url8EfA0YBfyzmQEcd/e2Sm3r1BcRESkj0lw37r4SWNlj2aKSx1cBV0VtK4PY+PGhE1SV8ngiNdGkZpKsm28OnaCqlMcTqYmmQBARyTgVeknWN79ZuKVUyuOJ1ERDN5KsPXtCJ6gq5fFEaqIzehGRjFOhFxHJOBV6EZGM0xi9JOt97wudoKqUxxOpiQq9JOsf/iF0gqpSHk+kJhq6ERHJOBV6SdZXv1q4pVTK44nUREM3kqwXXgidoKqUxxOpic7oRUQyToVeRCTjVOhFRDJOY/SSrMmTQyeoKuXxRGqiQp8FD30ruWPlW/t3vPOL9xX2MeOZA2WX98tDoyJvuvDtfGVW5ltjiSOSNA3diIhknAq9JOueXxVuKXXDPTO54Z6ZoWOIxEpDN5KsfHfoBFW9kh8WOoJI7HRGLyKScSr0IiIZp0IvIpJxGqOXZJ3bEjpBVdPOfS50BJHYRSr0ZjYH+CegAbjX3b/dY/25wA+Ai4Cb3f32knWdwCHgTeC4u7fFE10GpI9fHDpBVVd9/A+hI4jErtdCb2YNwN3ALKALWG9mK9x9a8lmB4FrgE9W2M1Md3+pv2FFRKTvoozRTwN2uftudz8KLAXmlW7g7vvdfT1wrA4ZJUu+98vCLaWu+d4srvnerNAxRGIVZehmDLC35OsuYHofjuHAKjNz4B53X1xuIzPrADoAmpubyeVyfThE8vL5fHoyJvjW/Pxbw8j143iTDp8CwI4K+zjcNLbmfVeSy0d/KWr34TOKbU7Ol39rWHqe8wSl6mc9QVnqd5TfACuzzPtwjA+5+z4zGw2sNrMn3X3NSTss/AFYDNDW1ubt7e19OETycrkcqcmY4Fw3uXwr7cOfrn0HQw4B8O4K+3h0f/xz3VxyTvS5bu4fUvh08HJ9zOVb0/OcJyhVP+sJylK/owzddAGlp1ktwL6oB3D3fcX7/cByCkNBIiKSkCiFfj0w0cxazWwosABYEWXnZnaamY048RiYDTxRa1gREem7Xodu3P24mS0EHqRweeUSd99iZlcX1y8ys7OBDcDpwFtm9hXgPOAsYLmZnTjW/e7+6/p0RQaED0wInaCqyz7QFTqCSOwivUrl7iuBlT2WLSp5/DyFIZ2eXgMu6E9AyZjZF4ZOUNUXZusfTskeTYEgIpJxKvSSrO8uL9xSquO7c+j47pzQMURipUIvIpJxKvQiIhmnQi8iknEq9CIiGaf56CVZU98bOkFVs6Z2ho4gEjsVeklW+wdCJ6jqyvYnQ0cQiZ2GbiRZR48VbinVfbSB7qMNoWOIxEqFXpL1vf8o3FJK89FLFqnQi4hkXKbH6O9YvaMu+71u1qS67LfWvDOeqTyHe1/mYu+LR3fXNm/8OYe6AdhdY3sR6Tud0YuIZJwKvYhIxmV66EbS5+XJ7wkdoapPXLIrdASR2KnQS6JenpLyQv9BFXrJHg3dSKIaXu+m4fXu0DEqeiU/jFfyw0LHEImVCr0kavxP1zD+p2tCx6johntmcsM9M0PHEImVCr2ISMap0IuIZJxejBUZCB76Vrhj51vDHH/mTckfM6N0Ri8iknE6o5dEHZhan+kj4vLpy7eHjiASOxV6SdSr508IHaGq2Rc/HTqCSOwiDd2Y2Rwz225mu8zsxjLrzzWzR83siJld35e2MrgMefUwQ149HDpGRS8cPJUXDp4aOoZIrHot9GbWANwNzAXOAz5jZuf12OwgcA1wew1tZRAZ+8B/MfaB/wodo6Kv/uByvvqDy0PHEIlVlDP6acAud9/t7keBpcC80g3cfb+7rwd6fnRQr21FRKS+ohT6McDekq+7isui6E9bERGJQZQXY63MMo+4/8htzawD6ABobm4ml8tFPERlY7qP9Hsf5eRy+8jn87FkLFVr3oNNUyquy+Xjfb09/9YwcvlWDjeNran9mCEbgeqZ49aX78G+Y6cX27SetC7/1rDYn/PIyuRJ7NDF5zxxob7XRfX4HQ8lym9AF1D6W90C7Iu4/8ht3X0xsBigra3N29vbIx6isnp9wtT89knkcjniyFiq5k+Y2r+64rq4P2Eql2+lffjTPLq/tk+IGnas0O7MVzfFGauqvnwP7h/yPgDah5989U0u3xr7cx5ZwDdMnXjOE9e+IPljlqjH73goUQr9emCimbUCzwILgM9G3H9/2koGvTgj3a/Ff/5Pt4SOIBK7Xgu9ux83s4XAg0ADsMTdt5jZ1cX1i8zsbGADcDrwlpl9BTjP3V8r17ZenZH0OzSpJXSEqi6/YG/vG4kMMJEGL919JbCyx7JFJY+fpzAsE6mtDF5DD7wGwNFRpwdOUt6e5wu5xp/9WuAkIvHRXDeSqJb/XEvLf64NHaOib/7og3zzRx8MHUMkVir0IiIZp0IvIpJxKvQiIhmnQi8iknGaplgStf/SD4SOUNVVH/tD6AgisVOhl0Tlz3lX6AhVTXv/c6EjiMROQzeSqMbnD9L4/MHQMSrasfdMduw9M3QMkVip0Eui3r1qA+9etSF0jIpuXzaN25dNCx1DJFYq9CIiGadCLyKScSr0IiIZp0IvIpJxurxSEvX8zAtDR6hq4Sc3ho4gEjsVeknU62PfGTpCVZPf82LoCCKx09CNJOrUvS9y6t70FtPNT72TzU+l+4+RSF+p0Euizn7o95z90O9Dx6jorl9M5a5fTA0dQyRWKvQiIhmnQi8iknF6MbYGd6zewZjuI9yxekfoKBLBo7sPRN72hUNHKrY53DQ22HM+45nofYjb4aaxPLq//PEvOWdUwmmkFjqjFxHJOJ3RS6L2zW4LHaGqz87OhY4gEjsVeklU99npngJ43NkvhY4gEjsN3Uiihu9+juG70/vhHlt3j2Xr7rGhY4jEKntn9A996+2H9XwB62DTFGbsX123/WfV6IcfB9L7SVMrHp4OwHnn7C27fsYzi5OMM7iV/C4HkW9NPsPMm+qy20hn9GY2x8y2m9kuM7uxzHozszuL6zeb2UUl6zrN7HEz22Rm6f3ECRGRjOr1jN7MGoC7gVlAF7DezFa4+9aSzeYCE4u36cC/FO9PmOnuGvwUEQkgyhn9NGCXu+9296PAUmBej23mAf/uBWuBkWaWzv/NRUQGmShj9GOA0gHLLv74bL3SNmOA5wAHVpmZA/e4e9lBTjPrADoAmpubyeVyUfKfLN/69sPDTfV7Ue14w6kcbJpSt/3HJZeP92WY/FvDyOVba/7ejhlSmAY4rd+7I0MKbwAql2+gPOdxq9bvuH++0uTEz3qiaq17vYjyLFmZZd6HbT7k7vvMbDSw2syedPc1J21c+AOwGKCtrc3b29sjRCuj5MWTSu/mi8PBpimc+eqmuu0/LnG/czGXb6V9+NM1f29fnD0RILXfu47ZewA489WXT1o3UJ7zuFXrd5bfGXviZz1R7Qvqstsohb4LKD19awH2Rd3G3U/c7zez5RSGgk4q9DI4HB11eugIVb1r1MkFXmSgizJGvx6YaGatZjYUWACs6LHNCuCLxatvZgCvuvtzZnaamY0AMLPTgNnAEzHmlwFmxI4uRuzoCh2jot/vOIff7zgndAyRWPV6Ru/ux81sIfAg0AAscfctZnZ1cf0iYCXwMWAX8DrwV8XmzcByMztxrPvd/dex90IGjHeuLVysdWhSS+Ak5T24tnBl8IWTdgdOIhKfSK+kuPtKCsW8dNmikscO/H2ZdruBC/qZUURE+kFTIIiIZJwKvYhIxqnQi4hkXHbf7SCptHfeh0JHqKpjnq4VkOxRoZdEHWs6LXSEqs5syoeOIBI7Dd1Iopq2dNK0pTN0jIoe2zKJx7ZMCh1DJFY6o5dEjdpY+HDtV8+fEDZIBQ9tnAzA9PP1we+SHTqjFxHJOBV6EZGMU6EXEck4FXoRkYzTi7GSqD2fvjx0hKr+/tP/ETqCSOxU6CVRb57aGDpCVSNO7Q4dQSR2GrqRRJ2x6SnO2PRU6BgVPbzpPB7edF7oGCKxUqGXRJ2x+SnO2JziQr/5PB7erEIv2aJCLyKScSr0IiIZp0IvIpJxKvQiIhmnyyslUU9/5iOhI1R13Wd+ETqCSOxU6CVRPiTdP3LDhhwPHUEkdhq6kUSduWE7Z27YHjpGRb/ZMJnfbJgcOoZIrFToJVEjt+5h5NY9oWNUtG7rJNZt1QePSLao0IuIZFykQm9mc8xsu5ntMrMby6w3M7uzuH6zmV0Uta2IiNRXr4XezBqAu4G5wHnAZ8ys53vE5wITi7cO4F/60FZEROooyhn9NGCXu+9296PAUmBej23mAf/uBWuBkWb2rohtRUSkjqJc6zYG2FvydRcwPcI2YyK2BcDMOij8NwCQN7P0XppRcBbwUugQAcTT7zWP9z9JXXwXgBVryq7Ucz64BOj3/+pP4/GVVkQp9FZmmUfcJkrbwkL3xcDiCHlSwcw2uHtb6BxJG6z9hsHbd/V74ItS6LuAsSVftwD7Im4zNEJbERGpoyhj9OuBiWbWamZDgQXAih7brAC+WLz6Zgbwqrs/F7GtiIjUUa9n9O5+3MwWAg8CDcASd99iZlcX1y8CVgIfA3YBrwN/Va1tXXqSvAEzzBSzwdpvGLx9V78HOHMvO2QuIiIZoXfGiohknAq9iEjGqdBHYGZLzGy/mT3RY/n/KE7vsMXMbg2Vr17K9dvMppjZWjPbZGYbzGxayIz1YGZjzewhM9tWfG6vLS4/08xWm9nO4v0ZobPGqUq/bzOzJ4vTmyw3s5Ghs8atUt9L1l9vZm5mZ4XK2B8ao4/AzC4H8hTe/fsnxWUzgZuBj7v7ETMb7e77Q+aMW4V+rwLucPdfmdnHgBvcvT1gzNgV39X9Lnf/nZmNADYCnwT+Ejjo7t8uztt0hrv/Y8CosarS7xbgN8WLK74DkKV+Q+W+u/tWMxsL3AucC0x19wH35jGd0Ufg7muAgz0W/y3wbXc/UtwmU0UeKvbbgdOLj5vI4Psi3P05d/9d8fEhYBuFd3nPA/6tuNm/USiCmVGp3+6+yt1PfCLLWgqFP1OqPOcAdwA3UOHNngOBCn3tJgGXmdljZvZ/zezi0IES8hXgNjPbC9wO3BQ4T12Z2QTgQuAxoLn4/hCK96PDJauvHv0u9dfAr5LOk6TSvpvZFcCz7v6HoKH6SYW+du8AzgBmAP8TWGZm5aZ8yJq/Ba5z97HAdcC/Bs5TN2Y2HPgZ8BV3fy10nqRU6reZ3QwcB34UKlu9lfadQl9vBr4WNFQMVOhr1wX8vDhj5zrgLQqTIGXdXwA/Lz7+CYUZSjPHzIZQ+IX/kbuf6O8LxbHcE2O6mRuuq9BvzOwvgP8OfM4z+sJemb6/B2gF/mBmnRSGrH5nZmeHS1kbFfra/QL4CICZTaIwr8+Ae5GmBvuADxcffwTYGTBLXRT/M/tXYJu7/++SVSso/KGjeP9A0tnqqVK/zWwO8I/AFe7+eqh89VSu7+7+uLuPdvcJ7j6BwsndRe7+fMCoNdFVNxGY2Y+Bdgpn7C8AXwd+CCwBpgBHgevd/TehMtZDhX5vB/6JwtBVN/B37r4xVMZ6MLNLgd8Cj1P4Tw0K88c+BiwDxgHPAFe6e88XqwesKv2+ExgGHCguW+vuVyefsH4q9d3dV5Zs0wm0DcSrblToRUQyTkM3IiIZp0IvIpJxKvQiIhmnQi8iknEq9CIiGadCLyKScSr0IiIZ9/8AsM5WG6fDbhoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Посох__" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "16\n", "11\n" ] } ], "source": [ "mask = np.logical_and(df.unit_1 == 'посох', df.unit_2 == 'посох')\n", "mask1 = np.logical_and(mask, df.unit_3 == 'посох')\n", "mask2 = np.logical_and(mask1, df.unit_4 == 'посох')\n", "\n", "conf = df[mask2]\n", "conf_before = conf[conf.balance_mark == 'before']\n", "conf_after = conf[conf.balance_mark == 'after']\n", "\n", "x = conf_before.len\n", "y = conf_after.len\n", "\n", "print(conf_before.shape[0])\n", "print(conf_after.shape[0])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcA0lEQVR4nO3de5BV5Znv8e8zbUOrtCCobaZBaUcImhPwgngNaVIDATNKrJoQcmLGSmLQ1DCaVDwePVZM5aRSOeMlVhmdQeIwNTNoLExigmeIQiz2ISl0uGQUr1wUHBpUVLywNd1yec4fazfZNLt7r71693p7LX6fqlV7r/W+a/fz7nevh8W713q3uTsiIpJffxY6ABERGVhK9CIiOadELyKSc0r0IiI5p0QvIpJzR4UOoJITTjjBx44de3D9gw8+4Nhjjw0XUB3lpS2J2/Hqq9HjqafWN6B+OOL7JKY0u059Urv169e/5e4nVioblIl+7NixrFu37uB6oVCgvb09XEB1lJe2JG7HvHnR48KFdY2nP474Pokpza5Tn9TOzF7trUxDNyIiOTcoz+glx66+OnQEkpC6LruU6CVdU6aEjkASUtdlV2YS/d69e+no6KCzszN0KP0ybNgw9u7dS2NjY+hQwti0KXocPz5sHFIzdV12ZSbRd3R00NzczNixYzGz0OEk4u50dHTQ0dFBW1tb6HDCuOOO6HEQfRkr8ajrsiszX8Z2dnYyatSozCZ5ADNj+PDhmf9fiYhkS2YSPZDpJN8tD20QkWzJVKIXEZHaKdHXYNiwYaFDEBGpWWa+jJWcmD8/dASSkLqugpU/6ru82Fa9TrlpN/cvnl7ojD6h22+/nfPOO4+JEyfyve99D4Bt27Zxxhln8I1vfINPfOITzJgxgz/+8Y+BIx1kJk6MFskcdV12ZfeMvnvijXLTp8MXvgCdnXDddYeXX3ZZtLz7Ltx446FlNVwztnz5cjZv3syaNWtwdy6//HJWrVrFKaecwubNm/nZz37GT3/6U+bMmcMvfvELrrzyyhobl2MbNkSPyhiZo67Lruwm+oCWL1/O8uXLOfvsswEoFots3ryZU045hba2Ns466ywAzj33XLZt2xYw0kHonnuiR12MnTnquuzKbqLv69PW1NR3+YgR/fq0ujs333wz11xzzSHbt23bxtChQw+uNzQ0aOhGRILTGH0Cn/3sZ1m0aBHFYhGAHTt2sGvXrsBRiYhUlt0z+oBmzJjBiy++yIUXXghEl10uXryYhoaGwJGJiBxOib4G3WfwANdffz3XX3/9YXWee+65g89vuOGGVOISEemLEr2kS//4ZZa6LruU6CVdmuM2s9R12aUvYyVda9ZEi2SOui67dEYv6br//uhRP1eUOeq67NIZvYhIzinRi4jkXKxEb2YzzWyjmW0xs5sqlH/ZzDaUltVmNqmsbJuZPWtmT5vZunoGnzZNUywiWVR1jN7MGoB7gelAB7DWzJa6+wtl1bYCn3b3d8xsFrAQOL+sfJq7v1XHuEVEJKY4X8ZOAba4+ysAZvYQMBs4mOjdfXVZ/aeA0fUMcjC6/fbbWbJkCV1dXVxxxRV8//vfZ9u2bcyaNYtLLrmE1atX09rayq9//WuOPvro0OEOHrfcEjoCSUhdl11xEn0rsL1svYNDz9Z7+jrwm7J1B5abmQP3uXvF2cTMbB4wD6ClpYVCoXCwrFgsMnz4cPbs2XNw23XXDe35Ekybtp8rrthHZyfceOPh5bNm7WPWrP28+y7ceuuh5Xff3dVHk/5kz549PPHEE7zwwgs88cQTuDtf/OIXeeyxxxg9ejSbN2/m/vvv58c//jFXXXUVixcvZu7cuQf3379/P52dnYe0L4uKxWL/2rB1a91i6bZrT7w+7KnxQBdLHn28YtlJzYd/jgarfvdJTAPQdYdJqy39Vmzru/jAUApV6hxigNocJ9FX+jVrr1jRbBpRor+kbPPF7r7TzE4CVpjZS+6+6rAXjP4BWAgwefJkb29vP1hWKBRoamqiubn54LbGxsP//tFHQ3NzVFa5fAjNzbB//+Hlzc1DKjXpMM3Nzfz+979n5cqVTJ06FYg+lDt27GDChAm0tbVx8cUXA3D++efzxhtvHBL3nj17aGpqOjjFcVYVCgXK+yi2VaWuL7139XTXik2J9mvt3MqOpsoH45z27NwllLhPYhrArjvMQLelbqr8elSh2Eb7sBr+ZWyfW71OAnESfQcwpmx9NLCzZyUzmwjcD8xy97e7t7v7ztLjLjN7hGgo6LBEX6uAsxRrmuL+WLw4ekwjW0hdqeuyK85VN2uBcWbWZmZDgLnA0vIKZnYK8EvgK+6+qWz7sWbW3P0cmAE8R8ZpmmIRyZKqZ/Tuvs/M5gOPAw3AInd/3syuLZUvAG4FRgH/YGYA+9x9MtACPFLadhTwoLs/NiAtSZGmKRaRLIk1BYK7LwOW9di2oOz51cDVFfZ7BZjUc3tWaZpiEcki3RkrIpJzmtRM0vWDH4SOQBJS12VXphK9u1Ma788s94pXph45WlpCRyAJqeuyKzNDN01NTbz99tuZTpTuznvvvUdTU1PoUMJZvjxaJHPUddmVmTP60aNH09HRwZtvvhk6lH754IMPmDQpN99P1+7nP48eZ8wIG4fUTF2XXZlJ9I2NjbS11XAr8SBVKBRorHTbrojIAMnM0I2IiCSjRC8iknNK9CIiOZeZMXrJidtuCx2BJKSuyy4leknXiBGhI5CE1HXZpaEbSdejj0aLZI66LruU6CVdyhaZpa7LLiV6EZGcU6IXEck5JXoRkZxTohcRyTldXinpuvvu0BFIQuq67FKil3QdyVM0Z5y6Lrs0dCPpevjhaJHMUddllxK9pGvFimiRzFHXZZcSvYhIzinRi4jknBK9iEjOKdGLiOScLq+UdC1cGDoCSUhdl106oxcRyTkleknXv/1btEjmqOuyS4le0vW730WLZI66LrtiJXozm2lmG81si5ndVKH8y2a2obSsNrNJcfcVEZGBVTXRm1kDcC8wCzgT+JKZndmj2lbg0+4+EfgBsLCGfUVEZADFOaOfAmxx91fc/SPgIWB2eQV3X+3u75RWnwJGx91XREQGVpzLK1uB7WXrHcD5fdT/OvCbWvc1s3nAPICWlhYKhcLBsmKxeMh6luWlLUnbcfpbbwGwZQDeg9bOrkT7NR7oorVza8WyQmFnf0JK1UB/tt5663QACoUtA/Y3umXmOCm29V18YCiFKnUOMUBtjpPorcI2r1jRbBpRor+k1n3dfSGlIZ/Jkyd7e3v7wbJCoUD5epblpS2J21HaZ3TftRK5a8WmRPu1dm5lR1Plg3FO+/j+hJSqgf5s/emlB6L3DpWZ42Tlj/osLhTbaB9W+SSiova5/QyosjiJvgMYU7Y+GjjsNMfMJgL3A7Pc/e1a9hURkYETZ4x+LTDOzNrMbAgwF1haXsHMTgF+CXzF3TfVsq8cYe6/P1okc9R12VU10bv7PmA+8DjwIrDE3Z83s2vN7NpStVuBUcA/mNnTZraur30HoB2SFWvWRItkjrouu2LNdePuy4BlPbYtKHt+NXB13H1FRCQ9ujNWRCTnlOhFRHJO0xRLukaMCB2BJKSuyy4l+hiSXp9dSWtnF3et2MS3p2fn+uy6uu220BFIQuq67NLQjYhIzinRS7ruuSdaJHPUddmloRtJ14YNoSOQhNR12aUzehGRnNMZvQyM3iZ72vl03+V9mXZz8njkT5K89wA7Z5b2f+zwMvXNoKYzehGRnNMZvaTr+GGhI5CEWo7/MHQIkpASvaTra9NDRyAJ/eBrq0KHIAlp6EZEJOeU6CVdS34XLZI5dy6Zwp1LpoQOQxLQ0I2ka/tboSOQhDZuHxk6BElIZ/QiIjmnRC8iknNK9CIiOacxeklXiyY1z6pTW94PHYIkpEQv6bpyWugIJKFbrlwdOgRJSEM3IiI5p0Qv6Vq8Mlokc364+CJ+uPii0GFIAhq6kXS98W7oCCShV984LnQIkpDO6EVEck6JXkQk55ToRURyTmP0kq4xJ4SOQBL6+JjdoUOQhJToJV1zPhU6AknoO3PWhA5BEtLQjYhIzsVK9GY208w2mtkWM7upQvkEM3vSzLrM7IYeZdvM7Fkze9rM1tUrcMmoRSuiRTLnu4um8t1FU0OHIQlUHboxswbgXmA60AGsNbOl7v5CWbXdwHXA53t5mWnuronIBd4pho5AEnrjnWNChyAJxTmjnwJscfdX3P0j4CFgdnkFd9/l7muBvQMQo4iI9EOcL2Nbge1l6x3A+TX8DQeWm5kD97n7wkqVzGweMA+gpaWFQqFwsKxYLB6ynrbWzq66vVbjgS5aO7dSKOys22uGULVPim0VN4/f2wzApl7K+1TlM5C0n7r7pPKfzE4/xT5Okrz3wM690Z2xhUr71/n4DH3Mx1blvSweGFr5/erNALU5TqK3Ctu8hr9xsbvvNLOTgBVm9pK7H/Zz8qV/ABYCTJ482dvb2w+WFQoFytfTdteKTXV7rdbOrexoamNO+/i6vWYIVftk5Y8qb2/cA8CfD6ucWPvUPrfP4qT91N0nlWSpn2IfJ731TRUPNn4cgPZKfVelb2oV+piPrcp7WSi2VX6/elPn97FbnETfAYwpWx8NxD7NcfedpcddZvYI0VDQYYlejhCnnRw6Aklo4mlvhg5BEoqT6NcC48ysDdgBzAX+e5wXN7NjgT9z9z2l5zOA/500WMmBKy4MHYEkNP+K9aFDkISqJnp332dm84HHgQZgkbs/b2bXlsoXmNnJwDrgOOCAmX0LOBM4AXjEzLr/1oPu/tjANEVERCqJdWesuy8DlvXYtqDs+etEQzo9vQ9M6k+AkjP3/SZ6vGZW2DikZjfeF/062G3X6PcEskZTIEi6ip2hI5CE3i0ODR2CJKQpEEREck6JXkQk55ToRURyTmP0kq4Jlb6zlyyYMuG10CFIQkr0kq7PnRc6Akno6s89EzoESUhDNyIiOadEL+n6yaPRIplz3U+mc91PpocOQxLQ0I2k66N9oSOQhDo/aggdgiSkM3oRkZxTohcRyTklehGRnNMYvaTrk2NDRyAJfeqTHaFDkISU6HOknr+E1e3b0+v8C0szzq7v6wkQ9X1rZ1esz8AF//V2rNe88LRRh6x/ZcZziWKT8DR0IyKSc0r0kq47H4kWyZx5d85k3p0zQ4chCSjRi4jknBK9iEjOKdGLiOScEr2ISM7p8kpJ17mnh45AEpp+7rbQIUhCSvSSrvZPho5AEvpC+0uhQ5CENHQj6fpob7RI5nR+1KAZLDNKiV7S9ZP/Gy2SOZqPPruU6EVEck6JXkQk55ToRURyToleRCTndHmlpOvCCaEjkIQuu3BL6BAkoVhn9GY208w2mtkWM7upQvkEM3vSzLrM7IZa9pUjzEVnRItkzmUXbeGyi5Tss6hqojezBuBeYBZwJvAlMzuzR7XdwHXAHQn2lSNJ8Y/RIpnzbnEo7xaHhg5DEohzRj8F2OLur7j7R8BDwOzyCu6+y93XAj3vhKm6rxxh7nssWiRzbrxvGjfeNy10GJJAnDH6VmB72XoHcH7M14+9r5nNA+YBtLS0UCgUDpYVi8VD1tPW2tlVt9dqPNBFa+dWCoWddXvNbvWMs1tvcVbtk2Jbxc3j9zYDsKmX8irB9FmctP3dfVL5T9a/nwZCa2dXn+0ot3v4WbFes1A8ND3s3HtcaXuFvqvz8Rn6mI+tyue4eGBo5ferNwPU5jiJ3ips85ivH3tfd18ILASYPHmyt7e3HywrFAqUr6etnr/F2tq5lR1Nbcxpr/NvsTIwvxnbW5xV+2Tljypvb9wDwJ8Pq56QDtM+t8/ipO3v7pNKBqKfBkL0m7G9t6PcBbtWxHrNnr8Z+2DjxwFor9R3VfqmVqGP+dh6+5yXFIptld+v3tT5fewWZ+imAxhTtj4aiHua0599RUSkDuIk+rXAODNrM7MhwFxgaczX78++IiJSB1WHbtx9n5nNBx4HGoBF7v68mV1bKl9gZicD64DjgANm9i3gTHd/v9K+A9UYyYCp/y10BJLQX0/dGDoESSjWDVPuvgxY1mPbgrLnrxMNy8TaV45g540LHYEkNOO8BN+ryKCgKRAkXbv3RItkzhu7j+GN3ceEDkMS0BQIkq5//m30+J0rat+3yhUOF/zX2zW93FOnzKs9hhCqtBuitu8eflbsK2qS+O4/TwVg4XdSuA9iz+ux2i3x6IxeRCTnlOhFRHJOiV5EJOeU6EVEck5fxkq6/jLePCsy+Fz5l7oFJquU6CVdkxJMZiaDwtRJ26tXkkFJQzeSrtffiRbJnFdfP45XXz8udBiSgBK9pOuBQrRI5vzwgYv44QMXhQ5DElCiFxHJOSV6EZGcU6IXEck5JXoRkZzT5ZWSrksnh45AErr60mdChyAJKdFLus4YU72ODEpTzngtdAiSkIZuJF3b34oWyZxN20eyafvI0GFIAkr0kq4lv4sWyZw7lkzhjiVTQochCSjRi4jknBK9iEjOKdGLiOScEr2ISM7l7vLKu1ZsCh1CLFmPs7Wzq8829PZD3cdMPoNJo4fXJbY0DIZ+qvVHzwfK/M+vDx2CJJS7RC+D24djToTTRoUOQxKY+Bdvhg5BEtLQjaTqmO1vwsu68SaLNrx8IhtePjF0GJKAEr2k6uSV/wm/eip0GJLAPb86l3t+dW7oMCQBJXoRkZxTohcRyTklehGRnIuV6M1sppltNLMtZnZThXIzs7tL5RvM7Jyysm1m9qyZPW1m6+oZvIiIVFf18kozawDuBaYDHcBaM1vq7i+UVZsFjCst5wP/WHrsNs3dNWWhsHPGZFrGHB86DEnghjlrQocgCcW5jn4KsMXdXwEws4eA2UB5op8N/Ku7O/CUmY0ws4+5u66jk0N0njwSxug6+iwaP2Z36BAkoTiJvhXYXrbewaFn673VaQVeAxxYbmYO3OfuCyv9ETObB8wDaGlpoVAoHCwrFouHrPcZbGdXrHqhNB7oorVza+gw+q1aO3YPP6vi9uGbX2b9u/vZM/70usf0wfDaftSkO/7B3ie9vZc97Ws4JnbdOArFQ9PDi5uiuejPGF8h4cc8PuMqHhhKodhW19cMoeZ21Pl97BYn0VuFbV5DnYvdfaeZnQSsMLOX3H3VYZWjfwAWAkyePNnb29sPlhUKBcrX+zIYblnvS2vnVnY0Zf8DXK0dF+xaUXH7aY8tp6W5Cc65ou4xPbmrtqkCNp0yDxj8fdLbe9nT7uFnMfK9p+v2dy/scQfzgys/DsA3z6kwFUL73Lr9XYDCow/RPmzw/uMbV6HYVls76vw+dovzZWwHUH6qNBrYGbeOu3c/7gIeIRoKEhGRlMRJ9GuBcWbWZmZDgLnA0h51lgJ/U7r65gLgPXd/zcyONbNmADM7FpgBPFfH+EVEpIqqQzfuvs/M5gOPAw3AInd/3syuLZUvAJYBlwJbgA+Br5Z2bwEeMbPuv/Wguz9W91aIiEivYs1e6e7LiJJ5+bYFZc8d+NsK+70CTOpnjCIi0g+aplhS1fG5C2gZMyJ0GJLALV9eHToESUiJXlL10ajj4GTdMJVFp578fugQJCHNdSOpat7UAc9k/7K5I9GqZ8aw6pna7lWQwUFn9JKqE596AZqbYNLgvW5dKlv8208AMHXS9io1ZbDRGb2ISM4p0YuI5JwSvYhIzinRi4jknL6MlVRtn30xLafq8sos+sFXD5uLUDJCiV5StXf4sTCyOXQYkkDLyA9DhyAJaehGUjX8+W2wdnPoMCSB5WvbWL5Wl8Vmkc7oJVWj1m+KrqM/b1zoUKRGP18VzUc/4zzd8JY1OqMXEck5JXoRkZxTohcRyTklehGRnNOXsZKqV/96Ki1jR4YOQxK47ZqVoUOQhJToJVX7j2mCYUeHDkMSGDGsK3QIkpCGbiRVxz/9Mqx+MXQYksCjq0/n0dWnhw5DElCil1Qdv+FlePKl0GFIAo8+eTqPPqlEn0VK9CIiOadELyKSc0r0IiI5p0QvIpJzurxSUrX1S5+hpU3X0WfR3X+3InQIkpASvaTKG4+CIY2hw5AEmobsDx2CJKShG0nVyHUbofBs6DAkgYcLE3i4MCF0GJKAEr2kasQLr8L6LaHDkARWrB/LivVjQ4chCSjRi4jkXKxEb2YzzWyjmW0xs5sqlJuZ3V0q32Bm58TdV0REBlbVRG9mDcC9wCzgTOBLZnZmj2qzgHGlZR7wjzXsKyIiAyjOGf0UYIu7v+LuHwEPAbN71JkN/KtHngJGmNnHYu4rIiIDKM7lla3A9rL1DuD8GHVaY+4LgJnNI/rfAEDRzDaWFZ8AvBUj1izIS1v6145/X1u/SBK7s/uJ+iSW/wXAT/+997I6OkL7pF/v46m9FcRJ9FZhm8esE2ffaKP7QmBhxQDM1rn75L6CzIq8tCUv7YD8tCUv7YD8tGWwtCNOou8AxpStjwZ2xqwzJMa+IiIygOKM0a8FxplZm5kNAeYCS3vUWQr8TenqmwuA99z9tZj7iojIAKp6Ru/u+8xsPvA40AAscvfnzezaUvkCYBlwKbAF+BD4al/7Joiz4pBORuWlLXlpB+SnLXlpB+SnLYOiHeZecchcRERyQnfGiojknBK9iEjODbpEb2aLzGyXmT3XY/vflaZSeN7MbgsVX1yV2mFmZ5nZU2b2tJmtM7MpIWOMy8zGmNlKM3ux9P5fX9o+0sxWmNnm0uPxoWPtSx/tuN3MXipN3/GImY0IHWs1vbWlrPwGM3MzOyFUjHH01Y4MHvO9fb7CH/fuPqgWYCpwDvBc2bZpwG+BoaX1k0LHmbAdy4FZpeeXAoXQccZsy8eAc0rPm4FNRFNa3AbcVNp+E/D3oWNN2I4ZwFGl7X8/2NvRV1tK62OILoB4FTghdKwJ+ySLx3xvbQl+3A+6M3p3XwXs7rH5m8D/cfeuUp1dqQdWo17a4cBxpefDycg9Be7+mrv/ofR8D/Ai0V3Ps4F/KVX7F+DzYSKMp7d2uPtyd99XqvYU0f0eg1offQJwF3AjvdycOJj00Y4sHvO9tSX4cT/oEn0vxgOfMrP/MLP/Z2bnhQ4ooW8Bt5vZduAO4ObA8dTMzMYCZwP/AbR4dL8EpceTwkVWmx7tKPc14Ddpx9Mf5W0xs8uBHe7+TNCgEujRJ5k+5nu0Jfhxn5VEfxRwPHAB8D+AJWZWaXqFwe6bwLfdfQzwbeCfAsdTEzMbBvwC+Ja7vx86nqR6a4eZ3QLsAx4IFVutyttCFPstwK1Bg0qgQp9k9piv0Jbgx31WEn0H8EuPrAEOEE0WlDVXAb8sPX+YaHbPTDCzRqIP7wPu3t2GN0qzlFJ6HPT/ve6lHZjZVcBfAV/20mDqYFehLX8BtAHPmNk2oiGoP5jZyeGirK6XPsnkMd9LW4If91lJ9L8CPgNgZuOJ5tDJ4sx2O4FPl55/BtgcMJbYSmdS/wS86O4/LitaSvQhpvT467Rjq0Vv7TCzmcD/BC539w9DxVeLSm1x92fd/SR3H+vuY4mS5Tnu/nrAUPvUx2crc8d8H20Jf9yH/qa6wjfXPwNeA/YSfVC/TtTJi4HngD8AnwkdZ8J2XAKsB54hGrs7N3ScMdtyCdEXShuAp0vLpcAo4AmiD+4TwMjQsSZsxxai6bS7ty0IHWvStvSos43Bf9VNb32SxWO+t7YEP+41BYKISM5lZehGREQSUqIXEck5JXoRkZxTohcRyTklehGRnFOiFxHJOSV6EZGc+/82/ZeUV7+jJgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(x, y)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/arturignatev/opt/anaconda3/lib/python3.8/site-packages/matplotlib/cbook/__init__.py:1376: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", " X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAMkklEQVR4nO3db4gc933H8fenSOkT2e4JrVOj6Hql1CVpMBa5BBOR2lVoMabUedIHgQhBgo+aECSjpn8cqO1nxjUq6UOBRFIQoQ5S0z5oSUVQEwS1wkkolZVr4idJUCwqCQmkUuIg8u2DG5XL6U67t97d0+/0fsHhvZkdz9dGvD2enZlNVSFJas+vrPcAkqThGHBJapQBl6RGGXBJapQBl6RGbZrkzrZt21YzMzOT3KUkNe/MmTNXq6q3fPlEAz4zM8P8/PwkdylJzUvy45WWewpFkhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpURO9kUfSxpJkzdv4HQSjY8AlDW21GCcx1BPgKRRJapQBl6RGGXBJalTfgCfZkeRkkoUkF5Ls65Y/nuTNJOeSzCf52PjHlSTdNsiHmLeAA1V1NskDwJkkJ4DXgFeq6l+TPNP9/tT4RpUkLdU34FV1CbjUvb6ZZAHYDhTwYPe2h4B3xjWkJOlOa7qMMMkMsBM4DewHvpnkdRZPxXx8lW3mgDmA6enp9zCqJGmpgT/ETLIFOAbsr6obwPPAC1W1A3gBOLzSdlV1qKpmq2q217vjG4EkSUMaKOBJNrMY76NVdbxbvBe4/frrgB9iStIEDXIVSlg8ul6oqoNLVr0DPNm93g28PfrxJEmrGeQc+C5gD3A+yblu2YvAc8CXk2wCfkZ3nluSNBmDXIVyCljtiTUfGe04ku41W7du5fr162vebq0PupqamuLatWtr3s/9zIdZSbqr69evT+TBVMM82fB+5630ktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktSovgFPsiPJySQLSS4k2bdk3ReS/KBb/tp4R5UkLbVpgPfcAg5U1dkkDwBnkpwA3g88CzxWVe8meXicg0qSflnfgFfVJeBS9/pmkgVgO/Ac8GpVvdutuzzOQSVJv2xN58CTzAA7gdPAo8AnkpxO8u0kH11lm7kk80nmr1y58l7nlSR1Bg54ki3AMWB/Vd1g8eh9CngC+CLwRpIs366qDlXVbFXN9nq9EY0tSRoo4Ek2sxjvo1V1vFt8EThei74L/ALYNp4xJUnLDXIVSoDDwEJVHVyy6hvA7u49jwLvA66OY0hJ0p0GuQplF7AHOJ/kXLfsReAIcCTJW8DPgb1VVeMZU5K03CBXoZwC7ji33fnMaMeRJA3KOzElqVEGXJIaZcAlqVEGXJIaZcAlqVEGXJIaZcAlqVEGXJIaZcAlqVEGXJIaZcAlqVGDPMxK0n2sXnoQXn5oMvvRmhhwSXeVV24wiQeNJqFeHvtuNhRPoUhSozwCv8et8C11A/HR7NLGZ8DvcXcLcRJDLd3HPIUiSY0y4JLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY3qG/AkO5KcTLKQ5EKSfcvW/1mSSrJtfGNKkpYb5EaeW8CBqjqb5AHgTJITVfX9JDuAPwB+MtYpJUl36HsEXlWXqups9/omsABs71b/LfDngLcDStKErekceJIZYCdwOskfAz+tqu+NYS5JUh8DPwslyRbgGLCfxdMqXwL+cIDt5oA5gOnp6eGmlCTdYaAj8CSbWYz30ao6DvwW8JvA95L8CPgAcDbJry/ftqoOVdVsVc32er3RTS5J97m+R+BZfJ7pYWChqg4CVNV54OEl7/kRMFtVV8c0pyRpmUGOwHcBe4DdSc51P8+MeS5JUh99j8Cr6hRw128VqKqZUQ0kSRqMd2JKUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMG/k5MSfevxS/mGq+pqamx72OjMeCS7qqq1rxNkqG209p4CkWSGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGtU34El2JDmZZCHJhST7uuV/k+S/kvxnkn9M8mvjH1eSdNsgR+C3gANV9UHgCeDzST4EnAA+XFWPAT8E/mp8Y0qSlusb8Kq6VFVnu9c3gQVge1X9W1Xd6t72JvCB8Y258W3dupUka/oB1vT+rVu3rvM/paRRWtOt9ElmgJ3A6WWrPgv8wyrbzAFzANPT02se8H5x/fr1sd96PInnWUianIE/xEyyBTgG7K+qG0uWf4nF0yxHV9quqg5V1WxVzfZ6vfc6rySpM9AReJLNLMb7aFUdX7J8L/BHwCfLJ9dI0kT1DXgW/7/7MLBQVQeXLH8a+Avgyar63/GNKElaySBH4LuAPcD5JOe6ZS8Cfwf8KnCiO7f6ZlX96VimlCTdoW/Aq+oUsNKnX/8y+nEkSYPyTkxJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGrel54BqfeulBePmh8e9D0oZhwO8ReeXGRL7QoV4e6y4kTZCnUCSpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhplwCWpUQZckhrlrfSShpZkzevG/ciI+4kBlzQ0Y7y++p5CSbIjyckkC0kuJNnXLd+a5ESSt7u/To1/XEnSbYOcA78FHKiqDwJPAJ9P8iHgL4FvVdVvA9/qfpckTUjfgFfVpao6272+CSwA24Fnga92b/sq8KlxDSlJutOarkJJMgPsBE4D76+qS7AYeeDhVbaZSzKfZP7KlSvvbVpJ0v8bOOBJtgDHgP1VdWPQ7arqUFXNVtVsr9cbZkZJ0goGCniSzSzG+2hVHe8W/3eSR7r1jwCXxzOiJGklg1yFEuAwsFBVB5es+mdgb/d6L/BPox9PkrSaQa4D3wXsAc4nOdctexF4FXgjyeeAnwB/Mp4RJUkr6RvwqjoFrHa71SdHO44kaVA+C0WSGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGmXAJalRg3wnpiZk8fujx2dqamqsf39Jk2XA7xFVteZtkgy1naSNwVMoktQoAy5JjTLgktQoAy5Jjeob8CRHklxO8taSZY8neTPJuSTzST423jElScsNcgT+FeDpZcteA16pqseBv+5+lyRNUN+AV9V3gGvLFwMPdq8fAt4Z8VySpD6GvQ58P/DNJK+z+B+Bj6/2xiRzwBzA9PT0kLuTJC037IeYzwMvVNUO4AXg8GpvrKpDVTVbVbO9Xm/I3UmSlhs24HuB493rrwN+iClJEzZswN8Bnuxe7wbeHs04kqRB9T0HnuRrwFPAtiQXgZeA54AvJ9kE/IzuHLckaXL6BryqPr3Kqo+MeBZJ0hp4J6YkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1KjDLgkNcqAS1Kj+n6psdZXkqHWV9U4xpF0DzHg9zhDLGk1nkKRpEYZcElqVN+AJzmS5HKSt5Yt/0KSHyS5kOS18Y0oSVrJIEfgXwGeXrogye8DzwKPVdXvAq+PfjRJ0t30DXhVfQe4tmzx88CrVfVu957LY5hNknQXw54DfxT4RJLTSb6d5KOrvTHJXJL5JPNXrlwZcneSpOWGDfgmYAp4Avgi8EZWuSC5qg5V1WxVzfZ6vSF3J0labtiAXwSO16LvAr8Ato1uLElSP8PeyPMNYDfw70keBd4HXO230ZkzZ64m+fGQ+9SdtjHAv3dpHfhnc7R+Y6WFfQOe5GvAU8C2JBeBl4AjwJHu0sKfA3trgFsGq8pzKCOUZL6qZtd7Dmk5/2xORt+AV9WnV1n1mRHPIklaA+/ElKRGGfC2HVrvAaRV+GdzAuLT7iSpTR6BS1KjDLgkNcqAN2i1J0RK6y3JjiQnkyx0Tyrdt94zbWSeA29Qkt8D/gf4+6r68HrPI92W5BHgkao6m+QB4Azwqar6/jqPtiF5BN6gVZ4QKa27qrpUVWe71zeBBWD7+k61cRlwSWORZAbYCZxe30k2LgMuaeSSbAGOAfur6sZ6z7NRGXBJI5VkM4vxPlpVx9d7no3MgEsame57AQ4DC1V1cL3n2egMeIO6J0T+B/A7SS4m+dx6zyR1dgF7gN1JznU/z6z3UBuVlxFKUqM8ApekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRv0fOdHexyhcrNMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.boxplot([x, y])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Топор__" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12\n", "12\n" ] } ], "source": [ "mask = np.logical_and(df.unit_1 == 'топор', df.unit_2 == 'топор')\n", "mask1 = np.logical_and(mask, df.unit_3 == 'топор')\n", "mask2 = np.logical_and(mask1, df.unit_4 == 'топор')\n", "\n", "conf = df[mask2]\n", "conf_before = conf[conf.balance_mark == 'before']\n", "conf_after = conf[conf.balance_mark == 'after']\n", "\n", "x = conf_before.len\n", "y = conf_after.len\n", "\n", "print(conf_before.shape[0])\n", "print(conf_after.shape[0])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5gU9Z3v8ffXEZjoEC8QRwOIqOAlWbwwYjReBiME9ChxE12iMTlJcHSfEI0nrqvHXDbL4+N6O3uORzdIEk52o4TVGBLcYIC49ME8YgT2EBQRnABZB7yCF1pl5PI9f1SN9vT0TP96eqarmv68nqef6q76/aY+XTPznZrqql+ZuyMiIrVhv6QDiIhI5ajoi4jUEBV9EZEaoqIvIlJDVPRFRGrI/kkHKGTo0KF+1FFHBbd/5513OPDAA/svUJmUrzypyffnP0fTkSM7zU5NvhwdUYcOTV+2XGncdrmqKd+qVated/ePFe3k7ql7jBs3zkuxdOnSktpXmvKVJzX5rroqeuRJTb4cHVHTmC2X8pUnNx+w0gPqqw7viIjUkFQe3hFJpenTk04QrCPqu+8mm0PSR0VfJNT48UknCNYRNZNJNIakkIq+SKgNG6LpmDHJ5gjQEVU+tGvXLtra2ti5c2dwn4MOOoh169b1Y6rS1dfXM3z4cAYMGNCr/ir6IqHuuiuazp6dbI4AHVEvvzzZHGnS1tbG4MGDOeqoozCzoD47duxg8ODB/ZwsnLuzbds22traGDVqVK++hj7IFZGasHPnToYMGRJc8NPIzBgyZEhJ/63kU9EXkZpRzQW/Q7nvQUVfRKSGqOiLiFRIQ0ND0hH0Qa5IsBkzklv30ttKaj5jfHQ1/vYdDSX37WLCzeX1l1TRnr5IqLFjo0cVGHvMa4w95rWkY0gP7rzzTk477TTGjh3L97//fQA2b97MCSecwFVXXcUnPvEJJk2axHvvvden69WevkioNWuiaRUU/jV/isfdakw2R6q1tHSdN3EiXHop7NwJ117LoF27IPd8+Isuih5vvgk33ti5bwmn8i5evJgXXniBp59+Gnfn4osvZtmyZRx55JG88MIL/PznP+dHP/oRl112GY888ghf+tKXevkmu1LRFwl1773RtArO07/3V+MAuPzq9QknkUIWL17M4sWLOeWUUwDIZrO88MILHHnkkYwaNYqTTz4ZgHHjxrF58+Y+XbeKvojUpp7+eNfXw+zZtO/YwcBCF2cdfHBZf/zdnZtvvpmrr7660/zNmzczaNCgD17X1dX1+eGdoGP6ZjbZzNabWauZ3dRDu9PMbI+ZfaHUviIiteKzn/0sc+bMIZvNArBlyxZeffXViqy76J6+mdUB9wETgTZghZktcPfnCrS7HVhUal8RkVoyadIk1q1bxxlnnAFEp3I+8MAD1NXV9fu6Qw7vjAda3X0jgJnNA6YC+YX7m8AjwGm96Csiss/r2LMHuO6667juuuu6tHn22Wc/eH7DDTf0eQaLbrjSQ4PoUM1kd58ev74SON3dZ+S0GQbMBc4DfgL8m7v/IqRvztdoAVoAGhsbx82bNy/4TWSz2VRc9NAd5StPWvJ95MUXAXhvxIhO8yuSb8fLJTV/cUt0HPqQI96nYb/28tY9+PDy+vegkt/bgw46iGOPPbakPnv27KnI3nepWltbeeuttzptvwkTJqxy96ZifUP29AsN9JD/l+J/An/r7nvyxoUI6RvNdJ8NzAZoamry5ubmgGiRTCZDKe0rTfnKo3yUfoHVcdEkkx1Fc8Om8tbdPK28/j2o5Pd23bp1JY+YmbZRNjvU19dzyimn9Gr7hRT9NiB312Y4sDWvTRMwLy74Q4ELzGx3YF+R6vD009G0Cm6m8vS6I6InI3puJ7UnpOivAEab2ShgCzAN6DRKt7t/MLCzmf2U6PDOr8xs/2J9RarGj38cTaug6P944UmAztOXrooWfXffbWYziM7KqQPmuPtaM7smXj6r1L59E11EREoVdHGWuy8EFubNK1js3f2/FusrIiLJ0IBrIiIVkoaz0FT0RURqiMbeEQl1yy1JJwh2yxVPArCJIQknke7ceeedPPTQQ7S3t3PJJZfwgx/8gM2bNzNlyhTOOussnnzySYYNG8avf/1rPvKRj/TZelX0RUKNHJl0gmAjD38bgE1ZFf3uBIyszK5dg/pjZGUNrSxSFZYti6bnnJNsjgDL/hifoH9MsjmkMA2tLFINHnggmlZB0X/gd58A4PJjdJ5+dwJGVmbHjnYGDx7YZXmZIyunf2hlERHpO6keWllERPpW2odWFhGRPpCGoZV1eEdEpIZoT18k1MyZSScINvOr0ZlG62hMOImkjYq+SKjG6imgjYe+C8C6bJGGNcbdybvnR9UpduOrYlT0RUItXhxNJ01KNkeAxSui0c4HnpBwkBSpr69n27ZtDBkypGoLv7uzbds26uvre/01VPRFQv3iF9G0Cor+L5ZFt866/ASdp99h+PDhtLW18dprrwX32blzZ1kFtj/U19czfPjwXvdX0ReRmjBgwABGjRpVvGGOTCbzwVWz+wqdvSMiUkOCir6ZTTaz9WbWamY3FVg+1czWmNlqM1tpZmflLNtsZs90LOvL8CIiUpqih3fMrA64D5hIdKPzFWa2wN2fy2n2OLDA3d3MxgIPAcfnLJ/g7q/3YW4REemFkGP644FWd98IYGbzgKnAB0Xf3XNPDDsQKO+cIpE0uuOOpBMEu+PqpQCs5uMJJ5G0sWLnfJrZF4DJ7j49fn0lcLq7z8hrdwlwG3AYcKG7L4/nbwLeIPpDcL+7FxybzsxagBaAxsbGcfPmzQt+E9lsNhW3IeuO8pVH+YAdL/eqW3bvIBr2ay9v3YMPL69/D/S9LU9uvgkTJqxy96ZifUL29Aud0NrlL4W7zwfmm9k5wEzg/HjRp919q5kdBiwxs+fdfVmB/rOB2QBNTU3e3NwcEC2SyWQopX2lKV95UpPv0Uej6UUXdZpdkXxLbyup+aNPHgvA4LHtNDdsKm/dzdPK69+D1Hxvu7Ev5gv5ILcNGJHzejiwtbvGcUE/xsyGxq+3xtNXgflEh4tEqs+jj35Y+FPu0eXH8ujyY5OOISkUUvRXAKPNbJSZDQSmAQtyG5jZsRZf4mZmpwIDgW1mdqCZDY7nHwhMAp5FREQSUfTwjrvvNrMZwCKgDpjj7mvN7Jp4+Szg88CXzWwX8B7wV/GZPI1Eh3w61jXX3X/bT+9FRESKCLoi190XAgvz5s3KeX47cHuBfhuBk8rMKCIifURX5IqI1BCNvSMS6p57kk4Q7J5vLgHgqfePTDiJpI2KvkiolI222JP6gXuiJ+8nm0PSR0VfJNTDD0fTSy9NNkeAhzPRKCgfayrzwizZ5+iYvkioJUuiRxVYsuoolqw6KukYkkIq+iIiNURFX0Skhqjoi4jUEBV9EZEaorN3RELNLjgqeCrN/nY02kkmW9o9YWXfpz19EZEaoj19kVA/+1k0vfLKZHME+NniTwIw4sx3Ek4iaaM9fZFQTzwRParAE88M54lnhicdQ1JIRV9EpIao6IuI1BAVfRGRGhJU9M1sspmtN7NWM7upwPKpZrbGzFab2UozOyu0r0jVqK+vmpE26wfu+XCkTZEcRc/eMbM64D5gItFN0leY2QJ3fy6n2ePAgvgWiWOBh4DjA/uKVIcqHE9f5+lLvpA9/fFAq7tvdPf3gXnA1NwG7p51d49fHgh4aF8REakc+7BWd9PA7AvAZHefHr++Ejjd3WfktbsEuA04DLjQ3ZeH9o2XtQAtAI2NjePmzZsX/Cay2SwNDQ3B7StN+cqTlnxH/OY3ALx04YWd5lck346XS2r+m8VHA3Du+Vto2K/MMfUHH15e/x6k5XvbnWrKN2HChFXu3lSsT8jFWVZgXpe/FO4+H5hvZucAM4HzQ/vG/WcDswGampq8ubk5IFokk8lQSvtKU77ypCbf3LkAHJeXpSL5lt5WUvO5m44DoGG/dpobNpW37uZp5fXvQWq+t93YF/OFHN5pA0bkvB4ObO2usbsvA44xs6Gl9hURkf4VUvRXAKPNbJSZDQSmAQtyG5jZsWZm8fNTgYHAtpC+IiJSOUUP77j7bjObASwC6oA57r7WzK6Jl88CPg982cx2Ae8BfxV/sFuwbz+9FxERKSJowDV3XwgszJs3K+f57cDtoX1FqtLBByedINjBDbohuhSmUTZFQt1xR9IJgt1x9VJA5+lLVxqGQUSkhmhPXyTUvfdG0xldLjNJnXvnjwPgkxO3J5xE0kZFXyTUmjVJJwi2ZuPHAPgkKvrSmQ7viIjUEBV9EZEaoqIvIlJDdExfJFRjY9IJgjUe8m7SESSlVPRFQs2cmXSCYDO/tgzQefrSlQ7viIjUEO3pi4S6++5o+u1vJ5sjwN0PjQdg3AWvJZxE0kZFXyTU+vVJJwi2/sVDARiHir50psM7IiI1REVfRKSGqOiLiNSQoKJvZpPNbL2ZtZrZTQWWX2Fma+LHk2Z2Us6yzWb2jJmtNrOVfRlepKJGjoweVWBk49uMbHw76RiSQkU/yDWzOuA+YCLRPW9XmNkCd38up9km4Fx3f8PMphDd4Pz0nOUT3P31PswtUnm33JJ0gmC3fOlJQOfpS1che/rjgVZ33+ju7wPzgKm5Ddz9SXd/I375FNEN0EVEJGVCTtkcBryY87qNznvx+b4OPJbz2oHFZubA/e4+u+SUImlw663RtAr2+G994EwAPv25lxJOImkTUvStwDwv2NBsAlHRPytn9qfdfauZHQYsMbPn3X1Zgb4tQAtAY2MjmUwmIFokm82W1L7SlK88ack3ZvlyADbkZalIvhIP0yxvi/7ZPmnv9vIP8fTje0vL97aLHS8DkN07iMyj8yq33sGHl9S8N9svpOi3ASNyXg8HtuY3MrOxwI+BKe6+rWO+u2+Np6+a2Xyiw0Vdin78H8BsgKamJm9ubg5+E5lMhlLaV5rylSc1+ebOBeDjeVkqkm/pbSU1nzvgOAAa9munuWFTeetunlZe/x6k5nubL97emeyo8rdfKUrc1r3ZfiHH9FcAo81slJkNBKYBC3IbmNmRwC+BK919Q878A81scMdzYBLwbEkJRUSkzxTd03f33WY2A1gE1AFz3H2tmV0TL58FfA8YAvyTmQHsdvcmoBGYH8/bH5jr7r/tl3ciIiJFBY294+4LgYV582blPJ8OTC/QbyNwUv58kap03HFJJwh23AjdG1cK04BrIqGqYHTNDt++7GlA5+lLVxqGQUSkhmhPXyTUd78bTavgDlrfnXMOAJ+57MUiLaXWqOiLhHrllaQTBHvljQOSjiAppcM7IiI1REVfRKSGqOiLiNQQHdMXCTV2bNIJgo09WvfGlcJU9EVCzZiRdIJgMy5ZBeg8felKh3dERGqI9vRFQt14YzS9445kcwS48f4JAFxwxeZkg0jqqOiLhHrzzaQTBHszOyjpCJJSOrwjIlJDVPRFRGqIir6ISA3RMX2RUOPHJ50g2PjjdUN0KSxoT9/MJpvZejNrNbObCiy/wszWxI8nzeyk0L4iVWP69OhRBaZf+EemX/jHpGNIChUt+mZWB9wHTAFOBL5oZifmNdsEnOvuY4GZxDc4D+wrIiIVEnJ4ZzzQGt/6EDObB0wFnuto4O5P5rR/Chge2lekalx7bTS9555kcwS49n9PBOAvv9qacBJJm5CiPwzIvRNDG3B6D+2/DjxWal8zawFaABobG8lkMgHRItlstqT2laZ85UlLvjEbNwKwIS9LRfKVOJzCxncOibrtHVT+UAz9+N7S8r3tIt5mfbL9SlHitujN9gsp+lZgnhdsaDaBqOifVWpfd59NfFioqanJm5ubA6JFMpkMpbSvNOUrT2ryzZ0LwMfzslQk39LbSmo+d0B0E/eG/dppbthU3rqbp5XXvwep+d7mi7d3Jjuq/O1XihK3dW+2X0jRbwNG5LweDmzNb2RmY4EfA1PcfVspfUVEpDJCzt5ZAYw2s1FmNhCYBizIbWBmRwK/BK509w2l9BURkcopuqfv7rvNbAawCKgD5rj7WjO7Jl4+C/geMAT4JzMD2O3uTd317af3ItK/zj476QTBzv6LtqQjSEoFXZzl7guBhXnzZuU8nw4UPIG5UF+RqnTllUknCHblpGcBjacvXWkYBhGRGqJhGERCtbRE09mzk80RoOXuyQBcfvX6hJNI2mhPX0Skhqjoi4jUEBV9EZEaoqIvIlJD9EGuSKiJE5NOEGziuM1JR5CUUtEXCXXppUknCHZp8/OAztOXrlT0RULt3BlN6+uTzRFg5/t1SUeQlFLRFwnVMZ5+FZyn3zGevs7Tl3z6IFdEpIbse3v6JY473mcm3JzMeivgH5dsKN6oHw3b2d5jhusnjunzdRZa3/ltbwHwu7xlxfJB/2QU6Q3t6YuI1BAVfRGRGrLvHd4R6ScbPzUh6QjBLjpDN0SXwlT0RQJtPOO8pCMEu+jMqOjrPH3JF3R4x8wmm9l6M2s1s5sKLD/ezJabWbuZ3ZC3bLOZPWNmq81sZV8FF6m0Qdm3GZR9O+kYQd7MDuLN7KCkY0gKFd3TN7M64D5gItGNzleY2QJ3fy6n2XbgWuBz3XyZCe7+erlhRZJ09o/uBOB3189MOElxN94fHYrSefqSL2RPfzzQ6u4b3f19YB4wNbeBu7/q7iuAXf2QUURE+kjIMf1hwIs5r9uA00tYhwOLzcyB+9294OWMZtYCtAA0NjaSyWSCV5DNZj9sn9QxzB7ydsqXQsXyDdvZXrkwBQzY286wnZu6XZ7JbO3zdRZ6zwfs2REv65ylWD7og4wl/lxv3fXRqNveQeUf1+/Hn93U/m7E26xPtl8pStwWvdl+IUXfCszzEtbxaXffamaHAUvM7Hl3X9blC0Z/DGYDNDU1eXNzc/AKMpkMH7RP6uKs5mndLuqUL4WK5Uv+4qxNbKnv/hfvsubKXJx1Qt1ggC5ZiuWDPshY4s/13AHHAdCwXzvNDT3/QSqqh5/tcqX2dyPe3pnsqPK3XylK3Na92X4hh3fagBE5r4cDwbst7r41nr4KzCc6XCQiIgkI2dNfAYw2s1HAFmAacHnIFzezA4H93H1H/HwS8Pe9DSuSpA1nfzbpCMG+cI4+wJXCihZ9d99tZjOARUAdMMfd15rZNfHyWWZ2OLAS+Ciw18y+BZwIDAXmm1nHuua6+2/7562I9K//bDor6QjBJp0WHZLQefqSL+jiLHdfCCzMmzcr5/nLRId98r0NnFROQJG0OOCN6Kzjdw8ZmnCS4l7ZfkD0ZGCyOSR9dEWuSKAzf/q/gOo4T/+7/+ccQOfpS1cacE1EpIao6IuI1BAVfRGRGqKiLyJSQ/RBrkigdZ+5OOkIwb50/loA9upXXPLoJ0Ik0JaxpyUdIdg5J0XDZek8fcmnoi8SaPArWwDY0Tgs4STF/fnlaMA1GpLNIemjY/oigU6fO4vT584q3jAFbn3wTG598MykY0gKqeiLiNQQFX0RkRqioi8iUkNU9EVEaojO3hEJ9MyUS5OOEGz6BX8E4F3qE04iaaOiLxLolePHJh0h2PgTXgJ0nr50paIvEujgtujGJG8OT38h3fDiodGTQ5LNIekTdEzfzCab2XozazWzmwosP97MlptZu5ndUEpfkWrR9PAcmh6ek3SMIHc9NJ67HtLtqKWrokXfzOqA+4ApRLdA/KKZnZjXbDtwLXBXL/qKiEiFhOzpjwda3X2ju78PzAOm5jZw91fdfQWwq9S+IiJSOSHH9IcBL+a8bgNOD/z6wX3NrAVoAWhsbCSTyQSuArLZ7Iftk/rgqoe8nfKlULF8w3a2Vy5MAQP2tjNs56Zul2cyW/t8nYXe8wF7dsTLOmcplg/6IGOJP9dbd0Vj72T3Dir/w9x+/NlN7e9GvM36ZPuVosRt0ZvtF1L0rcA8D/z6wX3dfTYwG6Cpqcmbm5sDVwGZTIYP2i+9Lbhfn2qe1u2iTvlSqFi+f1yyoXJhChi2cxNb6rv/xbuseUyfr7PQez6hbjBAlyzF8kEfZCzx53rugOMAaNivneaGnv8gFdXDz3a5Uvu7EW/vTHZU+duvFCVu695sv5Ci3waMyHk9HAjdbSmnr0iqrJ56RdIRgs343CoAtmuYTckTUvRXAKPNbBSwBZgGXB749cvpK5Iqrx99fNIRgo095jUAMlkVfemsaNF3991mNgNYBNQBc9x9rZldEy+fZWaHAyuBjwJ7zexbwInu/nahvv31ZkT609CNzwPVUfzX/Olj0ZPGZHNI+gRdnOXuC4GFefNm5Tx/mejQTVBfkWp08q8fBOB3189MOElx9/5qHACXX70+4SSSNhpwTUSkhqjoi4jUEI29sw8q9RTLYTvbEz8tsxzVnL23lm/c1uPyV3ZE1xm8076b5a/23LaojTcUb9NL7xx0Mst/0n9fvydnHD0kkfUmTXv6IiI1RHv6IoFWXvq1pCMEu3xSJn5W8PwKqWEq+iKBqmFI5Q5HHv46ANtV9CWPir5IoMbn1wDVcTOV5zZGF8IffkrCQSR1VPRFAv3FYw8D1VH0F/w+Gtew5ZTWhJNI2uiDXBGRGqKiLyJSQ1T0RURqiIq+iEgN0Qe5IoH+cPk1SUcI9pULH4+fjUw0h6SPir5IoB2Nw5KOEOyIIW8AsF1FX/Ko6IsEGrZmBQBbxp6WcJLi/t+GowEYmf6oUmEq+iKBTnh8AVAdRX/RU6cC0HKaztOXzoI+yDWzyWa23sxazeymAsvNzO6Jl68xs1Nzlm02s2fMbLWZrezL8CIiUpqie/pmVgfcB0wkutH5CjNb4O7P5TSbAoyOH6cDP4ynHSa4++t9llpERHolZE9/PNDq7hvd/X1gHjA1r81U4F888hRwsJkd0cdZRUSkTCHH9IcBL+a8bqPzXnx3bYYBLwEOLDYzB+5399mFVmJmLUALQGNjI5lMJiQ/ANls9sP22YRGQuwhb6d8FTBsZ3tJ7QfsbWfYzk39lKZ8acl3wJ4dAF2yhOTLZLaWt/K8n+t3DhrRY/P2AdENQnbXbWX7QSeXt+5+tLvugMTyZbLFy1927yAylawpJdaJ3tSWkKJvBeZ5CW0+7e5bzewwYImZPe/uy7o0jv4YzAZoamry5ubmgGiRTCbDB+2X3hbcr081T+t2Uad8FVD6nbM2saU+vcMGpyXfG1//DgDv1g/tND8k32XNY8pbed7PdbG7YX3zgvgD3D3Hcuhbq8tbdz/aftDJieULuXNWJjuK5oYK7nD0UEcK6U1tCSn6bUDubsVwIH+3pds27t4xfdXM5hMdLupS9EXS7t1DhhZvlBKHHpQFYHvCOSR9Qo7prwBGm9koMxsITAMW5LVZAHw5PovnU8Bb7v6SmR1oZoMBzOxAYBLwbB/mF6mYI1f+niNX/j7pGEH+sHYMf1hb5n8Xsk8quqfv7rvNbAawCKgD5rj7WjO7Jl4+C1gIXAC0Au8CX427NwLzzaxjXXPd/bd9/i5EKmDME4sA+M+msxJOUtzSVdGY/6PP1Hn60lnQxVnuvpCosOfOm5Xz3IFvFOi3ETipzIwiItJHNMqmiEgNUdEXEakhKvoiIjVEA66JBHriqr9JOkKwb3zh3wDYxfEJJ5G0UdEXCdTe8NGkIwQbfMBOQOfpS1cq+iKBjl7+7wBsPOO8hJMU9/vVJwJw4rkJB5HUUdEXCXT0U0uBKin6azqKvs7Tl870Qa6ISA1R0RcRqSEq+iIiNURFX0SkhuiDXJFAS7/xnaQjBLv+i78C4B0+mXASSRsVfZFAewYOSjpCsEEDdgPwTsI5JH1U9EUCjV72GAAvnDMl4STF/fvKaGjlkz+TcBBJHR3TFwk0ctWTjFz1ZNIxgjz93Biefk43UZGuVPRFRGpIUNE3s8lmtt7MWs3spgLLzczuiZevMbNTQ/uKiEjlFC36ZlYH3AdMAU4EvmhmJ+Y1mwKMjh8twA9L6CsiIhUSsqc/Hmh1943u/j4wD5ia12Yq8C8eeQo42MyOCOwrIiIVEnL2zjDgxZzXbcDpAW2GBfYFwMxaiP5LAMia2fqAbB2GAq+X0L4f/PeeFqYgX4+UrxSPPZQ/p2i+/9ZvYbpzNwALlqVs23WlfJ30WEcKyc03MqRDSNG3AvM8sE1I32im+2xgdkCeLsxspbs39aZvJShfeZSv99KcDZSvXL3JF1L024AROa+HA1sD2wwM6CsiIhUSckx/BTDazEaZ2UBgGrAgr80C4MvxWTyfAt5y95cC+4qISIUU3dN3991mNgNYBNQBc9x9rZldEy+fBSwELgBagXeBr/bUtx/eR68OC1WQ8pVH+XovzdlA+cpVcj5zL3iIXURE9kG6IldEpIao6IuI1JCqK/pmNsfMXjWzZ3Pm/Z2ZbTGz1fHjgjTli+d/Mx6OYq2Z3ZGmfGb2rznbbrOZrU5RtpPN7Kk420ozG59Eth7ynWRmy83sGTN71Mw+mmC+EWa21MzWxT9n18XzDzWzJWb2Qjw9JGX5Lo1f7zWzxE6P7CHfnWb2fDzEzHwzOzhF2WbGuVab2WIz+3jRL+buVfUAzgFOBZ7Nmfd3wA1JZ+sh3wTgd8Cg+PVhacqXt/xu4HtpyQYsBqbEzy8AMmnadkRnqJ0bP/8aMDPBfEcAp8bPBwMbiIY/uQO4KZ5/E3B7yvKdABwHZICmFG6/ScD+8fzbk9h+PWT7aE6ba4FZxb5W1e3pu/syYHvSObrTTb6/Bv7B3dvjNq9WPFisp+1nZgZcBvy8oqFi3WRzoGPv+SASvM6jm3zHAcvi50uAz1c0VA53f8nd/yN+vgNYR3RV/FTgn+Nm/wx8Lk353H2du5dyBX6/6CHfYnffHTd7iuh6o7Rkezun2YF0c/Frrqor+j2YEf+bMyepf197MAY428z+YGb/18xOSzpQN84GXnH3F5IOkuNbwJ1m9iJwF3BzwnnyPQtcHD+/lM4XIybGzI4CTgH+ADR6dN0M8fSw5JJF8vKlTg/5vgY8Vuk8ufKzmdmt8e/HFcD3ivXfV4r+D4FjgJOBl+gYeCQ99gcOAT4F/A3wULxXnTZfJKG9/B78NXC9u48Argd+knCefF8DvmFmq4j+7X4/4TyYWQPwCPCtvD3BVKjWfGGJFbAAAAGtSURBVGZ2C7AbeDBN2dz9lvj340FgRrGvsU8UfXd/xd33uPte4EdEo3umSRvwS488DewlGigpNcxsf+AvgX9NOkuerwC/jJ8/TMq+t+7+vLtPcvdxRH8w/5RkHjMbQFQUHnT3ju32ikWj3hJPEzu82E2+1Ogun5l9BfgvwBUeH0BPS7Yccwk4vLhPFP2OH+jYJUT/cqfJr4DzAMxsDNGYRGkbWfB84Hl3b0s6SJ6twLnx8/OANB16wswOi6f7Ad8BZiWYxYj+E1rn7v8jZ9ECoj+exNNfVzob9JgvFbrLZ2aTgb8FLnb3d1OWbXROs4uB54t+saQ+KS/jU+yfEx3C2UW0B/114GfAM8Aaoh/wI1KWbyDwANEfo/8AzktTvnj+T4FrUvi9PQtYBfyR6BjmuJTlu47oTIoNwD8QX+WeUL6ziD7IWwOsjh8XAEOAx4n+YD4OHJqyfJfE27MdeAVYlLJ8rURDxHfMK3qGTAWzPRLXlTXAo0Qf7vb4tTQMg4hIDdknDu+IiEgYFX0RkRqioi8iUkNU9EVEaoiKvohIDVHRFxGpISr6IiI15P8D61DuhBBcUVkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(x, y)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD6CAYAAAC4RRw1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOmklEQVR4nO3df4xlZ13H8feHdoXEFtzJDmatWzcx0Cyu2IbRELtIF4w2aAAhqJtYa5i4QmBtCSFix9gSswlBqME1UVdnKSTrREwXf2KkIRObSUrNbLOhW6bCP2BWNuyQNmyNWWnh6x9zhwzTmbl37t57Z57p+5Xc7LnPOWee72Qnnznz3OecJ1WFJKk9L9rqAiRJ/THAJalRBrgkNcoAl6RGGeCS1CgDXJIa1TXAk+xLMptkIckTSe7qtP9Rki8mOZfkc0l+ZPjlSpKWpds88CR7gb1V9ViS64GzwFuBC1V1uXPM7wKvqqp3bfS19uzZU/v37x9I4ZL0QnH27NlvVtX46vZru51YVReBi53tZ5IsADdU1ZdWHPaDQNc7gvbv38/8/HzvVUuSSPK1tdq7BviqL7IfuAV4tPP+OPCbwLeAw+uccxQ4CnDjjTdupjtJ0gZ6/hAzyXXAg8Ddy0MnVTVVVfuA08B71zqvqk5W1URVTYyPP+8vAElSn3oK8CS7WArv01V1Zo1D/gZ4+yALkyRtrJdZKAGmgYWqun9F+ytWHPZm4MnBlydJWk8vY+C3AncAjyc512m7B5hMchPwXeBrwIYzUCRJg9XLLJQ5IGvs+uzgy5Ek9co7MSWpUQa4JDVqU/PAJWmlpTkOm+MqYINjgEvq23phnMSgHgGHUCSpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhrVy5qY+5LMJllI8kSSuzrtf5zkySRfTPKZJD80/HIlSct6uQJ/Dnh/VR0AXgu8J8mrgIeAg1X1auDLwO8Pr0xJ0mpdA7yqLlbVY53tZ4AF4Iaq+lxVPdc57AvAjw6vTEnSapsaA0+yH7gFeHTVrncC/7rOOUeTzCeZX1xc7KdGSdIaeg7wJNcBDwJ3V9XlFe1TLA2znF7rvKo6WVUTVTUxPj5+tfVKkjp6WlItyS6Wwvt0VZ1Z0X4n8MvAG8v1kyRppLoGeJZWLZ0GFqrq/hXttwO/B7y+qv53eCVKktbSyxX4rcAdwONJznXa7gH+FHgx8FBnZeovVNW7hlKlJOl5ugZ4Vc0BWWPXZwdfjiSpVz2NgWvrdP662TQ/kpB2Pm+l3+aqat3XRvulQRkbGyPJpl7Aps8ZGxvb4u+0PV6BS9rQ008/PZKLgn7/2nwh8wpckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDWqa4An2ZdkNslCkieS3NVpf0fn/XeTTAy/VEnSSr08D/w54P1V9ViS64GzSR4CzgNvA/5ymAVKktbWy5qYF4GLne1nkiwAN1TVQ+BD2CVpq2xqDDzJfuAW4NFNnHM0yXyS+cXFxc1VJ0laV88BnuQ64EHg7qq63Ot5VXWyqiaqamJ8fLyfGiVJa+gpwJPsYim8T1fVmeGWJEnqRS+zUAJMAwtVdf/wS5Ik9aKXWSi3AncAjyc512m7B3gxcAIYB/4lybmq+sXhlClJWq2XWShzwHpTTT4z2HIkSb3yTkxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1Khengcu6QWs7n0p3Pey0fSjTTHAJW0oH7pMVQ2/n4S6b+jd7CgOoUhSo3pZE3NfktkkC0meSHJXp30syUNJvtL5d/fwy5UkLevlCvw54P1VdQB4LfCeJK8CPgh8vqpeAXy+816SNCJdA7yqLlbVY53tZ4AF4AbgLcAnO4d9EnjrsIqUJD3fpsbAk+wHbgEeBX64qi7CUsgDL1/nnKNJ5pPMLy4uXl21kqTv6TnAk1wHPAjcXVWXez2vqk5W1URVTYyPj/dT4wvC2NgYSTb1AjZ1/NjY2BZ/l5IGqadphEl2sRTep6vqTKf5G0n2VtXFJHuBS8Mq8oXg6aefHvpUreXQl7Qz9DILJcA0sFBV96/Y9Y/AnZ3tO4F/GHx5kqT19HIFfitwB/B4knOdtnuADwOfTjIJ/BfwjuGUKGmrjeKvt927nYm8WV0DvKrmgPX+99442HIkbTcbDe31E+yjuKvzhcJb6SX1zTDeWt5KL0mNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVC9rYp5KcinJ+RVtP5XkkSSPJ/mnJC8dbpmSpNV6uQJ/ALh9VdtfAx+sqp8EPgN8YMB1SZK66BrgVfUw8NSq5puAhzvbDwFvH3BdkqQu+h0DPw+8ubP9DmDfegcmOZpkPsn84uJin91JklbrN8DfCbwnyVngeuDb6x1YVSeraqKqJsbHx/vsTpK0Wl+r0lfVk8AvACR5JfBLgyxKktRdX1fgSV7e+fdFwB8AfzHIoiRJ3fUyjXAGeAS4KcmFJJPAkSRfBp4Evg58YrhlSpJW6zqEUlVH1tn18QHXIknaBO/ElKRGGeCS1CgDXJIa1dc0Qg1e3ftSuO9lw+9D0o5hgG8T+dBlqmq4fSTUfUPtQtIIOYQiSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEb1sqTaqSSXkpxf0XZzki8kOZdkPsnPDLdMSdJqvVyBPwDcvqrtI8CHqupm4A877yVJI9Q1wKvqYeCp1c3A8sOlX8bSwsaSpBHq93ngdwP/luSjLP0S+Nn1DkxyFDgKcOONN/bZnSRptX4/xHw38L6q2ge8D5he78CqOllVE1U1MT4+3md3kqTV+g3wO4Ezne2/A/wQU5JGrN8A/zrw+s72G4CvDKYcSVKvuo6BJ5kBbgP2JLkA3Av8NvDxJNcCV+iMcUuSRqdrgFfVkXV2vWbAtUiSNsFV6beRJEP9+rt37x7q15c0Wgb4NlFVmz4nSV/nSdoZfBaKJDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5Jjeoa4ElOJbmU5PyKtr9Ncq7z+mqSc8MtU5K0Wi8LOjwA/BnwqeWGqvq15e0kHwO+NfDKJEkb6mVNzIeT7F9rX5bWAPtVllamlySN0NWOgb8O+EZVfWW9A5IcTTKfZH5xcfEqu5MkLbvaAD8CzGx0QFWdrKqJqpoYHx+/yu4kScv6XtQ4ybXA24DXDK4cSVKvruYK/OeBJ6vqwqCKkST1rpdphDPAI8BNSS4kmezs+nW6DJ9Ikoanl1koR9Zp/62BVyNJ6pl3YkpSowxwSWpU37NQNBpL90ptfn9VDaMcSduIAb7NGcSS1uMQiiQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqN6WVLtVJJLSc6vaj+W5D+TPJHkI8MrUZK0ll6uwB8Abl/ZkOQw8Bbg1VX1E8BHB1+aJGkjXQO8qh4GnlrV/G7gw1X1f51jLg2hNknSBvodA38l8Lokjyb59yQ/vd6BSY4mmU8yv7i42Gd3kqTV+g3wa4HdwGuBDwCfzjpre1XVyaqaqKqJ8fHxPruTJK3Wb4BfAM7Ukv8AvgvsGVxZkqRu+g3wvwfeAJDklcAPAN8cVFGSpO66LmqcZAa4DdiT5AJwL3AKONWZWvht4M5y9V1JGqmuAV5VR9bZ9RsDrkWStAneiSlJjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcEkDMzMzw8GDB7nmmms4ePAgMzMzW13Sjtb1Rh5J6sXMzAxTU1NMT09z6NAh5ubmmJycBODIkfXuB9TVyCjvgJ+YmKj5+fmR9SdpdA4ePMiJEyc4fPjw99pmZ2c5duwY58+f3+BMdZPkbFVNPK/dAJc0CNdccw1Xrlxh165d32t79tlneclLXsJ3vvOdLaysfesFuGPgkgbiwIEDzM3NfV/b3NwcBw4c2KKKdj4DXNJATE1NMTk5yezsLM8++yyzs7NMTk4yNTW11aXtWH6IKWkglj+oPHbsGAsLCxw4cIDjx4/7AeYQOQYuSducY+CShs554KPVNcCTnEpyqbP6znLbfUn+O8m5zutNwy1T0na3PA/8xIkTXLlyhRMnTjA1NWWID1EvV+APALev0f4nVXVz5/XZwZYlqTXHjx9nenqaw4cPs2vXLg4fPsz09DTHjx/f6tJ2rK4BXlUPA0+NoBZJDVtYWODQoUPf13bo0CEWFha2qKKd72rGwN+b5IudIZbdA6tIUpOcBz56/Qb4nwM/DtwMXAQ+tt6BSY4mmU8yv7i42Gd3krY754GPXl/zwKvqG8vbSf4K+OcNjj0JnISlaYT99Cdp+3Me+Oj1FeBJ9lbVxc7bXwF8Uo0kjhw5YmCPUNcATzID3AbsSXIBuBe4LcnNQAFfBX5niDVKktbQNcCraq1fp9NDqEWStAneiSlJjTLAJalRBrgkNWqkTyNMsgh8bWQd7nx7gG9udRHSGvzZHKwfq6rx1Y0jDXANVpL5tR4xKW01fzZHwyEUSWqUAS5JjTLA23ZyqwuQ1uHP5gg4Bi5JjfIKXJIaZYBLUqMM8AattU6ptB0k2ZdkNslCkieS3LXVNe1kjoE3KMnPAf8DfKqqDm51PdKyJHuBvVX1WJLrgbPAW6vqS1tc2o7kFXiDXKdU21VVXayqxzrbzwALwA1bW9XOZYBLGook+4FbgEe3tpKdywCXNHBJrgMeBO6uqstbXc9OZYBLGqgku1gK79NVdWar69nJDHBJA5MkLK3YtVBV9291PTudAd6gzjqljwA3JbmQZHKra5I6bgXuAN6Q5Fzn9aatLmqnchqhJDXKK3BJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhr1/5GP29RoQm1WAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.boxplot([x, y])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Лук__" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "16\n", "21\n" ] } ], "source": [ "mask = np.logical_and(df.unit_1 == 'лук', df.unit_2 == 'лук')\n", "mask1 = np.logical_and(mask, df.unit_3 == 'лук')\n", "mask2 = np.logical_and(mask1, df.unit_4 == 'лук')\n", "\n", "conf = df[mask2]\n", "conf_before = conf[conf.balance_mark == 'before']\n", "conf_after = conf[conf.balance_mark == 'after']\n", "\n", "x = conf_before.len\n", "y = conf_after.len\n", "\n", "print(conf_before.shape[0])\n", "print(conf_after.shape[0])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD4CAYAAADrRI2NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcyElEQVR4nO3df5BU5Z3v8ffXcZhRGQdBHXBmgFFhs6wLKHMRV64Z3BUhyUpSZSyjyWb3xhBT8cZky+vVm5tU5aa2shuTtSo3bgjJcjeJUUtJVBJJHDahw0Yl/EgIKiggoAxgUFCgwRkH/d4/umGbYab7THczzzmcz6uqq/uc85zTn37o8+3D06fPmLsjIiLpcVroACIiMrRU+EVEUkaFX0QkZVT4RURSRoVfRCRlTg8doD/nnnuujx8//tj0oUOHOOuss8IFqkBSs8cy98sv5+7HjSvaLJbZI4qSPWI3DLlTvd/j6mj2tWvXvu7u50Vayd1jd5s2bZoXWr58uSdVUrPHMvcnP5m7lRDL7BFFyR6xG4bcqd7vcXU0O7DGI9ZYDfWIiKRMLId6RPp1yy2hE8SCukEqpcIvyTF9eugEsaBukEqp8EtybNqUu584MWyOwNQN5ent7aWrq4vu7u4TljU2NrJx48YAqQavvr6elpYWamtry96GCr8kx9e/nrtfuDBsjsDUDeXp6uqioaGB8ePHY2bHLTt48CANDQ2BkkXn7uzdu5euri7a2trK3o6+3BWRVOju7mbUqFEnFP0kMTNGjRrV7/9aBiNS4TezOWb2opltMbO7+ll+s5mtz9+eNrMpBcu2m9mzZrbOzNZUlFZEpAJJLvpHVeM1lBzqMbMa4D7gGqALWG1mS9x9Q0GzbcB73f0NM5sLLAQuL1g+y91frzitiIhULMoR/3Rgi7tvdfe3gYeAeYUN3P1pd38jP7kSaKluTBGR5Bs+fHjoCACYl/hDLGZ2PTDH3W/JT38MuNzdbxug/R3AewrabwPeABz4jrv3+5WUmc0H5gM0NTVNe+ihh44ty2azsemwwUpq9jjmPuullwA4dNFFRdtls1kOe/lnPPR1fkNd1bZVSpR+f+ml3KUFLrro0FBEiiyO75lCjY2NXHzxxf0ue+edd6ipqTnpGcaMGcPu3bsr3s6WLVvYv38/8J/9PmvWrLXu3h5l/Shn9fQ3oNTvp4WZzQI+AcwsmH2lu+8ys/OBZWb2gruvOGGDuQ+EhQDt7e3e0dFxbFkmk6FwOkmSmj2WuSPmyWQybO69oGpPe0PH0J03GaXf4/bPclQs3zMFNm7cOOCZO0N5Vs/R57nnnnt4+OGH6enp4UMf+hBf/vKX2b59O3PnzmXmzJk8/fTTNDc38/jjj3PGGWcct436+nouvfRSoLx+j1L4u4DWgukWYFffRmY2GfgeMNfd9x6d7+678vd7zOxRckNHJxR+kZLWr8/dT54cNkdg6oYqmT//2MO63l6orYVrroEPfxi6u+Gznz1xnb/+69ztzTfhzjuPXzaI82s7OzvZvHkzq1atwt257rrrWLFiBWPHjmXz5s08+OCDfPe73+WGG27gxz/+MR/96EfLfZX9ilL4VwMTzKwN2AncCNxU2MDMxgI/AT7m7psK5p8FnObuB/OPZwP/p1rhJWW+9a3cfcpPYFc3JF9nZyednZ3Hjtqz2SybN29m7NixtLW1MXXqVACmTZvG9u3bq/78JQu/ux8xs9uAJ4EaYJG7P29mt+aXLwC+BIwC/iV/qtGR/FhTE/Boft7pwAPu/ouqvwoRkcEq+OTsOXiQYYVDPfX1xT9ZR4yo6JPX3bn77rv51Kc+ddz87du3U1f3n98p1dTU8NZbb5X9PAOJ9Mtdd18KLO0zb0HB41uAEy4d5e5bgSl954uIpNm1117LF7/4RW6++WaGDx/Ozp07K7oEw2Dpkg0iIkNs9uzZbNy4kSuuuALIneZ5//33D8mZRaDCLyIyZLLZ7LHHt99+O7fffvsJbZ577rljj++4446TkkOFX5LjJO0ESaNukEqp8Ety6DrEgLpBKqerc0pyrFqVu6WcukEqpSN+SY7vfS93n/I/QaVukErpiF9EJGVU+EVEUkaFX0RkiMTl6qUq/CIiKaMvdyU5vvCF0AliQd1waqjkssyVUuGX5Bg3LnSCWFA3VEfBVZnp7a0byqsyJ+KyzCLxsCL/ZxyuuipsjsDUDckX+8syi8TG/ffn7lNe8dQN1VF4hH7wYA8NDcOOTZ/kqzIHvyyzvtwVERli1157LYsWLTp20badO3eyZ8+eIXt+HfGLiAwxXZZZRCQl4nJZZg31iIikjI74JTm+8pXQCWJB3SCVUuGX5GhqCp0gFtQN5XN3zCx0jIq4e8Xb0FCPJEdnZ+6WcuqG8tTX17N3796qFM5Q3J29e/dSX19f0XZ0xC/JsXhx7n727LA5AlM3lKelpYWuri5ee+21E5Z1d3dXXEyHSn19PS0tLRVtQ4VfRFKhtraWtra2fpdlMpljv6JNAw31iIikjAq/iEjKqPCLiKSMxvglOb72tdAJYkHdIJVS4ZfkGDEidIJYUDdIpTTUI8nx05/mbimnbpBKqfBLcqjiAeoGqZwKv4hIyqjwi4ikTKTCb2ZzzOxFM9tiZnf1s/xmM1ufvz1tZlOirisiIkOrZOE3sxrgPmAuMAn4iJlN6tNsG/Bed58MfAVYOIh1RURkCEU5nXM6sMXdtwKY2UPAPGDD0Qbu/nRB+5VAS9R1RSL75jdDJ4gFdYNUKkrhbwZ2FEx3AZcXaf8J4OeDXdfM5gPzAZqamshkMseWZbPZ46aTJKnZk5obctmbfVvVtpfJ7KratkpJer8r+9ArJ3uUwt/fXy3o94LWZjaLXOGfOdh13X0h+SGi9vZ27+joOLYsk8lQOJ0kSc0ey9yPPJK7//CHizbLZDJs7r2gak97Q8fEqm2rlCj9HrEbhlws3zMRpS17lC93u4DWgukW4IRDIDObDHwPmOfuewezrkgky5blbimnbpBKRSn8q4EJZtZmZsOAG4ElhQ3MbCzwE+Bj7r5pMOuKiMjQKjnU4+5HzOw24EmgBljk7s+b2a355QuALwGjgH/J/z3LI+7ePtC6J+m1iIhIBJEu0ubuS4GlfeYtKHh8C3BL1HVFRCQc/XJXRCRldFlmSY6FC0MniAV1g1RKhV8kpOVfPX4623bivHLMurvybcgpS0M9khw//GHulnI/7LyEH3ZeEjqGJJiO+CU27l22qejyv3rwZwD8++hiPxyH5u4eqK9arKrp7/XNeGXvcdOHGlt5Zs/eE9oVWvz0eTQ11PGx2c9VNZ+kh474RURSRoVfRCRlVPhFRFJGY/ySGEeG1YWOEAvDTu+lfph2XSmf3j2SGJnP/O/QEWLh7296nCsuHBU6hiSYhnpERFJGhV8S45KfP8IlP38kdIzglqyYzveemFK6ocgAVPglMUa/sJ7RL6wPHSO4DdvHsuqFMaFjSIKp8IuIpIwKv4hIyqjwi4ikjE7nlMToGd4QOkIsNJzxFiOGh04hSabCL4nxH5+8M3SEWPjMh5/QefxSEQ31iIikjAq/JMaUx+9nyuP3h44R3OJfXcm3Hp0WOoYkmIZ6JDHO2/pi6AixsKVrDAf367pFUj4d8YuIpIwKv4hIyqjwi4ikjMb4JTEOnaNTGAFGnn2QphHvhI4hCabCL4nxzN9+LnSEWJj/wSd1Hr9UREM9IiIpo8IviXHZ4kVctnhR6BjBPfDke/nGw9NDx5AE01CPJMbIHdtCR4iFV/54Hj2HdR6/lE9H/CIiKaPCLyKSMir8IiIpE6nwm9kcM3vRzLaY2V39LH+PmT1jZj1mdkefZdvN7FkzW2dma6oVXNLnQNMFHGi6IHSM4EaPfINxTQdCx5AEK/nlrpnVAPcB1wBdwGozW+LuGwqa7QM+C3xwgM3McvfXKw0r6bbqpk+HjhALf/uBX+o8fqlIlCP+6cAWd9/q7m8DDwHzChu4+x53Xw30noSMIiJSRVEKfzOwo2C6Kz8vKgc6zWytmc0fTDiRQtMf+DbTH/h26BjB/dvP/pJ/uP8vQseQBItyHr/1M88H8RxXuvsuMzsfWGZmL7j7ihOeJPehMB+gqamJTCZzbFk2mz1uOkmSmj1E7ubunqLLR+96Md+u+Pn8te/2lGwzGJnMrqpsp7/Xt69x6nHTR2rOPGFeXy8fvJidh08jk20buFGA91xS3+uQvuxRCn8X0Fow3QJE3hPcfVf+fo+ZPUpu6OiEwu/uC4GFAO3t7d7R0XFsWSaToXA6SZKaPUTue5dtKrr8T2tyf2x9Z32Rgkfug6FUm8G4oWNiVbbT3+ubsWfZcdP7Gqcycv+6otup672Ypvo6OoYX+XDruLGsjJVI6nsd0pc9ylDPamCCmbWZ2TDgRmBJlI2b2Vlm1nD0MTAbeG5QCUVEpKpKHvG7+xEzuw14EqgBFrn782Z2a375AjMbDawBzgbeNbPPAZOAc4FHzezocz3g7r84OS9FRESiiHStHndfCiztM29BweNXyQ0B9XUAmFJJQJGj9rVWb/gmycY2vcb4UWeGjiEJpou0SWnLvzokTzPjlb3FG0w/2m7hgE1Wjj31Txy76dpf6zz+qKK+d7Ntg3ufz7q7vDwxoUs2iIikjAq/JEbrY0/R+thToWMEt/Cxa/nioqtCx5AE01CPJEbtgUOhI8TCvgMN1Lquxy/l0xG/iEjKqPCLiKSMCr+ISMpojF8S43DLeaEjxMLFLbtpG3VW6BiSYCr8khivXn1p6AixcP3VT+k8fqmIhnpERFJGhV8SY+wjv2bsI78OHSO4+x55P3d+Z1boGJJgGuqRxDj9reLX60+Lg2+dwZun6zx+KZ+O+EVEUkaFX0QkZVT4RURS5pQb4y/15/ui+vw11flze3FVqp+au3uOtSl1ueShOrUwO370kDxPX9V6T1XLpPGvcNF5w0PHkAQ75Qq/nLr2XDU5dIRYuO6qVTqPXyqioR4RkZRR4ZfEGP/Arxj/wK9Cxwjunx+Yx2f/7zWhY0iCaahHEuO0I0dCR4iFt4/U0v12TegYkmA64hcRSRkVfhGRlFHhFxFJGY3xS2IcmNASOkIsTJmwlQnnNYSOIQmmwi+J8foVk0JHiIW5V/xO5/FLRTTUIyKSMir8khgX/qCTC3/QGTpGcP/4g+uZ/405oWNIgqnwi4ikjAq/iEjKqPCLiKSMCr+ISMrodE5JjDcnjQsdIRamT9rExPN1Hr+UT4VfEmNf+5+EjhALV7ev13n8UpFIQz1mNsfMXjSzLWZ2Vz/L32Nmz5hZj5ndMZh1RaKy3iNYr67Q2dN7uq7OKRUpWfjNrAa4D5gLTAI+YmZ9f0K5D/gs8PUy1hWJpO3BX9H2oK7Hf++DH9T1+KUiUY74pwNb3H2ru78NPATMK2zg7nvcfTXQO9h1RURkaEUZ428GdhRMdwGXR9x+5HXNbD4wH6CpqYlMJnNsWTabPW666BN290SMVlwms6sq2xlM9qFUqp9q3+2huXsbAPsapxZtm8lW56uiQ42tRZc3164tmae5e9tx2eOu72s5UnNmyf7uqR3Frt7TyGTbBm4U4D0Xy/d6sT4qbPZuXfH+7CtGr7Ocfo+yx1o/8zzi9iOv6+4LgYUA7e3t3tHRcWxZJpOhcLqYe5dtihituBs6JlZlO4PJPpRK9VNz9zZ21ud2hBl7lhVtW60vGp/Zs7fo8rre3PKR+9cN2GbT2PnHZY+7vn27r3Fq0dcHUNd7MU31dXQML/Lh1nFjNeINSizf68u/GqlZJttWvD/7CtC/Aymn36MM9XQBhYdiLUDUw+FK1hURkZMgyhH/amCCmbUBO4EbgZsibr+SdUWO88bki0JHiIWZkzfwntE6j1/KV7Lwu/sRM7sNeBKoARa5+/Nmdmt++QIzGw2sAc4G3jWzzwGT3P1Af+uerBcjp7Y3pqrwA8ycuqH08FrEIY6qyraV/7yz7q5uFikq0rdy7r4UWNpn3oKCx6+SG8aJtK5IOWoOdwPwzpn1gZOEdfBwPW9m6xgxvDonMkj66Fo9khjjFq9g3OIVoWMEd9/iD3Dnd2aFjiEJpsIvIpIyKvwiIimjwi8ikjIq/CIiKaPLMkti7J1WnV9TJ92saeuZNPrs0DEkwVT4JTH2/9n40BFi4fI/26Tr8UtFNNQjiVG7/xC1+w+FjhHcvv3D+eO+M0PHkART4ZfEaH38KVoffyp0jOAWPj6HL/6/q0LHkART4RcRSRkVfhGRlFHhFxFJGRV+EZGU0emckhivzZgUOkIsXDvjd1wyRufxS/lU+CUxDk7s98rfqXPpxK06j18qoqEeSYxhew8wbO+B0DGC2733HF5+VUf8Uj4VfkmMlidW0vLEytAxgvv+E3/JP/zoL0LHkART4RcRSRkVfhGRlFHhFxFJGRV+EZGU0emckhh7Zv556AixcN3M3/LnzY2hY0iCqfBLYmQvHBM6QixMunAH0y88HDqGJJiGeiQx6l/dR/2r+0LHCO6VV89l046RoWNIgqnwS2Jc0LmGCzrXhI4R3AOdHXz94emhY0iCqfCLiKSMCr+ISMqo8IuIpIwKv4hIyuh0TkmMV2ddGjpCLFw/6ymmtOg8fimfCr8kxuHW80JHiIWLW3cz+cK3Q8eQBNNQjyTGmTte48wdr4WOEdyWHWNY/5I+BKV8kQq/mc0xsxfNbIuZ3dXPcjOzb+aXrzezywqWbTezZ81snZnpJGwp2+jlv2f08t+HjhHc4uVX8q3HpoWOIQlWcqjHzGqA+4BrgC5gtZktcfcNBc3mAhPyt8uBb+fvj5rl7q9XLbWIiJQtyhH/dGCLu29197eBh4B5fdrMA37gOSuBEWamC6uIiMRQlC93m4EdBdNdHH80P1CbZmA34ECnmTnwHXdf2N+TmNl8YD5AU1MTmUzm2LJsNnvcdNGw3T2R2pWSyeyqynYGk30oleqn2nd7aO7eBsC+xqlF22ay1TlH4FBja9HlzbVrS+Zp7t52XPa46/tajtScWbK/e2pHsav3NDLZtpMZbdCy79aVn+lk7SMR8ww6e4z26XJqTJQ91vqZ54Noc6W77zKz84FlZvaCu684oXHuA2EhQHt7u3d0dBxblslkKJwu5t5lmyK1K+WGjolV2c5gsg+lUv3U3L2NnfW5HWHGnmVF215x4aiqZHpmz96iy+t6c8tH7l83YJtNY+cflz3u+vbtvsapRV8fQF3vxTTV19ExPF4fbplsW/mZOm6sbpijln81UrNBZz9ZectQTo2JUvi7gMJDsRag7+HwgG3c/ej9HjN7lNzQ0QmFX6SUXbPbS7aZ8cpC9jVOLflhlWQ3zc5waes5oWNUV8QCHRsnK++su0/OdvuIMsa/GphgZm1mNgy4EVjSp80S4G/yZ/fMAPa7+24zO8vMGgDM7CxgNvBcFfNLinSPHkn3aF2OeOzo15nYqstTS/lKHvG7+xEzuw14EqgBFrn782Z2a375AmAp8D5gC3AY+Lv86k3Ao2Z29LkecPdfVP1VSCoM37ob0B9k2bC1lZqeRqb/6e7QUSShIn0r5+5LyRX3wnkLCh478Jl+1tsKTKkwowgA5//mWUCFf8lvLue3DXUq/FI2/XJXRCRlVPhFRFJGhV9EJGVU+EVEUkaXZZbE6Hr/jNARYuHj7/8l01pHhI4hCabCL4nx9qizQ0eIhTGj3mDcaP1nXcqnd48kRsOmLho2dYWOEdzvN13Iij8Uv66RSDE64pfEOG9l7krgBye2BE4S1pMrL2NdQx1XTdlRurFIP3TELyKSMir8IiIpo8IvIpIyKvwiIimjL3clMXbMuzJ0hFiYP+8XtI87xa7HL0NKhV8So7fxrNARYmFkY5amkXWhY0iCaahHEqPx+e00Pr89dIzgfvv8RDpXJ+NPS0o8qfBLYoxau4lRa6vzN5WTbPnaySxe8SehY0iCqfCLiKSMCr+ISMqo8IuIpIwKv4hIyuh0TkmMl6+/KnSEWPjM9T9j+viRoWNIgqnwS2K8c2Z96Aix0HBmNyOG94SOIQmmoR5JjHPWvcQ5614KHSO436ybxE+fvjh0DEkwFX5JjHPWv8Q561X4f7N+Ej99RoVfyqfCLyKSMir8IiIpo8IvIpIyKvwiIimj0zklMbZ95OrQEWLh8x95jBltOo9fyqfCL4nhtXq7AtTVHqF+2DuhY0iCaahHEmPkmhcZuebF0DGC+9WayTySeU/oGJJgKvySGCM2vMyIDS+HjhHcqg0TWbZ2fOgYkmAq/CIiKROp8JvZHDN70cy2mNld/Sw3M/tmfvl6M7ss6roiIjK0ShZ+M6sB7gPmApOAj5jZpD7N5gIT8rf5wLcHsa6IiAyhKEf804Et7r7V3d8GHgLm9WkzD/iB56wERpjZmIjriojIEIpyflwzsKNgugu4PEKb5ojrAmBm88n9bwEga2aFp2+cC7weIWvV/H31NjXk2askvrlXPFuqRXyzlxYh+zcA+O4TJz/MIJ3i/T4U/lc5Kx3NPi7qClEKv/UzzyO2ibJubqb7QmBhvwHM1rh7e7GQcZXU7EnNDcoeirKHUU72KIW/C2gtmG4BdkVsMyzCuiIiMoSijPGvBiaYWZuZDQNuBJb0abME+Jv82T0zgP3uvjviuiIiMoRKHvG7+xEzuw14EqgBFrn782Z2a375AmAp8D5gC3AY+Lti65aRs98hoIRIavak5gZlD0XZwxh0dnPvd8hdREROUfrlrohIyqjwi4ikTOwKv5ktMrM9ZvZcn/n/PX/ph+fN7Guh8g2kv9xmNtXMVprZOjNbY2bTQ2YciJm1mtlyM9uY79/b8/NHmtkyM9ucvz8ndNa+imS/x8xeyF9C5FEzGxE6a6GBchcsv8PM3MzODZVxIMWyJ2A/Hej9Evt91czqzWyVmf0hn/3L+fmD30/dPVY34CrgMuC5gnmzgH8H6vLT54fOGTF3JzA3//h9QCZ0zgGyjwEuyz9uADaRu8TG14C78vPvAv4pdNZBZJ8NnJ6f/09xyz5Q7vx0K7kTIl4Gzg2ddRB9noT9dKDssd9Xyf0uanj+cS3wW2BGOftp7I743X0FsK/P7E8D/+juPfk2e4Y8WAkD5Hbg7PzjRmL6GwZ33+3uv8s/PghsJPer63nA9/PNvg98MEzCgQ2U3d073f1IvtlKcr8hiY0ifQ5wL3AnA/zYMbQi2ZOwnw6UPfb7qudk85O1+ZtTxn4au8I/gInAfzWz35rZr83sv4QOFNHngHvMbAfwdeDuwHlKMrPxwKXkjiaaPPd7DPL354dLVlqf7IX+G/Dzoc4TVWFuM7sO2OnufwgaKqI+fZ6o/bRP9kTsq2ZWY2brgD3AMncvaz9NSuE/HTiH3H9r/gfwsJn1dzmIuPk08Hl3bwU+D/xr4DxFmdlw4MfA59z9QOg8gzFQdjP7AnAE+FGobMUU5iaX8wvAl4KGiqifPk/MftpP9kTsq+7+jrtPJfc/2Olmdkk520lK4e8CfpL/r84q4F1yFyaKu48DP8k/foTc1Upjycxqye0IP3L3o5n/mL/KKvn72P3XHQbMjpl9HPgAcLPnB0DjpJ/cFwFtwB/MbDu5nft3ZjY6XMr+DdDnidhPB8iemH0VwN3fBDLAHMrYT5NS+B8DrgYws4nkrgEUgyvplbQLeG/+8dXA5oBZBpQ/KvtXYKO7/3PBoiXkdgjy948PdbZSBspuZnOA/wlc5+6HQ+UbSH+53f1Zdz/f3ce7+3hyhfQyd381YNQTFHm/xH4/LZI99vuqmZ139Ow0MzsD+CvgBcrZT0N/U93PN9cPAruBXnJv/E+QewPdDzwH/A64OnTOiLlnAmuBP5AbR5wWOucA2WeS+5JoPbAuf3sfMAr4Jbmd4JfAyNBZB5F9C7lLgh+dtyB01ii5+7TZTjzP6hmoz5Ownw6UPfb7KjAZ+H0++3PAl/LzB72f6pINIiIpk5ShHhERqRIVfhGRlFHhFxFJGRV+EZGUUeEXEUkZFX4RkZRR4RcRSZn/D1bHqQwpcEQMAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(x, y)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/arturignatev/opt/anaconda3/lib/python3.8/site-packages/matplotlib/cbook/__init__.py:1376: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", " X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD7CAYAAABzGc+QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOkElEQVR4nO3df4hlZ33H8ffH3bUpzQ932IkucbdT26ZsWUoWb0SM1iS2RaytUvAPoWFpF4dKu2RDRCULjfkjkKqkpKH/LGxoUsJCShYVrdigU2XArMwua5M4LaGgkmZxJzWaSEnMJt/+MWdlnd3Ze2dy79x5Zt8vuMy5zzlnznfg8plzn/M856SqkCS15w3jLkCStDoGuCQ1ygCXpEYZ4JLUKANckhplgEtSo/oGeJLLknwnyXeTPJXkrq59IsljSZ7ufm4dfbmSpLPSbxx4kgC/VlU/S7IFmAVuBf4M+HFV3ZPk08DWqvrUyCuWJAGwud8GtZjwP+vebuleBXwIuLFrfxD4d+CiAb5t27aamppaXaWSdIk6fvz4c1U1ubS9b4ADJNkEHAd+C/jHqjqW5M1VdQqgqk4lubrf75mammJubm6FpUvSpS3JDy7UPtBFzKp6taquA94KvCPJ7hUceDrJXJK5hYWFQXeTJPWxolEoVfUTFrtK3g/8KMl2gO7n6WX2OVRVvarqTU6e9w1AkrRKg4xCmUzypm75V4E/AP4T+BKwt9tsL/DFURUpSTrfIH3g24EHu37wNwCPVNWXk3wbeCTJPuCHwEdGWKckaYlBRqH8B7DnAu3/C7xvFEVJkvpzJqYkNcoAl6RGGeCS1KiBJvJI0oUs3mljZXyM4/AY4JJWbbkwTmJQrwG7UCSpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRfQM8yY4kM0nmkzyV5Nau/bokjyc5mWQuyTtGX64k6axBHql2Bri9qk4kuQI4nuQx4LPAXVX11SQf6N7fOLpSJUnn6hvgVXUKONUtv5hkHrgGKODKbrOrgGdHVaQk6XwreqhxkilgD3AMOAB8LcnnWeyKedewi5MkLW/gi5hJLgceBQ5U1QvAx4HbqmoHcBtweJn9prs+8rmFhYVh1CxJAlJV/TdKtgBfBr5WVfd2bT8F3lRVlSTAT6vqyov9nl6vV3Nzc0MoW9J6loRBskWDSXK8qnpL2wcZhRIWz67nz4Z351ngvd3yzcDTwyhUkjSYQfrAbwBuAZ5IcrJruwP4GHBfks3AS8D0aEqUJF3IIKNQZoEss/rtwy1HkjQoZ2JKUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNapvgCfZkWQmyXySp5Lces66/Un+q2v/7GhLlTQOExMTJFnRC1jxPhMTE2P+S9uzeYBtzgC3V9WJJFcAx5M8BrwZ+BDwe1X1cpKrR1mopPF4/vnnqaqRH+ds8GtwfQO8qk4Bp7rlF5PMA9cAHwPuqaqXu3WnR1moJOmXragPPMkUsAc4BlwLvCfJsSTfTHL98MuTJC1nkC4UAJJcDjwKHKiqF5JsBrYC7wSuBx5J8rZa8l0ryTQwDbBz586hFS5Jl7qBzsCTbGExvB+uqqNd8zPA0Vr0HeA1YNvSfavqUFX1qqo3OTk5rLol6ZI3yCiUAIeB+aq695xVXwBu7ra5Fngj8NwoipQknW+QLpQbgFuAJ5Kc7NruAB4AHkjyJPBzYO/S7hNJ0ugMMgplFlhufM+fD7ccSdKgnIkpSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNWqQhxprjJLlHkd6cT5fWtr4DPB17mJBnMSgli5hfQM8yQ7gIeAtwGvAoaq675z1nwA+B0xW1XOjKlTSeNSdV8Jnrlqb42hFBjkDPwPcXlUnklwBHE/yWFV9rwv3PwR+ONIqJY1N7nphTb7pJaE+M/LDbCh9L2JW1amqOtEtvwjMA9d0q/8e+CTg93hJWmMrGoWSZArYAxxL8qfA/1TVd0dQlySpj4EvYia5HHgUOMBit8pB4I8G2G8amAbYuXPn6qqUJJ1noDPwJFtYDO+Hq+oo8JvAbwDfTfJ94K3AiSRvWbpvVR2qql5V9SYnJ4dXuSRd4gYZhRLgMDBfVfcCVNUTwNXnbPN9oOcoFElaO4Ocgd8A3ALcnORk9/rAiOuSJPXR9wy8qmaBi04HrKqpYRUkSRqM90KRpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDfJ2YmJggyYpewIq2n5iYGPNfKWmYfKjxOvH888+P/LFVq33CvaT1yTNwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY3qO5U+yQ7gIeAtwGvAoaq6L8nngD8Bfg78N/AXVfWTURa7kdWdV8Jnrhr9MSRtGOl3/40k24HtVXUiyRXAceDDwFuBb1TVmSR/B1BVn7rY7+r1ejU3NzecyjeYJGtyL5RRH0Mbz1p9bvx8Li/J8arqLW3v24VSVaeq6kS3/CIwD1xTVf9WVWe6zR5nMdAlSWtkRX3gSaaAPcCxJav+EvjqcEqSJA1i4ABPcjnwKHCgql44p/0gcAZ4eJn9ppPMJZlbWFh4vfVKkjoD3Q88yRYWw/vhqjp6Tvte4IPA+2qZzquqOgQcgsU+8NddsaQ1txb3kt+6devIj7HRDDIKJcBhYL6q7j2n/f3Ap4D3VtX/ja5ESeO0mguLXpBcG4Ocgd8A3AI8keRk13YH8A/ArwCPdf+dH6+qvxpJlZKk8/QN8KqaBS70/elfh1+OJGlQzsSUpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjRpoJqbWxqhnuznTTdpYDPB1wtluklbKLhRJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG9Q3wJDuSzCSZT/JUklu79okkjyV5uvvpvUolaQ0NcgZ+Bri9qnYB7wT+OsnvAp8Gvl5Vvw18vXsvSVojfQO8qk5V1Ylu+UVgHrgG+BDwYLfZg8CHR1WkJOl8K3qgQ5IpYA9wDHhzVZ2CxZBPcvXQq5O0rl3sKVLLrfMhJMMzcIAnuRx4FDhQVS8M+vivJNPANMDOnTtXU6OkdcowHq+BRqEk2cJieD9cVUe75h8l2d6t3w6cvtC+VXWoqnpV1ZucnBxGzZIkBhuFEuAwMF9V956z6kvA3m55L/DF4ZcnSVrOIF0oNwC3AE8kOdm13QHcAzySZB/wQ+AjoylRknQhfQO8qmaB5Tq83zfcciRJg1rRKBStvX4Xi73SL126DPB1ziCWtBzvhSJJjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEb1DfAkDyQ5neTJc9quS/J4kpNJ5pK8Y7RlSpKWGuQM/J+A9y9p+yxwV1VdB/xt916StIb6BnhVfQv48dJm4Mpu+Srg2SHXJUnqY/Mq9zsAfC3J51n8J/Cu4ZUkSRrEai9ifhy4rap2ALcBh5fbMMl0108+t7CwsMrDSZKWWm2A7wWOdsv/Aix7EbOqDlVVr6p6k5OTqzycJGmp1Qb4s8B7u+WbgaeHU44kaVB9+8CTHAFuBLYleQa4E/gYcF+SzcBLwPQoi5Qkna9vgFfVR5dZ9fYh1yJJWgFnYkpSowxwSWqUAS5JjTLAJalRBniDjhw5wu7du9m0aRO7d+/myJEj4y5J0hisdiq9xuTIkSMcPHiQw4cP8+53v5vZ2Vn27dsHwEc/utyAIUkbUapqzQ7W6/Vqbm5uzY63Ee3evZv777+fm2666RdtMzMz7N+/nyeffPIie0pqVZLjVdU7r90Ab8umTZt46aWX2LJlyy/aXnnlFS677DJeffXVMVYmaVSWC3D7wBuza9cuZmdnf6ltdnaWXbt2jakiSeNigDfm4MGD7Nu3j5mZGV555RVmZmbYt28fBw8eHHdpktaYFzEbc/ZC5f79+5mfn2fXrl3cfffdXsCULkH2gUvSOmcfuCRtMAa4JDXKAJekRhngDXIqvSRwFEpznEov6SxHoTTGqfTSpcep9BuEU+mlS4/DCDcIp9JLOssAb4xT6SWd1fciZpIHgA8Cp6tq9znt+4G/Ac4AX6mqT46sSv2CU+klndW3DzzJ7wM/Ax46G+BJbgIOAn9cVS8nubqqTvc7mH3gkrRyq+4Dr6pvAT9e0vxx4J6qernbpm94S5KGa7V94NcC70lyLMk3k1w/zKIkSf2tdiLPZmAr8E7geuCRJG+rC/THJJkGpgF27ty52jolSUus9gz8GeBoLfoO8Bqw7UIbVtWhqupVVW9ycnK1dUqSllhtgH8BuBkgybXAG4HnhlWUJKm/QUahHAFuZPEM+0fAncA/Aw8A1wE/Bz5RVd/oe7BkAfjB6ytZ59iG/zi1PvnZHK5fr6rzujDWdCq9hivJ3IWGFknj5mdzbTgTU5IaZYBLUqMM8LYdGncB0jL8bK4B+8AlqVGegUtSowzwBiV5IMnpJD6CR+tKkh1JZpLMJ3kqya3jrmkjswulQRe6Q6S0HiTZDmyvqhNJrgCOAx+uqu+NubQNyTPwBi1zh0hp7KrqVFWd6JZfBOaBa8Zb1cZlgEsaiSRTwB7g2Hgr2bgMcElDl+Ry4FHgQFW9MO56NioDXNJQJdnCYng/XFVHx13PRmaASxqaJAEOA/NVde+469noDPAGdXeI/DbwO0meSbJv3DVJnRuAW4Cbk5zsXh8Yd1EblcMIJalRnoFLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGvX//EEs7pmxM/sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.boxplot([x, y])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__Меч__" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "25\n", "20\n" ] } ], "source": [ "mask = np.logical_and(df.unit_1 == 'меч', df.unit_2 == 'меч')\n", "mask1 = np.logical_and(mask, df.unit_3 == 'меч')\n", "mask2 = np.logical_and(mask1, df.unit_4 == 'меч')\n", "\n", "conf = df[mask2]\n", "conf_before = conf[conf.balance_mark == 'before']\n", "conf_after = conf[conf.balance_mark == 'after']\n", "\n", "x = conf_before.len\n", "y = conf_after.len\n", "\n", "print(conf_before.shape[0])\n", "print(conf_after.shape[0])" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5QU5Z3v8fc34zhEB0fAMLADyLABlSQKMkHYuNk2Hn9gdkXviRxMom6S3dG9YdWcuLkm3uzNHs+eeI2ud7PxStCwRzcqa26iYkICROlljSC/ZFFAAQFl+DUJGKQhM4J87x9dDO3QM139s6anPq9zOFNd9TxPfZ+upr9dv54yd0dEROLnQ1EHICIi0VACEBGJKSUAEZGYUgIQEYkpJQARkZg6JeoA8nHWWWf56NGjow6jV4cOHeL000+POozIlK3/b72V/nv22aVvu0RK1fcq6GpW+uz33f6vXr36d+7+ke7zqyoBjB49mlWrVkUdRq+SySSJRCLqMCJTtv63tqb/zplT+rZLpFR9r4KuZqXPft/tv5m9lW2+DgGJiMRUVe0BSIz91V9FHUHFxKirEjElAKkOkydHHUHFxKirEjElAKkOmzal/44bF20cFRCjrvYJR44coa2tjY6OjqLaaWhoYOPGjSWKqjADBgxgxIgR1NbWhiqvBCDV4b770n+r7cxoAWLU1T6hra2NgQMHMnr0aMys4HYOHjzIwIEDSxhZftydffv20dbWRnNzc6g6OgksIrHW0dHBkCFDivry7wvMjCFDhuS1JxMqAZjZlWb2hpltMbM7syz/gpmtC/69ZGYX5KprZoPNbLGZbQ7+DgodtYhICVX7l/9x+fYjZwIwsxrgQWAaMB643szGdyu2Dfgzdz8fuBuYE6LuncDz7j4WeD54LSIiFRJmD2AysMXdt7r7e8A8YHpmAXd/yd3fCV4uB0aEqDsdeDSYfhS4pvBuiIhUr/r6+kjWG+YkcBOwI+N1G3BRL+W/AvwyRN1Gd98N4O67zWxotsbMrBVoBWhsbCSZTIYI+WTtBzsLqpePoQPrSKVSBcfYH+Tqf6HboeHjEwE48NzCnGWHDqwraB3FSqVSJJ+bV3Q7F328AYDkcwfCVxo4rOj1FuTgnq7J1LG6kvQ/lBL2t6GhgYMHDxbdzvvvv19UO6WIAdLnNMJ+B4VJANkOKmV9jJiZXUI6AVycb92euPscgkNKLS0tXuit1g8s3lRQvXzMSIzr07eDV0Ku/he6HXaeF+6qBkhvhygkk0kS/mrR7SQ+UUilmUWvtyBLvts1mUw1k6jfVpn1lrC/GzduLMnVO8VeBXS87ve+9z2eeuopOjs7ufbaa/mHf/gHtm/fzrRp07j44ot56aWXaGpq4tlnn+XDH/7wSe0MGDCAiRMnhlpnmATQBozMeD0C2NW9kJmdDzwCTHP3fSHq7jWz4cGv/+FAe6iIJZbO2vo6AL8bc27EkZTfujfTY3ad/8e/jTiSmDo+GFOmyy6D666Djg649daTl//FX0AiAb//PXzjGx9clsf1vIsWLWLz5s2sWLECd+fqq69m6dKljBo1is2bN/Pkk0/y8MMPM2PGDH7605/yxS9+Mb++dRPmHMBKYKyZNZvZqcBMYH5mATMbBfwMuMHdN4WsOx+4KZi+CXi28G5Ifzfh2ceZ8OzjUYdRET94ZhI/eGZS1GFIBBYtWsSiRYuYOHEiF154Ia+//jqbN28GoLm5mQkTJgAwadIktm/fXvT6cu4BuPtRM5sFLARqgLnuvt7MbgmWzwb+HhgC/N/gMqSj7t7SU92g6XuAp8zsK8DbwHVF90ZEpFi9/WIfMKDn5QcPwplnFnUHn7vzzW9+k5tvvvkD87dv305d3YlzWzU1NfzhD38oeD3HhboT2N0XAAu6zZudMf1XQNYhrLLVDebvAy7NJ1gRkf7siiuu4Nvf/jZf+MIXqK+vZ+fOnaGHdSiEhoIQEekjLr/8cjZu3MjUqVOB9OWhP/7xj6mpqSnL+pQAREQilkqluqZvu+02brvttpPKvPbaa13Td9xxR0nWqwQgVWHVdV+OOoSKuWPGiqhDkJhQApCq8PsR4e8DqHbjRu6POgSJCY0GKlWh8fV1NL6+LuowKmLFxuGs2Dg86jAkBrQHIFXhE7/8CQB7zz0/4kjK75EF6cF0J5+3O+JIpL/THoCISEwpAYiIxJQSgIhIxKIaDloJQEQkpnQSWKrCy5+/JeoQKuauL7wUdQgSoWKHg86HEoBUhYONTVGHUDFnD3s36hBiLcLRoCs+HLQSgFSFpnUrAdh5/icjjqT8lv5X+hEan75gR46S0t9kDgcN6SEiNm/ezKhRo6IZDlqkLzjv+fRjJOKQAH78648BSgBRiXA06IoPB62TwCIifcQVV1zB3LlzuwaH27lzJ+3t5XtYovYARET6iD45HLSZXQn8M+mnej3i7vd0W34u8K/AhcBd7n5fMP8c4N8zio4B/t7d/4+ZfQf4a+D4g0+/FTw8RkQkVvrscNBmVgM8CFxG+iHvK81svrtvyCi2H7gVuCazrru/AUzIaGcn8HRGkQeOJwsREamsMHsAk4Et7r4VwMzmAdOBrgTg7u1Au5l9tpd2LgXedPe3iohXYuqlvzz5F1F/dfeXlkYdgsREmJPATUDm5Qhtwbx8zQSe7DZvlpmtM7O5ZjaogDYlJg4POovDg86KOoyKaBx8mMbBh6MOI1bcPeoQSiLffliuCmZ2HXBF8OB3zOwGYLK7/22Wst8BUt0P65jZqcAu4GPuvjeY1wj8DnDgbmC4u5/02CczawVaARobGyfNmzcvrw4e136ws6B6+Rg6sI5UKhXZuB59Qa7+F7odGl9ZDcDeiZNylh06sC5nmXJIpVLUeyp3wRxWvjIMgE9O3BO+0sBhRa+3IAdPxJg6Vkf9h8r//wwoaX/r6+tpbGykoaEBMyu4nffff79sJ2vDcHcOHDjA3r17P3BOAeCSSy5Z7e4t3euEOQTUBozMeD2C9Jd5PqYBa45/+QfBdk2b2cPAz7NVdPc5wByAlpYWTyQSea467YHFmwqql48ZiXEkk0kKjbE/yNX/QrfDecvnArBm6udylp2RGFfQOoqVTCZJ+KtFt/PEinMA+Ls/XRa+UmJm0estyJLvdk0mU80k6rdVZr0l7O+RI0doa2tj586dRbXT0dHBgAEDShRVYQYMGMAFF1xAbW1tqPJhEsBKYKyZNZM+iTsT+HyecV1Pt8M/Zjbc3Y8/8eJa4LWTaomIlFltbS3NzcU/cjSZTHbdwVstciYAdz9qZrOAhaQvA53r7uvN7JZg+WwzGwasAs4AjpnZ7cB4d3/XzE4jfQXRzd2avtfMJpA+BLQ9y3IRESmjUPcBBNfnL+g2b3bG9B7Sh4ay1T0MDMky/4a8IhURkZLSUBAiIjGloSCkKvznX/9d1CFUzL03L4k6BIkJJQCpCp31Z0QdQsWcWV+hSykl9nQISKrCmGUvMGbZC1GHURHPvfRRnnvpo1GHITGgBCBVYczyJYxZHo9DI88t+yjPLVMCkPJTAhARiSklABGRmFICEBGJKSUAEZGY0mWgUhWWfPV/Rh1CxXz/bxdHHYLEhBKAVIX3T41miOcoDDj1/ahDKNqyrfvK2v7yo5v42mXRjPran+gQkFSFsUt/ydilv4w6jIr4SfJcfpI8N+owJAaUAKQqnL36Jc5e/VLUYVTE4tWjWbx6dNRhSAwoAYiIxJQSgIhITCkBiIjElBKAiEhMhboM1MyuBP6Z9CMhH3H3e7otPxf4V+BC4C53vy9j2XbgIPA+cPT4k+nNbDDw78Bo0o+EnOHu7xTXHemvfv21u6MOoWLmfP1XUYcgMZFzD8DMaoAHgWnAeOB6Mxvfrdh+4FbgPrK7xN0nHP/yD9wJPO/uY4Hng9ciIlIhYQ4BTQa2uPtWd38PmAdMzyzg7u3uvhI4kse6pwOPBtOPAtfkUVdi5rxfP8N5v34m6jAq4t8WfZx/W/TxqMOQGAhzCKgJ2JHxug24KI91OLDIzBz4obvPCeY3uvtuAHffbWZDs1U2s1agFaCxsZFkMpnHqk9o6jjxlKXTO39bUBu5JJ9bQ+pYHcnn5mUvMHBYWdbbl6RSqRPb6OCek5aP6zxaULvjV6dvAnv/k3+Us2zyuTWRvNepVIqkNxfdzr+vSe9gj/yTQ+ErFfj/omipE/1NHasjGbw+1DCyrKtt6thGMrmrrOvI1wc++1UiTAKwLPM8j3V8yt13BV/wi83sdXdfGrZykDDmALS0tHgikchj1Sc8sHhT1/SU9vKMtTJ1zBCSqWYS9duyF0jMLMt6+5JkMknXNlry3ZOWL2svbIiAuiPpeoMPrM1ZduqYIZG818lkkoS/WnQ7T9SeA9Dz5yibqD5bGds487Nf6HYOa9OoVmYk+tZQEB/47FeJMIeA2oDMdD4CCJ163X1X8LcdeJr0ISWAvWY2HCD42x62TRERKV6YBLASGGtmzWZ2KjATmB+mcTM73cwGHp8GLgdeCxbPB24Kpm8Cns0ncBERKU7OQ0DuftTMZgELSV8GOtfd15vZLcHy2WY2DFgFnAEcM7PbSV8xdBbwtJkdX9cT7n78Grd7gKfM7CvA28B1pe2a9CfHTonPwLX9YTRQqQ6h/le5+wJgQbd5szOm95A+NNTdu8AFPbS5D7g0dKQSa9s//5moQ6gYPQ9AKkV3AouIxJQSgFSFoUvXMXTpuqjDqIhHfnEBj/wi646zSEkpAUhVqN++h/rtJ99X0B+teH04K14fHnUYEgNKACIiMaUEICISU0oAIiIxFZ+Lq6WqHf1wXdQhVMyZ9Z25C4mUgBKAVIW3r/uzqEOomHtvXhJ1CBITOgQkIhJTSgBSFYa98ArDXngl6jAq4gdPT+IHT0+KOgyJAR0CkqpwWlt5nuHQF63b+pGoQ5CY0B6AiEhMKQGIiMSUEoCISEzpHIBUhSNnnB51CBXTOOhw1CFITCgBSFXYcc2nog6hYu7+cuhHZosURYeARERiKlQCMLMrzewNM9tiZndmWX6umS0zs04zuyNj/kgzW2JmG81svZndlrHsO2a208zWBv+uKk2XpD8avnAVwxeuijqMirj/qcnc/9TkqMOQGMh5CMjMaoAHgcuANmClmc139w0ZxfYDtwLXdKt+FPi6u68JHg6/2swWZ9R9wN3vK7oX0u99eO/+qEOomDd2DI46BImJMHsAk4Et7r7V3d8D5gHTMwu4e7u7rwSOdJu/293XBNMHgY1AU0kiFxGRooQ5CdwE7Mh43QZclO+KzGw0MBF4OWP2LDO7EVhFek/hnSz1WoFWgMbGRpLJZL6rBqCp48QIi/sbJhTURi7J1CmkjtWRTDX3UCBZlvX2JalU6sQ2yvI+HGoYWVC7TbWrgXDbLpk6JZL3OpVKkfQetn0edh05A6Dnz1E2UX22MmLM/OwXup3DaurYRjK5q6zryNcHPvtVIkwCsCzzPJ+VmFk98FPgdnd/N5j9EHB30NbdwP3Al09akfscYA5AS0uLJxKJfFbd5YHFm7qmp7QvLqiNXKaOGUIy1Uyiflv2AomZZVlvX5JMJunaRku+e9LyZe37Cmq37ki63uADa3OWnTpmSCTvdTKZJOGvFt3OE7XnAPT8Ocomqs9WxjbO/OwXup3D2jSqlRmJcWVdR74+8NmvEmESQBuQmc5HAKFTr5nVkv7yf9zdf3Z8vrvvzSjzMPDzsG1K/HQOPiPqECrm7MZ3cxcSKYEwCWAlMNbMmoGdwEzg82EaNzMDfgRsdPd/6rZsuLvvDl5eC7wWOmqJnZ1/PiXqECrmri++FHUIEhM5E4C7HzWzWcBCoAaY6+7rzeyWYPlsMxtG+jj+GcAxM7sdGA+cD9wAvGpmx/fdv+XuC4B7zWwC6UNA24GbS9s1ERHpTag7gYMv7AXd5s3OmN5D+tBQdy+S/RwC7n5D+DAl7pp+vhyIx57AP/74TwDtCUj5aSiIElq2dR+HGkb2eAJs+dFNWeeH9bXL+tZJr0qq2x+f4+Jv7Y3P+Q6JloaCEBGJKSUAEZGYUgIQEYkpnQOQqvCHxviMj3POyPiMeyTRUgKQqrD7ipaoQ6iYr89YEXUIEhM6BCQiElNKAFIVRj7zG0Y+85uow6iIb8/9NN+e++mow5AY0CEgqQq17x6KOoSK2fvOaVGHIDGhPQARkZhSAhARiSklABGRmNI5AKkKh0d8JOoQKub8Mb+NOgSJCSUAqQp7PjMx6hAqZta1q6MOQWJCh4BERGJKCUCqwqif/AejfvIfUYdREd/44SV844eXRB2GxIAOAUlVOOUPnVGHUDG/T9VFHYLERKg9ADO70szeMLMtZnZnluXnmtkyM+s0szvC1DWzwWa22Mw2B38HFd8dEREJK2cCMLMa4EFgGunn/F5vZuO7FdsP3Arcl0fdO4Hn3X0s8HzwWkREKiTMHsBkYIu7b3X394B5wPTMAu7e7u4rgSN51J0OPBpMPwpcU2AfRESkAGHOATQBOzJetwEXhWy/t7qN7r4bwN13m9nQbA2YWSvQCtDY2EgymQy56m6BdJw4hry/YUJBbYRxtOa0Httv6thWVNvJ5K6i6ldCKpU6sY1SzSctP9QwsqB2Tx//eyDctkumToECPyfFSKVSJP3kPueroTn9OyqZ5f3rUQT9BT6wjVPH6rpiLnQ7hzXuwAqSz60p6zrylTpWR/K5eeVbwcBhJW8yTAKwLPM8ZPvF1E0Xdp8DzAFoaWnxRCKRT/UuDyw+8UD2Ke2LC2ojjP0NExh8YG3WZZtGtRbV9oxE338ofDKZpGsbLfnuScuXte8rqN1DLWcC9PjeZpo6ZggkZha0nmIkk0kS/mrR7ST+WwE/FCLoL/CBbZxMNZOoT8de6HbOx9QxQ8q+jnxk9r8syrCNwxwCagMy0/kIIOxP0d7q7jWz4QDB3/aQbYqISAmESQArgbFm1mxmpwIzgfkh2++t7nzgpmD6JuDZ8GFL3Ix+4gVGP/FC1GFUxK3/chm3/stlUYchMZDzEJC7HzWzWcBCoAaY6+7rzeyWYPlsMxsGrALOAI6Z2e3AeHd/N1vdoOl7gKfM7CvA28B1pe6c9B8fOno06hAqpuO9mqhDkJgIdSOYuy8AFnSbNztjeg/pwzuh6gbz9wGX5hOsiIiUjoaCEBGJKSUAEZGY0lhAUhXeHZv1CGO/9KefaIs6BIkJJQCpCr+b2n30kf7rhstfizoEiQkdAhIRiSklAKkKYx5bxJjHFkUdRkW03n8lrfdfGXUYEgNKACIiMaUEICISU0oAIiIxpQQgIhJTugxUqsLvx58ddQgVc9mk7VGHIDGhBCBVYX/LOVGHUDHXJV6POgSJCR0CkqpgR45iR+IxImjHezUaEVQqQglAqkLzky/Q/KSeByBSSkoAIiIxpXMA8gGZz04uRFNHZ1cbU94u/3Nho9DTe9TU0VmSZ+HuPdhJ48C6otsRyUV7ACIiMRUqAZjZlWb2hpltMbM7syw3M/t+sHydmV0YzD/HzNZm/Hs3eFwkZvYdM9uZseyq0nZNRER6k/MQkJnVAA8ClwFtwEozm+/uGzKKTQPGBv8uAh4CLnL3N4AJGe3sBJ7OqPeAu99Xio5I//bO+X8cdQgVc/H5Gzh32MCow5AYCHMOYDKwxd23ApjZPGA6kJkApgOPubsDy83sTDMb7u67M8pcCrzp7m+VKHaJkXcmxCgBTNjA1DFDog5DYiBMAmgCdmS8biP9Kz9XmSYgMwHMBJ7sVm+Wmd0IrAK+7u7vdF+5mbUCrQCNjY0kk8kQIZ+sqaOza3p/w4SC2gjjaM1pPbbf1LGtqLaTyV1F1Q8j830qRO2xzq5+lvJ9PuXQIQCOnn56zrLJ1ClQ4OckjJ7eo9pjnSXpc+pQLfv2nEJ9/ZHwlcrY316lmk9MHqsjGbw+1DCy7KtOpvrWNSyZ/S+LMmzjMO+gZZnn+ZQxs1OBq4FvZix/CLg7KHc3cD/w5ZMacZ8DzAFoaWnxRCIRIuSTZV65MaV9cUFthLG/YQKDD6zNumzTqNai2p6RGFdU/TCKvwpoGzsHpP8TlPJ9Pv4sgK03Xp6z7NQxQyAxs2Tr7q7nq4C2MayHbZ+POY99jsaBdcz5+q/CVypjf3u15Ltdk8lUM4n6dPIvxdVQufS1vaTM/pdFGbZxmJPAbUBmOh8BdP8pmqvMNGCNu+89PsPd97r7++5+DHiY9KEmERGpkDAJYCUw1syag1/yM4H53crMB24MrgaaAhzodvz/erod/jGz4RkvrwX0IFQRkQrKeQjI3Y+a2SxgIVADzHX39WZ2S7B8NrAAuArYAhwGvnS8vpmdRvoKopu7NX2vmU0gfQhoe5blIiJSRqHOorj7AtJf8pnzZmdMO/DVHuoeBk46WOfuN+QVqYiIlFTfOo0u0oN9k8p/AryvuGTSOsYPOyPqMCQGlACkKhz42OioQ6iYiz62qc9d4SL9k8YCkqpQe+AQtQcORR1GRew/UM/e/adFHYbEgBKAVIWRz/6Gkc/+JuowKmLOs1fy7X/9dNRhSAwoAYiIxJQSgIhITCkBiIjElBKAiEhM6TJQqQq/nTI+6hAq5oopa/j4cN0HIOWnBCBV4eC4EVGHUDETx23VfQBSEToEJFXh1H3vcuq+d6MOoyJ27xvEW3u0ByDlpwQgVWHEL5Yz4hfLow6jIh79xaX84+N/EnUYEgNKACIiMaUEICISU0oAIiIxpQQgIhJTugxUqkL7xZ+IOoSKufril/lEU0PUYUgMhNoDMLMrzewNM9tiZndmWW5m9v1g+TozuzBj2XYze9XM1prZqoz5g81ssZltDv4OKk2XpD9KjRlOaszw3AX7gfFjdjD5vN25C4oUKWcCMLMa4EFgGjAeuN7Mut+WOQ0YG/xrBR7qtvwSd5/g7i0Z8+4Ennf3scDzwWuRrAbs2c+APfujDqMi3t5zFpt2DI46DImBMHsAk4Et7r7V3d8D5gHTu5WZDjzmacuBM80s18+16cCjwfSjwDV5xC0x80eLVvFHi1blLtgPPLEowX1PTY46DImBMOcAmoAdGa/bgItClGkCdgMOLDIzB37o7nOCMo3uvhvA3Xeb2dBsKzezVtJ7FTQ2NpJMJkOEnKUTHZ1d0/sbJhTURhhHa07rsf2mjm1FtZ1M7iqqfhiZ71Mhao91dvWzlO9zU+3q0G0mU6fAc/NKtu7uxnUezTq/t22fj87aIew68iGSqebwlcrY396diDF1rK4r5kMNI8u+5mSqb53CzOx/WRT43debMO+gZZnneZT5lLvvCr7gF5vZ6+6+NGyAQcKYA9DS0uKJRCJs1Q94YPGmrukp7YsLaiOM/Q0TGHxgbdZlm0a1FtX2jET5H4ye+T4VoqljGzsHpP8TlPJ9rjuyD6DH9zZTucfRWda+L+v83rZ9PuqOfJTGAXUk6ov7wVBpyVRzV8w9vUel1NfGS8rsf1kkZpa8yTCHgNqAzHQ+Auj+U7THMu5+/G878DTpQ0oAe48fJgr+tucbvIiIFC5MAlgJjDWzZjM7FZgJzO9WZj5wY3A10BTgQHBY53QzGwhgZqcDlwOvZdS5KZi+CXi2yL6IiEgech4CcvejZjYLWAjUAHPdfb2Z3RIsnw0sAK4CtgCHgS8F1RuBp83s+LqecPdfBcvuAZ4ys68AbwPXlaxX0u/suWRi1CFUzOcu+Q0XjNB9AFJ+oc6iuPsC0l/ymfNmZ0w78NUs9bYCF/TQ5j7g0nyClfg6PPIjUYdQMR8duZvzx7wXdRgSAxoKQqrCaTt+y2k7fht1GBWxZcdw1r0Zn4Qn0VECkKowbMkrDFvyStRhVMT/W/IpfvDMpKjDkBhQAhARiSklABGRmOpbt9JJr4q9SSsulm0t/01I5bb3YGfV9eNQw8iK3AAmpaM9ABGRmNIegFSFXZe35C7UT3z+8mTUIUhMKAFIVegYFp/hkUcN+13UIUhM6BCQVIX6rbup3xqPh6Rs2DqSDVvLP5qmiPYApCoMffFVgFg8FWz+i+nR1seP2ZGjpEhxtAcgIhJTSgAiIjGlBCAiElNKACIiMaWTwFIV2j47JeoQKuamzz4fdQgSE0oAUhXeG3JG1CFUzPAh70QdgsSEDgFJVRi4qY2Bm9qiDqMiXtk0hlc2jYk6DImBUAnAzK40szfMbIuZ3ZlluZnZ94Pl68zswmD+SDNbYmYbzWy9md2WUec7ZrbTzNYG/64qXbekv/nI8g18ZPmGqMOoiIXLL2Th8gujDkNiIOchIDOrAR4ELgPagJVmNt/dM/83TgPGBv8uAh4K/h4Fvu7ua4KHw682s8UZdR9w9/tK1x0REQkrzB7AZGCLu2919/eAecD0bmWmA4952nLgTDMb7u673X0NgLsfBDYCTSWMX0REChTmJHATkHlPehvpX/e5yjQBXYO3mNloYCLwcka5WWZ2I7CK9J7CSWe/zKwVaAVobGwkmUyGCDlLJzo6u6b3N0woqI0wjtac1mP7TR3byrbevqL2WGdXP0v5PjfVri55m6XW27bPR2ftEKBv9zWbUvU/rGSqb13DkjpWRzLVXL4VFPjd15sw76Blmef5lDGzeuCnwO3u/m4w+yHg7qDc3cD9wJdPasR9DjAHoKWlxROJRIiQT5b5MJUp7YsLaiOM/Q0TGHxgbdZlm0a1lm29fUVTxzZ2Dkj/Jyjl+1x3JP2gkZ7e276gt22fj7ojHwX6dl+zKVX/w5o6ZkjF1hVGMtVMor6MP/ISM0veZJgE0AZkDk04AtgVtoyZ1ZL+8n/c3X92vIC77z0+bWYPAz/PK3KJlR3TPxV1CBXTOv1XUYcgMRHmHMBKYKyZNZvZqcBMYH63MvOBG4OrgaYAB9x9t5kZ8CNgo7v/U2YFM8sc1vFa4LWCeyH93pGG0znScHrUYVTE4IYUgxtSUYchMZBzD8Ddj5rZLGAhUAPMdff1ZnZLsHw2sAC4CtgCHAa+FFT/FHAD8KqZHd83/Ja7LwDuNbMJpA8BbQduLlmvpN9pWL8dgAMfGx1pHJXw8vpxAFz0MT0DWsor1FmU4At7Qbd5szOmHfhqlnovkv38AO5+Q16RSqwNWZ3+MoxDAliy+nxACUDKT3cCi4jElJYluyIAAAWHSURBVBKAiEhMKQGIiMSUEoCISEz1rVvpRHrw1uc+HXUIFfPVz+mWGKkMJQCpCu+fNiDqECpm4GkdUYcgMaFDQFIVBq19k0Fr34w6jIp4ce14Xlw7PuowJAaUAKQqDFr3JoPWxSQBrBvPi+uUAKT8lABERGJKCUBEJKaUAEREYkoJQEQkpnQZqFSFbdd/JuoQKuZr1z8TdQgSE0oAUhW8Nj4f1brao1GHIDGhQ0BSFQaveoPBq96IOoyKeGHV+byw6vyow5AYUAKQqnDmhrc4c8NbUYdRESs2jGPFhnFRhyExoAQgIhJToRKAmV1pZm+Y2RYzuzPLcjOz7wfL15nZhbnqmtlgM1tsZpuDv4NK0yUREQkjZwIwsxrgQWAaMB643sy636c+DRgb/GsFHgpR907geXcfCzwfvBYRkQoJswcwGdji7lvd/T1gHjC9W5npwGOethw408yG56g7HXg0mH4UuKbIvoiISB7CXFvXBOzIeN0GXBSiTFOOuo3uvhvA3Xeb2dBsKzezVtJ7FQApM+vrl4KcBfwu+6L7KxpIRHrpfwksfbVsTZdAifqe/pzMX1p8SxVW3m3f95W5/98qpvLZ2WaGSQCWZZ6HLBOmbq/cfQ4wJ586UTKzVe7eEnUcUYlz/+Pcd1D/q7H/YQ4BtQEjM16PAHaFLNNb3b3BYSKCv+3hwxYRkWKFSQArgbFm1mxmpwIzgfndyswHbgyuBpoCHAgO7/RWdz5wUzB9E/BskX0REZE85DwE5O5HzWwWsBCoAea6+3ozuyVYPhtYAFwFbAEOA1/qrW7Q9D3AU2b2FeBt4LqS9iw6VXO4qkzi3P849x3U/6rrv7nndUheRET6Cd0JLCISU0oAIiIxpQRQBDOba2btZvZat/l/Gwx/sd7M7o0qvnLK1nczm2Bmy81srZmtMrPJUcZYTmY20syWmNnGYDvfFsyPxRAnvfT/e2b2ejAkzNNmdmbUsZZaT33PWH6HmbmZnRVVjGHpHEARzOzTQIr0XdAfD+ZdAtwFfNbdO81sqLv3u0tce+j7IuABd/+lmV0FfMPdExGGWTbBpcvD3X2NmQ0EVpO+m/0vgf3ufk8w9tUgd/8fEYZaFr30fwTwQnAByP8G6G/976nv7r7BzEYCjwDnApPcvU/fGKc9gCK4+1Jgf7fZfwPc4+6dQZl+9+UPPfbdgTOC6QZOvl+k33D33e6+Jpg+CGwkfed7LIY46an/7r7I3Y8/0WY56YTQr/Sy7QEeAL5Bnje8RkUJoPTGAX9qZi+b2X+Y2SejDqiCbge+Z2Y7gPuAb0YcT0WY2WhgIvAy3YY4AbIOcdKfdOt/pi8Dv6x0PJWU2XczuxrY6e7/FWlQeVACKL1TgEHAFODvSN/rkG1IjP7ob4CvuftI4GvAjyKOp+zMrB74KXC7u78bdTyV1lP/zewu4CjweFSxlVtm30n39S7g7yMNKk9KAKXXBvwsGBl1BXCM9CBRcXAT8LNg+iekR4Ptt8yslvQXwOPufrzfsRnipIf+Y2Y3AX8OfMH76UnGLH3/Y6AZ+C8z20760NcaMxsWXZS5KQGU3jPAZwDMbBxwKvEZIXEX8GfB9GeAzRHGUlbBXt2PgI3u/k8Zi2IxxElP/TezK4H/AVzt7oejiq+csvXd3V9196HuPtrdR5P+IXihu++JMNScdBVQEczsSSBB+hf+XuB/Af8GzAUmAO8Bd7j7C1HFWC499P0N4J9JHwbrAP67u6+OKsZyMrOLgf8EXiW9lwfp8XpfBp4CRhEMceLu3U+WV71e+v99oA7YF8xb7u63VD7C8ump7+6+IKPMdqClr18FpAQgIhJTOgQkIhJTSgAiIjGlBCAiElNKACIiMaUEICISU0oAIiIxpQQgIhJT/x8La4+yWfLWswAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(x, y)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/arturignatev/opt/anaconda3/lib/python3.8/site-packages/matplotlib/cbook/__init__.py:1376: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", " X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAKr0lEQVR4nO3dX4il913H8c9XEr1JG3fYqYY064pYaS2lwVWCQVtTlFDE9saLgiFgcbEUSUr824JJ7kotEb1cSGiFEKhk/XOhaCjBEDCRzZKapKP2pi2xwWzIQiKiEvx6MSe6THb2zEznzOx38nrBsGefc559vguz7334zTnPU90dAOb5nsMeAIC9EXCAoQQcYCgBBxhKwAGGuuYgD3b8+PE+efLkQR4SYLxnnnnmle5e37r9QAN+8uTJnDt37iAPCTBeVX3rctstoQAMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjDUgX6QBzhaqmrX+7gHwf4RcGDPtotxVQn1AbCEAjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMtTTgVXVTVT1eVRtV9UJV3bXl+d+sqq6q46sbE4CtdnItlDeS3NPd56vqHUmeqarHuvvrVXVTkp9P8u2VTgnAWyw9A+/ul7r7/OLx60k2kty4ePoPk/x2EletAThgu1oDr6qTSW5O8nRV/VKSf+3ur61gLgCW2PHlZKvquiSPJrk7m8sqn0vyCzvY73SS00ly4sSJvU0JwFvs6Ay8qq7NZrwf7u6zSX4kyQ8n+VpVfTPJu5Ocr6of3Lpvd5/p7lPdfWp9fX3/Jgd4m1t6Bl6bt9x4MMlGdz+QJN39XJJ3XfKabyY51d2vrGhOALbYyRn4rUnuSHJbVT27+ProiucCYImlZ+Dd/WSSK974rrtP7tdAAOyMT2ICDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMtvaUah2vzntK71937PAlwtRHwq9yVQlxVQg1vY5ZQAIYScIChBBxgKAEHGErAgStaW1tLVe3qK8mu91lbWzvkv+k83oUCXNHFixcP5N1Oe33L7NuZM3CAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhqacCr6qaqeryqNqrqhaq6a7H9D6rqn6rqH6vqz6rq+1c/LgBv2skZ+BtJ7unu9ya5Jcmnq+p9SR5L8v7u/kCSf0nye6sbE4Ctlga8u1/q7vOLx68n2UhyY3f/bXe/sXjZU0nevboxAdhqV2vgVXUyyc1Jnt7y1K8m+ett9jldVeeq6tyFCxf2MiMAl7HjgFfVdUkeTXJ3d792yfbPZXOZ5eHL7dfdZ7r7VHefWl9f/27nBWBhRxezqqprsxnvh7v77CXb70zyi0k+0u7tBXCglga8Ni8R9mCSje5+4JLttyf5nSQf6u7/WN2IAFzOTs7Ab01yR5LnqurZxbbPJvnjJN+X5LHFZSCf6u5fX8mUALzF0oB395NJLneh3r/a/3EA2CmfxAQYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGCoHd0TE3j76nvfmdx3/cEch10RcOCK6v7XchD3LK+q9H0rP8yRYgkFYCgBBxhKwAGGEnCAoQQcYCgBBxhKwK8Sa2trqapdfSXZ1evX1tYO+W8J7CfvA79KXLx4ceXvtX0z+sDR4AwcYCgBBxhKwAGGEnCAoQQcYCgBBxhqacCr6qaqeryqNqrqhaq6a7F9raoeq6pvLH49tvpxAXjTTs7A30hyT3e/N8ktST5dVe9L8rtJvtrdP5rkq4vfA3BAlga8u1/q7vOLx68n2UhyY5KPJfny4mVfTvLxVQ0JwFvtag28qk4muTnJ00l+oLtfSjYjn+Rd2+xzuqrOVdW5CxcufHfTAvB/dhzwqrouyaNJ7u7u13a6X3ef6e5T3X1qfX19LzMCcBk7CnhVXZvNeD/c3WcXm/+tqm5YPH9DkpdXMyIAl7OTd6FUkgeTbHT3A5c89ZdJ7lw8vjPJX+z/eABsZydXI7w1yR1JnquqZxfbPpvk80m+UlWfTPLtJL+8mhEBuJylAe/uJ5Nsdx3Sj+zvOADslE9iAgwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUAIOMNRO7sgDvM1t3llxtY4dO7byYxw1Ag5cUXfvep+q2tN+7I4lFIChBBxgKEsoV4m+953Jfdev/hjAkSHgV4m6/7WVrxlWVfq+lR4COECWUACGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYKilAa+qh6rq5ap6/pJtH6yqp6rq2ao6V1U/tdoxAdhqJ2fgX0py+5ZtX0hyf3d/MMnvL34PwAFaGvDufiLJq1s3J3nz2qTXJ/nOPs8FwBJ7vZzs3Un+pqq+mM3/BH56uxdW1ekkp5PkxIkTezwcAFvt9YeYn0ryme6+Kclnkjy43Qu7+0x3n+ruU+vr63s8HABb7TXgdyY5u3j8p0n8EBPggO014N9J8qHF49uSfGN/xgFgp5augVfVI0k+nOR4Vb2Y5N4kv5bkj6rqmiT/mcUaNwAHZ2nAu/sT2zz1E/s8CwC74JOYAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4wlIADDCXgAEMJOMBQAg4w1DWHPQD/r6pW+ucfO3ZspX8+cLAE/CrR3bvep6r2tB9wNFhCARhKwAGGEnCAoZYGvKoeqqqXq+r5Ldt/o6r+uapeqKovrG5EAC5nJ2fgX0py+6UbqurnknwsyQe6+8eTfHH/RwPgSpYGvLufSPLqls2fSvL57v6vxWteXsFsAFzBXtfA35PkZ6rq6ar6u6r6ye1eWFWnq+pcVZ27cOHCHg8HwFZ7Dfg1SY4luSXJbyX5Sm3zKZTuPtPdp7r71Pr6+h4PB8BWew34i0nO9qZ/SPI/SY7v31gALLPXgP95ktuSpKrek+R7k7yyX0MBsNzSj9JX1SNJPpzkeFW9mOTeJA8leWjx1sL/TnJn+0w3wIFaGvDu/sQ2T/3KPs8CwC74JCbAUAIOMJSAAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUO5KD+zZNhchveJzrrqxfwQc2DMxPlwCfpW70hnOlZ73DwuOPgG/ygkxsB0/xAQYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGCoOsgPilTVhSTfOrADHn3Hk7xy2EPAZfje3F8/1N3rWzceaMDZX1V1rrtPHfYcsJXvzYNhCQVgKAEHGErAZztz2APANnxvHgBr4ABDOQMHGErAAYYS8IGq6qGqermqnj/sWeBSVXVTVT1eVRtV9UJV3XXYMx1l1sAHqqqfTfLvSf6ku99/2PPAm6rqhiQ3dPf5qnpHkmeSfLy7v37Iox1JzsAH6u4nkrx62HPAVt39UnefXzx+PclGkhsPd6qjS8CBlaiqk0luTvL04U5ydAk4sO+q6rokjya5u7tfO+x5jioBB/ZVVV2bzXg/3N1nD3ueo0zAgX1TVZXkwSQb3f3AYc9z1An4QFX1SJK/T/JjVfViVX3ysGeChVuT3JHktqp6dvH10cMe6qjyNkKAoZyBAwwl4ABDCTjAUAIOMJSAAwwl4ABDCTjAUP8LSVgwoO0Zq98AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.boxplot([x, y])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Гипотеза: посох достаточно сильно меняет продолжительность боя" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# посмотрим на бои, где был посох\n", "\n", "conf = df[df.unit_1 == 'посох']\n", "conf = conf.append(df[df.unit_2 == 'посох'])\n", "conf = conf.append(df[df.unit_3 == 'посох'])\n", "conf = conf.append(df[df.unit_4 == 'посох'])\n", "\n", "conf = conf.drop_duplicates(keep='first')" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
battle_idunit_1unit_2unit_3unit_4lenbalance_mark
1117214посохпосохлуклук21.84before
11108639посохлукбулавалук18.73before
17107293посохлуклукмеч17.18before
21115757посохлукмечтопор19.45before
22100579посохмечлуклук22.75before
........................
19933110647булавабулаватопорпосох23.97after
19956116932мечлуклукпосох25.03after
19959117390булавамечбулавапосох24.44after
19964112010мечлукбулавапосох22.77after
19981102801луктопорлукпосох23.47after
\n", "

11617 rows × 7 columns

\n", "
" ], "text/plain": [ " battle_id unit_1 unit_2 unit_3 unit_4 len balance_mark\n", "1 117214 посох посох лук лук 21.84 before\n", "11 108639 посох лук булава лук 18.73 before\n", "17 107293 посох лук лук меч 17.18 before\n", "21 115757 посох лук меч топор 19.45 before\n", "22 100579 посох меч лук лук 22.75 before\n", "... ... ... ... ... ... ... ...\n", "19933 110647 булава булава топор посох 23.97 after\n", "19956 116932 меч лук лук посох 25.03 after\n", "19959 117390 булава меч булава посох 24.44 after\n", "19964 112010 меч лук булава посох 22.77 after\n", "19981 102801 лук топор лук посох 23.47 after\n", "\n", "[11617 rows x 7 columns]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conf" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5834\n", "5783\n" ] } ], "source": [ "conf_before = conf[conf.balance_mark == 'before']\n", "conf_after = conf[conf.balance_mark == 'after']\n", "\n", "x = conf_before.len\n", "y = conf_after.len\n", "\n", "print(conf_before.shape[0])\n", "print(conf_after.shape[0])" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdx0lEQVR4nO3dfXRU9b3v8ff3RCBiMIi0kQYKiYVWTgsIKZhWbdT6gA/Q3qu9Pp0+3Up1aUXvtR49fbquddc6PbW3Vm+9srD1tC6tLrU9SnuwYJVUqSKCRQqiQEEhgNpCjRkxQeB7/9gb12SYJJtk9uztns9rraz8ZvbDfDLJ/mbPb377N+buiIhIdv1D0gFERCReKvQiIhmnQi8iknEq9CIiGadCLyKScYclHaCYkSNH+rhx45KOAcDbb7/NEUcckXSMXqU246uvAvD2yJHpzJcntc9hnlJlDH8tjB074F11U0nPYVwGkm/lypV/c/cPFF3o7qn7mjZtmqfFkiVLko7Qp9RmvOwy98suS2++PJWUMfy1lFwlPYdxGUg+YIX3UFPVdSMiknGp7LqRjPja14Lvu3cnm0O6OfBrkcqhQi/xmT49+N7ammgM6e7Ar0Uqhwq9xGf9+qQTSBEHfi0TJiSbo9zeffddampqWLduXdJRelRbW9tnvurqakaPHs2gQYMi71eFXuLzwx8G3y++ONkc0s2BX8v8+cnmKLe2tjbq6uoYPXo0ZpZ0nKI6OjoYNmxYj8vdnZ07d9LW1kZDQ0Pk/erNWBGpCJ2dndTW1qa2yEdhZhx99NF0dnYe0nYq9CJSMd7PRf6A/vwMKvQiIhmnQi8iUiY1NTWJPK7ejJX4XHVV8P3VF2HJv5Z236fcWNr9VZADvxapHJkr9Lc8VtohfcdHH8EkhSZNCr6/+mKyObJgyb9CrqEk/zAnvdfSP8sk3XzzzTzwwAN0dXXx+c9/nptuuolXX32VCy64gBNPPJGnn36a+vp6HnnkEQ4//PABPVbmCr2kyOrVSSeQIlb/JZj3atIpCQdJ2pw5B993+ulwwQXQ2QlXX33w8vPOC77efBOuv777skMYr7p48WI2bNjA8uXLcXdmzZrFk08+yYgRI9iwYQP33Xcfd955J1/4whf41a9+xaWXXnqIP1x3KvQSn5/8JPh+3qkl33XJX7l1vlba7qUUdy395OFpAMzXVAiJWbx4MYsXL+b4448HIJfLsWHDBmbMmEFDQwNTpkwBYNq0abzyyisDfrxIhd7MzgJuBaqAn7r79wuWfwz4d2Aq8C13/2HUbWXg3ujoKmnhu/b0CrtkUipTb2fg1dW9Lx8+fEBXnLk7N954I1//+te73b9mzRqGDBny3u2qqireeeedfj/OAX0WejOrAm4HTgfagOfMbIG753e87gKuBj7Xj21FJAs6KudV0UCdeeaZfOc73+GSSy6hpqaGbdu2HdKUBocqyhn9dGCju28CMLP7gdnAe8Xa3d8A3jCzcw51W0mfUr06+GxbOwBvd+3lmTd2lmSf7/lwaXcnKVTqkVrDTwFGl3af/XTGGWewbt06mpubgWDY5T333BPb40Up9PXA1rzbbcCMiPsfyLapoG4RESmVXC73Xnvu3LnMnTu32/KOjg7WrFnz3u3rrruuJI8bpdAXu97WI+4/8rZmNgeYA1BXV0drP6e2re/s6td2PRm0v4v6zs0l298Dvyndvg4odcZS2TrrDAD2Vg1lV+2Uku671D9vbv8QWnPRJ4nqU6mnZs41lCzjSeduB6D1Ny8PeF/5Sv4clljtkYexb98+Ojo6ko7So6j5Ojs7D6lGRin0bcCYvNujge0R9x95W3efD8wHaGpq8paWlogP0V2pR2PUd25mW3V6/3ghxRmPDTJNaF/OiPZVJd31+g8XGRo3AMd3Pk9LTen+eTzzlxUl29d7PthUmowfHfguimnNNZT0OSy1df8wjqqqql5nh0xaX7NXHlBdXf3eiJ0oohT654DxZtYAbAMuBKLOOzuQbeV9ru6lcBz9qGRzRBHL+wgptXxd8AuZftyOhJNIufRZ6N19r5ldBSwiGCJ5l7uvNbPLw+XzzOwYYAVwJLDfzK4BJrr7W8W2jeuHkXT5xKMPArDlq+clnETy/XThZECFvpJEGkfv7guBhQX3zctrv0YPb2cX21ZEJBH73oW3SvgP7sj3wctVNHuliEjmaQoEEZH+OsRXBzUf+gi57Rt7XsHimcZYZ/QiIhmnM3qJzbMXXw7AKLYlnETyfeuSp5OOIMDNt/4/HviP39C1Zw+fP/csbvqXb2qaYnn/6airB2BUuwp9mow95q2kI6TCnKtrD7rv9FO6uODzncEsxdcfvPy8mZ2cN7OLN980rv/ukd2Wzb+tPfJjL368lQ1/2czyJQuDaYov/DJP/nEZI8aM1zTF8v5Sv/q5oDG29Ps+YUv/Zw4sptRX7qbZky8E1zCePHlrH2tKXBY/8QcWL/kDx590OgC53G42/GUTM8aMT26aYpH+OO7xBYDG0afNPb//R0CFvrcz8Orq3pcPH+6HdAZfyIEbr/0GX//qP3W7f82WnbFMU6w3Y0VEyuzMUz/DXffcTy73NgDbtu/gjb/+LbbH0xm9yPtEqaZpeL2jtBP/yaE747QW1q3fSPPpwavdmiOO4J75/xcOi2ceHhV6EZEyyR9DP/eKrzH3iu6f59hhNbFMU6yuGxGRjNMZvcTm6S8HH6owmk0JJ5F8c2b/LmwN6XU9yQ4VeonN7qNGBo12Ffo0GVF74FOOKq3QO+5RPzMpvfrzM6jQS2w+vGJp0Bg/ONkg0s2za4OPs2xurIz59w+o3puj/a0Ohg0fjFmxD79LP3dn586dVFdXH9J2KvQSmwlPLQJgy3iNo0+TJSsnAXDNeUsSTlJeo99ezQs7Die3q4rin3KavE6G9FnEq6urGT360D7kXIVeRCrCIN9D7q9tNKX44w5brfmQPiIwKo26ERHJOBV6EZGMU6EXEck49dFLbJ667JsAjN33UsJJJN+V5/82bB2RaA4pHxV6iU1XTThfd/8n+ZMYDBvaGbZU6CuFCr3EpvGZJ4LGxHg+B1P6Z+mqiQA0N76ecBIpF/XRS2waly2hcVlljdV+P1i6eiJLV09MOoaUkQq9iEjGqdCLiGScCr2ISMap0IuIZJxG3Uhsllz5bQCOfeeFhJNIvmsvejhs1SaaQ8pHhV5is29wON/5wD/EXkpoyKC9SUeQMlOhl9iMf/LRoDH56GSDSDdPrAimKW5u3JZwEikXFXqJzdiVTwOwZbLmo0+T5S9OCFsq9JUi0puxZnaWmb1sZhvN7IYiy83MbguXrzazqXnLrjWztWa2xszuM7ND+2gUEREZkD4LvZlVAbcDM4GJwEVmVnhZ3UxgfPg1B7gj3LYeuBpocvePA1XAhSVLLyIifYpyRj8d2Ojum9x9D3A/MLtgndnA3R5YBgw3s1HhssOAw83sMGAosL1E2UVEJIIoffT1wNa8223AjAjr1Lv7CjP7IbCFYOzFYndfXOxBzGwOwasB6urqaG1tjfQDHBS2s6tf2/Vk0P4u6jvT+9FjkN6MQ/d1ALC3aii7aqcknKZ3lZSxa1Dw5nhrrmHA+8qX2z+k5PsstbRnzFmu37WvN1EKfbFP0fUo65jZUQRn+w3Am8CDZnapu99z0Mru84H5AE1NTd7S0hIh2sFueWx9v7brSX3nZrZVp/cPA9Kbcdt1PwZgQvtyRrSvSjhN73bVTqmYjN+7KNhHc01pR0O15hpoSfHnsUL6M7ZaM/2tfb2J0nXTBozJuz2ag7tfelrns8Bmd/+ru78L/Br4VP/jiojIoYpyRv8cMN7MGgjGY10IXFywzgLgKjO7n6Bbp93dd5jZFuAEMxtK0HVzGrCiZOkl1Y77fXAF5r5PfijhJJLv0WeCQXHNja8mnETKpc9C7+57zewqYBHBqJm73H2tmV0eLp8HLATOBjYCu4GvhMueNbOHgOeBvcCfCLtnJPvq/7wSgC0q9KnywobGsKVCXykiXTDl7gsJinn+ffPy2g5c2cO23wO+N4CMIiIyAJq9UkQk41ToRUQyTnPdSGz2Hpi9UlJl8GHvJh1BykyFXmLTGs5HP6F9ecJJJN//uPiRsKVZRSuFum5ERDJOZ/QSm48/+iAAez41NuEkkm/Bk9MBaG78S8JJpFxU6CU2x7y0GoAtKvSp8uIrHw5bKvSVQl03IiIZp0IvIpJxKvQiIhmnPnqJTVfNsKQjSBHDDn8n6QhSZir0EpunLrse0Dj6tLnygv8MWxpHXynUdSMiknE6o5fYTH4k+CCxd1omJJxE8j30xKcBaG58KeEkUi4q9BKbD2x6GYAtKvSpsrFtVNhSoa8U6roREck4FXoRkYxToRcRyTj10Uts3j5Kw/fSaMSRHUlHkDJToZfYPPPlawCNo0+bOZ9bFLb0j7hSqOtGRCTjdEYvsZn60F0A5E7/eMJJJN8vF30GgOYr1iScRMpFhV5iM2LrZgByqNCnyZbXP5B0BCkzdd2IiGScCr2ISMap0IuIZJz66CU2b9V9KOkIUsQxI/6edAQpMxV6ic3yi68ANI4+bb587uNhS+PoK4W6bkREMk5n9BKb6b+8A4A3z5mWcBLJ9/PfngZA89WrEk4i5aJCL7E58vXtALyJCn2avLbrqKQjSJlF6roxs7PM7GUz22hmNxRZbmZ2W7h8tZlNzVs23MweMrOXzGydmTWX8gcQEZHe9VnozawKuB2YCUwELjKziQWrzQTGh19zgDvylt0K/M7dPwZMBtaVILeIiEQU5Yx+OrDR3Te5+x7gfmB2wTqzgbs9sAwYbmajzOxI4GTgZwDuvsfd3yxhfhER6UOUPvp6YGve7TZgRoR16oG9wF+BfzezycBKYK67v134IGY2h+DVAHV1dbS2tkb8EQqCdHb1a7ueDNrfRX3n5pLus9TSmnHfMbUA7K0ayq7aKQmn6V0lZRw5bhAArbmGAe8rX27/kJLvs9TSnjFnuX7Xvt5EKfRW5D6PuM5hwFTgG+7+rJndCtwAfOegld3nA/MBmpqavKWlJUK0g93y2Pp+bdeT+s7NbKtO7x8GpDfjtouuA4Jx9CPa0z3CY1ftlIrJ+LWTg30015R2HH1rroGWmvSdcORLe8ZWa6a/ta83Ubpu2oAxebdHA9sjrtMGtLn7s+H9DxEUfhERKZMohf45YLyZNZjZYOBCYEHBOguAL4ajb04A2t19h7u/Bmw1s4+G650GvFiq8JJuzT//Mc0//3HSMaTA/IfPZP7DZyYdQ8qoz64bd99rZlcBi4Aq4C53X2tml4fL5wELgbOBjcBu4Ct5u/gGcG/4T2JTwTLJsCP+vhOAnQnnkO52vTUs6QhSZpEumHL3hQTFPP++eXltB67sYdtVQNMAMoqIyABorhsRkYxToRcRyTjNdSOx+WvjR/teScruI6N3JB1BykyFXmLzwuxLAc1Hnzbnn/rHsKX56CuFum5ERDJOZ/QSm5Pu/AEAr3+hJdkg0s3tD54DQPM/L0s4iZSLCr3EZkiuI+kIUkTHO4cnHUHKTF03IiIZp0IvIpJxKvQiIhmnPnqJzWsfm5R0BCli4rgtSUeQMlOhl9ismXkBoHH0aTPr5AO/D42jrxTquhERyTid0UtsWm7/3wBsv/SMhJNIvh/9MvjI5we/vTThJFIuKvQSm8P2lPbze6U09uwdlHQEKTN13YiIZJwKvYhIxqnQi4hknProJTbbPjEt6QhSxOTxm5KOIGWmQi+xWffZzwEaR582M5ufD1saR18p1HUjIpJxOqOX2Hz2lu8AsOWr5yWcRPJ9/+7zAXjkfy1JOImUi87oRUQyToVeRCTjVOhFRDJOhV5EJOP0ZqzE5tVpnwLAEs4h3U2fuD7pCFJmKvQSmw0nzwQ0jj5tTm1aHbY0jr5SqNBLbKo0e2Uqdb2rw77S6DcusTklnI9e4+jT5Zb7giuWWzSOvmLozVgRkYyLVOjN7Cwze9nMNprZDUWWm5ndFi5fbWZTC5ZXmdmfzOy3pQouIiLR9FnozawKuB2YCUwELjKziQWrzQTGh19zgDsKls8F1g04rYiIHLIoZ/TTgY3uvsnd9wD3A7ML1pkN3O2BZcBwMxsFYGajgXOAn5Ywt4iIRBTlzdh6YGve7TZgRoR16oEdwI+B64FhvT2Imc0heDVAXV0dra2tEaIVCdtZ2pEeg/Z3Ud+5uaT7LLW0ZnxzWvDCb2/VUHbVTkk4Te8qKePk5ncAaM01DHhf+XL7h5R8n6WW9ow5y/W79vUmSqEvdr2LR1nHzM4F3nD3lWbW0tuDuPt8YD5AU1OTt7T0unqPbnmstBeD1HduZlt1ev8wIL0Zt50cZJrQvpwR7asSTtO7XbVTKibjzPHBPpprSjuOvjXXQEtN+k448qU9Y6s109/a15sohb4NGJN3ezSwPeI65wOzzOxsoBo40szucfdL+x9Z3i+G5N5KOoIU0bG7OukIUmZR+uifA8abWYOZDQYuBBYUrLMA+GI4+uYEoN3dd7j7je4+2t3Hhds9oSJfOU6682ZOuvPmpGNIgdsfOpfbHzo36RhSRn2e0bv7XjO7ClgEVAF3uftaM7s8XD4PWAicDWwEdgNfiS+yiIgcikhXxrr7QoJinn/fvLy2A1f2sY9WoPWQE4qIyIDoylgRkYxToRcRyThNaiaxWX/SmUAw3ErS45Rpq/teSTJFhV5is6XpREDz0afNjH88cK2J5qOvFCr0Epuhf/9b0FAHYarsaq9JOoKUmQq9xOZTP78V0Hz0aTP/kbMAOOd4zUdfKXSuJSKScSr0IiIZp0IvIpJxKvQiIhmnN2MlNutOmwXAEQfNai1JOvOE55OOIGWmQi+x2Tbpk4DG0afN8RM2hS2No68UKvQSm2GvbwsaujQ2VXbsPCpoNCabQ8pHhV5iM+OXwQSnGkefLr/4z9MA+C+f1Dj6SqE3Y0VEMk6FXkQk41ToRUQyToVeRCTj9GasxObPMy8AoJbOhJNIvlknPpt0BCkzFXqJzesfmwRArcbRp8rExq1hS+PoK4UKvcRmeNvmoDEs2RzS3ZbXRgLQ3KgrliuFCr3EpunBuwCNo0+bXy5uAeC/fUrj6CuF3owVEck4FXoRkYxToRcRyTgVehGRjNObsRKbVbMvAWAEbyWcRPKdf8ofk44gZaZCL7H5W+PHABihcfSp8pExO8KWxtFXChV6ic3ITS8FDdWTVNm4dRQAzY17Ek4i5aI+eonNlEfuZcoj9yYdQwo8tOTTPLTk00nHkDJSoRcRybhIhd7MzjKzl81so5ndUGS5mdlt4fLVZjY1vH+MmS0xs3VmttbM5pb6BxARkd71WejNrAq4HZgJTAQuMrOJBavNBMaHX3OAO8L79wL/092PA04AriyyrYiIxCjKGf10YKO7b3L3PcD9wOyCdWYDd3tgGTDczEa5+w53fx7A3TuAdUB9CfOLiEgfooy6qQe25t1uA2ZEWKceODCOCzMbBxwPFJ0M28zmELwaoK6ujtbW1gjRioTt7OrXdj0ZtL+L+s7NJd1nqaU149ZZZwCwt2oou2qnJJymd5WU8Zz/+joArbmGAe8rX27/kJLvs9TSnjFnuX7Xvt5EKfRW5L7C+U17XcfMaoBfAde4e9GrZ9x9PjAfoKmpyVtaWiJEO9gtj63v13Y9qe/czLbq9P5hQIozHhtkmtC+nBHtqxIO07tdtVMqJuOII4LvzTWlHffammugpSZ9Jxz50p6x1Zrpb+3rTZRC3waMybs9GtgedR0zG0RQ5O9191/3P6q839S9tDpojEo2h3T34qbgUG1u3J1wEimXKH30zwHjzazBzAYDFwILCtZZAHwxHH1zAtDu7jvMzICfAevc/UclTS6p94lHH+QTjz6YdAwpsGDpDBYsLex9lSzr84ze3fea2VXAIqAKuMvd15rZ5eHyecBC4GxgI7Ab+Eq4+aeBfwL+bGYHXnP+i7svLO2PISIiPYk0BUJYmBcW3Dcvr+3AlUW2W0rx/nsRESkTXRkrIpJxKvQiIhmn2SslNs9efDkAo9iWcBLJ96VzHg9bOs+rFCr0EpuOuuAi6FHtKvRpMurov4ctzR9dKVToJTb1q58LGmOTzSHd/Wl9IwDNje0JJ5Fy0Ws3ic1xjy/guMcLL7mQpC1aNpVFy6YmHUPKSIVeRCTjVOhFRDJOhV5EJONU6EVEMk6jbiQ2T385+OTI0WxKOInkmzP7d2FrSKI5pHxU6CU2u48aGTTaVejTZERtLmyp0FcKFXqJzYdXLA0a4wcnG0S6eXbtBACaG3cmnETKRX30EpsJTy1iwlOLko4hBZasnMSSlZOSjiFlpEIvIpJxKvQiIhmnQi8iknEq9CIiGadRNxKbpy77JgBj972UcBLJd+X5vw1bRySaQ8pHhV5i01VzZNDQbLipMmxoZ9hSoa8UKvQSm8ZnnggaE2uSDSLdLF01EYDmxtcTTiLloj56iU3jsiU0LluSdAwpsHT1RJaunph0DCkjFXoRkYxToRcRyTgVehGRjFOhFxHJOI26kdgsufLbABz7zgsJJ5F81170cNiqTTSHlI8KvcRm3+BwvvN3ks0h3Q0ZtDfpCFJmKvQSm/FPPho0Jh+dbBDp5okVwRTFzY3bEk4i5aJCL7EZu/JpALZMPi/hJJJv+YsTwpYKfaXQm7EiIhkXqdCb2Vlm9rKZbTSzG4osNzO7LVy+2symRt1WRETi1WehN7Mq4HZgJjARuMjMCq+fngmMD7/mAHccwrYiIhKjKGf004GN7r7J3fcA9wOzC9aZDdztgWXAcDMbFXFbERGJUZQ3Y+uBrXm324AZEdapj7gtAGY2h+DVAEDOzF6OkK0cRgJ/SzpEH9Kd8dEH0p0vUEEZ/w8AdurA91Sggp7D2Awk39ieFkQp9FbkPo+4TpRtgzvd5wPzI+QpKzNb4e5NSefoTdozpj0fKGMppD0fpD9jXPmiFPo2YEze7dHA9ojrDI6wrYiIxChKH/1zwHgzazCzwcCFwIKCdRYAXwxH35wAtLv7jojbiohIjPo8o3f3vWZ2FbAIqALucve1ZnZ5uHwesBA4G9gI7Aa+0tu2sfwk8Uldd1IRac+Y9nygjKWQ9nyQ/oyx5DP3ol3mIiKSEboyVkQk41ToRUQyToU+j5ndZWZvmNmagvu/EU7jsNbMfpCmfGY2xcyWmdkqM1thZtOTyhfmGWNmS8xsXfh8zQ3vH2Fmj5nZhvD7USnLd7OZvRRO4fEfZjY8iXy9Zcxbfp2ZuZmNTGPGNBwvvfyeU3O8mFm1mS03sxfCjDeF95f+WHF3fYVfwMnAVGBN3n2nAL8HhoS3P5iyfIuBmWH7bKA14edwFDA1bA8D1hNMf/ED4Ibw/huAf0tZvjOAw8L7/y2pfL1lDG+PIRjc8CowMm0Z03K89JIvNccLwXVGNWF7EPAscEIcx4rO6PO4+5PAroK7rwC+7+5d4TpvlD1YqId8DhwZtmtJ+DoFd9/h7s+H7Q5gHcEV0rOBX4Sr/QL4XJryuftidz/wiRzLCK75SEQvzyHALcD19HDhYbn0kjEVx0sv+VJzvHggF94cFH45MRwrKvR9mwCcZGbPmtkfzOyTSQcqcA1ws5ltBX4I3JhwnveY2TjgeIIzlToPrq0g/P7B5JIFCvLl+yrwaLnzFJOf0cxmAdvcPVWfzVjwPKbueCnIl6rjxcyqzGwV8AbwmLvHcqyo0PftMOAogpdU3wQeMLNiUzsk5QrgWncfA1wL/CzhPACYWQ3wK+Aad38r6TyFespnZt8C9gL3JpUtL8t7GQkyfQv4bqKhChR5HlN1vBTJl6rjxd33ufsUgleQ083s43E8jgp939qAX4cvs5YD+wkmHkqLLwG/DtsPEswYmigzG0RwcN3r7geyvR7OaEr4PbEusB7yYWZfAs4FLvGwgzQpRTIeCzQAL5jZKwSF4XkzOyZFGSFFx0sP+VJ3vAC4+5tAK3AWMRwrKvR9exg4FcDMJhDM35Om2e+2A58J26cCGxLMQnj29jNgnbv/KG/RAoKDjPD7I+XOBj3nM7OzgH8GZrn77iSy5WU5KKO7/9ndP+ju49x9HEFBnerur6UlYygVx0sv+VJzvJjZBw6M7jKzw4HPAi8Rx7GS1DvOafwC7gN2AO8SHEj/neAP9R5gDfA8cGrK8p0IrAReIOiDnJbwc3giwRtKq4FV4dfZwNHA4wQH1uPAiJTl20gwpfaB++al7TksWOcVkh1109PzmIrjpZd8qTlegEnAn8KMa4DvhveX/FjRFAgiIhmnrhsRkYxToRcRyTgVehGRjFOhFxHJOBV6EZGMU6EXEck4FXoRkYz7/wOfJRmiUYY7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(x, y)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/arturignatev/opt/anaconda3/lib/python3.8/site-packages/matplotlib/cbook/__init__.py:1376: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", " X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANdUlEQVR4nO3db2hd933H8fdnjbsN8qcyVrLg2NMYzWgXspiqIdR0ydwNQhlLnvRBaY1hoWahFDtk3boUmuRZyIJH99Bg0wxMICVeW8ZKZ0LWEGgcZOM0cdUuT9qQxdTK7GGX0RSv3z3Q8ZBlyfdIuffKP+X9AqGrc+7x+QbL7xyOztFJVSFJas9vrPUAkqTVMeCS1CgDLkmNMuCS1CgDLkmNumacO9u0aVNNTU2Nc5eS1Lxjx469U1WTi5ePNeBTU1PMzMyMc5eS1LwkP1tquadQJKlRBlySGmXAJalRBlySGmXAJalRAwOe5LeSvJLk1SQnkzzeLd+Y5EiSN7rPE6MfV5J0UZ8j8HeBHVX1R8AdwL1J7gK+AjxfVR8Gnu++liSNycCA17xfdF9u6D4KuA94ulv+NHD/SCaUJC2p1znwJB9IcgI4DRypqqPATVV1CqD7fOMy2+5OMpNkZm5ublhzS7oKJFnxh4anV8Cr6n+r6g7gFuDOJLf13UFV7a+q6aqanpy87E5QSQ2rqiU/Bq3TcKzoKpSq+m/g34F7gZ8nuRmg+3x66NNJkpbV5yqUySQf6l7/NvCnwI+B7wC7urftAr49qiElSZfr88usbgaeTvIB5oP/bFX9S5IfAM8meQB4E/jMCOeUJC0yMOBV9UNg2xLL/wv41CiGkiQN5p2YktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktSoPs/E3JLkhSSzSU4m2dMtvyPJy0lOJJlJcufox5UkXdTnmZgXgIer6niS64BjSY4ATwKPV9V3k3y6+/qe0Y0qSVqozzMxTwGnutfnk8wCm4ECru/edgPw9qiGlCRdrs8R+P9LMsX8A46PAnuB7yV5ivlTMZ9YZpvdwG6ArVu3vodRJUkL9f4hZpJrgeeAvVV1DngQeKiqtgAPAQeW2q6q9lfVdFVNT05ODmNmSRI9A55kA/PxPlRVh7vFu4CLr78J+ENMSRqjPlehhPmj69mq2rdg1dvA3d3rHcAbwx9PkrScPufAtwM7gdeSnOiWPQJ8Afh6kmuAX9Kd55YkjUefq1BeArLM6o8NdxxJUl/eiSlJjTLgktQoAy7pijZu3EiSFX0AK95m48aNa/xf2p4V3cgj6f3n7NmzVNXI93Mx/OrPI3BJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RG9Xmo8ZYkLySZTXIyyZ4F676U5Cfd8idHO6okaaE+vw/8AvBwVR1Pch1wLMkR4CbgPuD2qno3yY2jHFSSdKk+DzU+BZzqXp9PMgtsZv6p9E9U1bvdutOjHFSSdKkVnQNPMgVsA44CtwKfTHI0yfeTfHyZbXYnmUkyMzc3917nlSR1egc8ybXAc8DeqjrH/NH7BHAX8GXg2SzxTKSq2l9V01U1PTk5OaSxJUm9Ap5kA/PxPlRVh7vFbwGHa94rwK+BTaMZU5K0WJ+rUAIcAGarat+CVd8CdnTvuRX4IPDOKIaUJF2uz1Uo24GdwGtJTnTLHgEOAgeTvA78CthV43h0tSQJ6HcVykvAZee2O58f7jiSpL68E1OSGmXAJalRBlySGmXAJalRBlySGmXAJalRBlySGtXnRh6toSV+vUwv3lMlrX8G/Cp3pRAnMdQauXr0enjshvHsRytiwCVdUR4/N5YDhSTUYyPfzbriOXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJalSfZ2JuSfJCktkkJ5PsWbT+r5NUEh9oLElj1OdGngvAw1V1PMl1wLEkR6rqR0m2AH8GvDnSKSVJlxl4BF5Vp6rqePf6PDALbO5W/wPwN4D3c0vSmK3oHHiSKWAbcDTJXwD/WVWvDthmd5KZJDNzc3OrHlSSdKneAU9yLfAcsJf50ypfBb42aLuq2l9V01U1PTk5uepBJUmX6hXwJBuYj/ehqjoM/D7we8CrSX4K3AIcT/I7oxpUknSpgT/EzPwvpD4AzFbVPoCqeg24ccF7fgpMV9U7I5pTkrRInyPw7cBOYEeSE93Hp0c8lyRpgIFH4FX1EnDFx8JU1dSwBpIk9eOdmJLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY0y4JLUKAMuSY3q81R6Se9z8891Ga2JiYmR72O9MeBXiY0bN3L27NkVb7eSf1gTExOcOXNmxfvQ+1tVrXibJKvaTitjwK8SZ8+eHfk3/DiOoiSNz8Bz4Em2JHkhyWySk0n2dMv/PsmPk/wwyT8n+dDox5UkXdTnh5gXgIer6iPAXcAXk3wUOALcVlW3A/8B/N3oxpQkLTYw4FV1qqqOd6/PA7PA5qr6t6q60L3tZeCW0Y0pSVpsRZcRJpkCtgFHF636S+C7wxlJktRH74AnuRZ4DthbVecWLP8q86dZDi2z3e4kM0lm5ubm3uu8kqROr4An2cB8vA9V1eEFy3cBfw58rpa5hKKq9lfVdFVNT05ODmNmSRI9LiPM/LVnB4DZqtq3YPm9wN8Cd1fV/4xuREnSUvpcB74d2Am8luREt+wR4B+B3wSOdNcXv1xVfzWSKSVJlxkY8Kp6CVjqDpB/Hf44kqS+/GVWktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjTLgktQoAy5JjRoY8CRbkryQZDbJySR7uuUbkxxJ8kb3eWL040qSLupzBH4BeLiqPgLcBXwxyUeBrwDPV9WHgee7ryVJYzIw4FV1qqqOd6/PA7PAZuA+4OnubU8D949qSEnS5QY+lX6hJFPANuAocFNVnYL5yCe5cZltdgO7AbZu3fpeZpV0lUmy4nVVNapx3nd6BzzJtcBzwN6qOnelv7iFqmo/sB9genrav7ll1KPXw2M3jH4f0hAZ47XVK+BJNjAf70NVdbhb/PMkN3dH3zcDp0c15PtBHj838n8MSajHRroLSWPU5yqUAAeA2arat2DVd4Bd3etdwLeHP54kaTl9jsC3AzuB15Kc6JY9AjwBPJvkAeBN4DOjGVGStJSBAa+ql4DlTnh/arjjSJL68k5MSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWpUn2diHkxyOsnrC5bdkeTlJCeSzCS5c7RjSpIW63ME/g3g3kXLngQer6o7gK91X0uSxmhgwKvqReDM4sXA9d3rG4C3hzyXJGmAPk+lX8pe4HtJnmL+fwKfWO6NSXYDuwG2bt26yt1JkhZb7Q8xHwQeqqotwEPAgeXeWFX7q2q6qqYnJydXuTtJ0mKrDfgu4HD3+puAP8SUpDFbbcDfBu7uXu8A3hjOOJKkvgaeA0/yDHAPsCnJW8CjwBeArye5Bvgl3TluSdL4DAx4VX12mVUfG/IskqQV8E5MSWrUai8j1AgkGemfPzExMdI/X9J4GfCrRFWteJskq9pO0vrgKRRJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJapQBl6RGGXBJatTAgCc5mOR0ktcXLf9Skp8kOZnkydGNKElaSp8j8G8A9y5ckORPgPuA26vqD4Gnhj+aJOlKBga8ql4Ezixa/CDwRFW9273n9AhmkyRdwWrPgd8KfDLJ0STfT/Lx5d6YZHeSmSQzc3Nzq9ydJGmx1Qb8GmACuAv4MvBslnkib1Xtr6rpqpqenJxc5e4kSYutNuBvAYdr3ivAr4FNwxtLkjTIagP+LWAHQJJbgQ8C7wxrKEnSYNcMekOSZ4B7gE1J3gIeBQ4CB7tLC38F7KqqGuWgkqRLDQx4VX12mVWfH/IskqQV8E5MSWqUAZekRhlwSWqUAZekRhlwSWqUAZekRhlwSWrUwOvAtbaW+RUzA9d7X5W0/hnwq5whlrQcT6FIUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1yoBLUqMMuCQ1KuO8USTJHPCzse1w/duEzyLV1cnvzeH63aqaXLxwrAHXcCWZqarptZ5DWszvzfHwFIokNcqAS1KjDHjb9q/1ANIy/N4cA8+BS1KjPAKXpEYZcElqlAFvUJKDSU4neX2tZ5EWSrIlyQtJZpOcTLJnrWdazzwH3qAkfwz8AvinqrptreeRLkpyM3BzVR1Pch1wDLi/qn60xqOtSx6BN6iqXgTOrPUc0mJVdaqqjnevzwOzwOa1nWr9MuCSRiLJFLANOLq2k6xfBlzS0CW5FngO2FtV59Z6nvXKgEsaqiQbmI/3oao6vNbzrGcGXNLQJAlwAJitqn1rPc96Z8AblOQZ4AfAHyR5K8kDaz2T1NkO7AR2JDnRfXx6rYdar7yMUJIa5RG4JDXKgEtSowy4JDXKgEtSowy4JDXKgEtSowy4JDXq/wCVUlrYtmZceQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.boxplot([x, y])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 21.84\n", "11 18.73\n", "17 17.18\n", "21 19.45\n", "22 22.75\n", " ... \n", "9943 16.24\n", "9952 15.71\n", "9990 22.80\n", "9993 20.71\n", "9998 20.08\n", "Name: len, Length: 5834, dtype: float64" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "expectation_x = []\n", "expectation_y = []\n", "\n", "for i in range(10000):\n", " sample_x = np.random.choice(x, replace=True, size=len(x))\n", " sample_y = np.random.choice(y, replace=True, size=len(y))\n", " \n", " expectation_x.append(sample_x.mean())\n", " expectation_y.append(sample_y.mean())" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaZUlEQVR4nO3df5BU9Znv8feTEZiSgaCiI8sgjAoiqxBlhNUoO+yKgew1JLXBS2KyMcZM2MqsSe66xqyb1NY1lokx100CK44stT+UoiQ3KFYggIYuzEXCgKUQ5UdY0DCgqKCBDhcQeO4f3XO3HXpmzkB3f4fz/byqprr7nO+3n+eh9Zkz3z592twdERFJrw+FTkBERMpLjV5EJOXU6EVEUk6NXkQk5dToRURS7qzQCRQzePBgHzFiROmf+PXXc7fDhwPwhz/8gf79+5c+Ti+iGtMjhjrTWmNh6ylXjRs2bHjH3c8vtq9XNvoRI0awfv360j9xU1PutqUFgEwmQ2NjY+nj9CKqMT1iqDOtNRa2nnLVaGavd7ZPSzciIinXK4/oy+aOO0JnICIRCt164mr0EyaEzkBEIhS69cS1dLNtW+5HRKSCQreeuI7oH3ood5t/M1ZEpBJCt564juhFRCKkRi8iknKJGr2ZTTWzrWa23czuKbJ/upltNLOXzGy9mV2fdK6IiJRXt43ezKqAOcA0YAzwGTMb02HYc8A4d/8IcDswrwdzRUSkjJK8GTsB2O7uOwDMbCEwHXi1fYC7ZwvG9wc86dyKam4OElZE4tbcDKybB6veBru24vGTNPqhwK6Cx23AxI6DzOxTwAPABcBf9GRufn4T0ARQW1tLJpNJkNopyj93Npstb5xeQDWmRwx1prrG2hoy2RqyVvkakzR6K7LtpO8fdPfFwGIzmwTcB9yYdG5+fgvQAtDQ0OBlud7Fxo2527FjgfReV6OQakyPGOpMa40bNwLb5zH2krfJ2LUVrzHJm7FtwLCCx3XAns4Gu/tq4BIzG9zTuWU3e3buR0SkgmbPhtlPjQ8WP0mjbwVGmlm9mfUFZgJLCgeY2aVmZvn7VwN9gX1J5oqISHl1u3Tj7sfMrBlYDlQB8939FTObld8/F/hL4K/M7H3g/wL/3d0dKDq3TLWIiEgRiS6B4O5LgaUdts0tuP994PtJ54qIRGPVA7BnatAUovpk7Ka234dOQUSk4qK6qNn6Gbdz5UfrQ6chIpG565Z1QeNH1ejfq6uHUaNCpyEikRk1bH/Q+FEt3dRu2Qjrwv5mFZH4rNs8hHWbhwSLH9UR/ZXLFsGmD4f/uhcRicq8peMAmHD5G0HiR3VELyISIzV6EZGUU6MXEUk5NXoRkZSL6s3YX392FlfecHHoNEQkMvfeuiZo/Kga/cHaoTB8eOg0RCQywy88EDR+VEs3Qze2wurVodMQkcisfnkYq18e1v3AMonqiP7y55aw6Tl49siFfGOKPiErIpXx+LN/DMCkcbu6GVkeUR3Ri4jESI1eRCTl1OhFRFJOjV5EJOWiejN2zW1fC52CiETovi+GPdsvqkZ/6JzBoVMQkQjVnnsoaPyolm4uWv8rLlr/q9BpiEhkVrTWs6I13LfbRXVEP+r55QD8ruH6wJmISEx+uvoyAG66ZmeQ+FEd0YuIxEiNXkQk5dToRURSTo1eRCTlEr0Za2ZTgR8BVcA8d/9eh/23At/MP8wCf+3uL+f3vQYcBI4Dx9y9oTSp99zzX/67UKFFJGIPfmVV0PjdNnozqwLmAFOANqDVzJa4+6sFw3YCf+ru75rZNKAFmFiwf7K7v1PCvE/JkZqBoVMQkQgNqjkSNH6SpZsJwHZ33+HuR4GFwPTCAe6+xt3fzT9cC9SVNs3SuPiFX3LxC78MnYaIROaZNZfyzJpLg8VPsnQzFCi8iHIbHzxa7+hLwLKCxw6sMDMHHnX3lmKTzKwJaAKora0lk8kkSK1nrvg/SwA4clU9mcwestlsWeL0JqoxPWKoM5U1Zut5dPXVAAwYe5ysVb7GJI3eimzzogPNJpNr9IWfSPqou+8xswuAlWa2xd1PuvBD/hdAC0BDQ4M3NjYmSK1nNj34CAC7q+u5pXEUmUyGcsTpTVRjesRQZyprXPUAC/rkPjDVWLOTjF1b8RqTLN20AYXfgVUH7Ok4yMzGAvOA6e6+r327u+/J374FLCa3FCQiIhWSpNG3AiPNrN7M+gIzgSWFA8zsIuBnwOfdfVvB9v5mNqD9PnAT8JtSJS8iIt3rdunG3Y+ZWTOwnNzplfPd/RUzm5XfPxf4DnAe8M9mBv91GmUtsDi/7Sxggbv/oiyViIhIUYnOo3f3pcDSDtvmFty/A7ijyLwdwLjTzLFkVn31H0KnICIR+vHfrAwaP6qrVx7v2y90CiISoeq+x4PGj+oSCCNXL2Pk6mXdDxQRKaFFmdEsyowOFj+qRj98wxqGb1gTOg0RiczKDSNYuWFEsPhRNXoRkRip0YuIpJwavYhIyqnRi4ikXFSnVz77jftCpyAiEWr527CfE9URvYhIykXV6C9/9ikuf/ap0GmISGT+Y8UV/MeKK4LFj6rRD920gaGbNoROQ0Qi8/ymOp7fFO77mKJq9CIiMVKjFxFJOTV6EZGUi+r0ymO6eqWIBBD66pVRNfqMrkcvIgGEvh69lm5ERFIuqkZ/xbJFXLFsUeg0RCQy834+jnk/D/dle1E1+gu3bOTCLRtDpyEikVm3ZQjrtgwJFj+qRi8iEiM1ehGRlFOjFxFJuahOrzxSMyB0CiISoUE1R4LGj6rRP//lu0OnICIRevArq4LG19KNiEjKRdXoxz39OOOefjx0GiISmdmLxzN78fhg8RM1ejObamZbzWy7md1TZP+tZrYx/7PGzMYlnVtJ5+/Yyvk7toZMQUQitHHH+WzccX6w+N02ejOrAuYA04AxwGfMbEyHYTuBP3X3scB9QEsP5oqISBklOaKfAGx39x3ufhRYCEwvHODua9z93fzDtUBd0rkiIlJeSc66GQrsKnjcBkzsYvyXgGU9nWtmTUATQG1tLZlMJkFqPTPs+MFcUod3ksnsIZvNliVOb6Ia0yOGOlNZY7aePe8PBCCTrSdrla8xSaO3Itu86ECzyeQa/fU9nevuLeSXfBoaGryxsTFBaj2z9rEnAdhdXc8tjaPIZDKUI05vohrTI4Y6U1njqgd47oJhADTW7CRj11a8xiSNvg0YVvC4DtjTcZCZjQXmAdPcfV9P5lbKC7d9PVRoEYnYfbevDho/yRp9KzDSzOrNrC8wE1hSOMDMLgJ+Bnze3bf1ZK6IiJRXt0f07n7MzJqB5UAVMN/dXzGzWfn9c4HvAOcB/2xmAMfcvaGzuWWqpVtX/3Q+AC9++vZQKYhIhH745AQA/vaWdUHiJ7oEgrsvBZZ22Da34P4dwB1J54Zy7q6doVMQkQht3XVu0PhRXOvm4ZW51aQbA+chIhJCVJdAEBGJkRq9iEjKRbF00+5A7R+FTkFEIjS89kDQ+FE1+nWf/evQKYhIhO793Jqg8bV0IyKSclE1+gkLHmHCgkdCpyEikbn/8eu4//HrgsWPaulm4N5gV18QkYi9vndg0PhRHdGLiMRIjV5EJOXU6EVEUi6qNfr9w+pDpyAiEbps2P6g8aNq9LpqpYiEEOqqle20dCMiknJRNfpr//WfuPZf/yl0GiISmW/Pn8S3508KFj+qpZv+7+7rfpCISIntfffsoPGjOqIXEYmRGr2ISMqp0YuIpFxUa/RvX3xZ6BREJEJjL347aPyoGv3L0z8XOgURiVDzpzb814ODb8KqB2DytyoWX0s3IiIpF1Wjv+GxB7nhsQdDpyEikbn70cnc/ejkYPGjWrrplz0YOgURidB72X5B40d1RC8iEqNEjd7MpprZVjPbbmb3FNk/2sxeMLMjZnZXh32vmdkmM3vJzNaXKnEREUmm26UbM6sC5gBTgDag1cyWuPurBcP2A3cCn+zkaSa7+zunm6yIiPRckjX6CcB2d98BYGYLgenA/2/07v4W8JaZ/UVZsiyRN0ePDZ2CiERowug3gsY3d+96gNmnganufkf+8eeBie7eXGTsPwJZd3+oYNtO4F3AgUfdvaWTOE1AE0Btbe34hQsXnlJBxbx18MhJ2y4Y0I9sNktNTU3J4vRGqjE9YqgzdTUefPOkTdkT/aj50BEYcGFJQ02ePHmDuzcU25fkiN6KbOv6t8MHfdTd95jZBcBKM9vi7qtPesLcL4AWgIaGBm9sbOxBiK49vHLbSdtuaRxFJpOhlHF6I9WYHjHUmboaVz1w0qZMtp7Gmp3QOLNiaSR5M7YNGFbwuA7YkzSAu+/J374FLCa3FBRE45zv0jjnu6HCi0ik7vzJFO78yZRg8ZM0+lZgpJnVm1lfYCawJMmTm1l/MxvQfh+4CfjNqSZ7us46eoSzjp68jCMiUk6Hj1Zx+GhVsPjdLt24+zEzawaWA1XAfHd/xcxm5ffPNbMLgfXAQOCEmX0dGAMMBhabWXusBe7+i/KUIiIixST6ZKy7LwWWdtg2t+D+m+SWdDo6AIw7nQRFROT06JOxIiIpF9W1bnZfOT50CiISoRuubAsaP6pGv/nGzj64KyJSPp+/Kdg5KICWbkREUi+qRn/jw9/mxoe/HToNEYlM0w+n0vTDqcHiR9XoRURipEYvIpJyavQiIikXbaN/eOW2ole1FBFJm6hOr3x9/HWhUxCRCE0Z/1rQ+FE1+t9OmhY6BRGJ0IzGLUHjR7V0U3X0CFW6eqWIVFjoq1dG1egnz/kuk3U9ehGpsDPhevQiInIGU6MXEUk5NXoRkZRToxcRSbmoTq/c8SeTQ6cgIhG6+drtQePH1eiv/bPQKYhIhG6+Lmyjj2rppl/2AP2yB0KnISKReS/bj/ey/YLFj6rR3/DYD7jhsR+ETkNEInP3o5O5+9FwS8dRNXoRkRip0YuIpJwavYhIyqnRi4ikXKJGb2ZTzWyrmW03s3uK7B9tZi+Y2REzu6sncytp2w0fY9sNHwuZgohE6NOTtvLpSVuDxe/2PHozqwLmAFOANqDVzJa4+6sFw/YDdwKfPIW5FfO7hutDhBWRyN10zc6g8ZMc0U8Atrv7Dnc/CiwEphcOcPe33L0VeL+ncyvp7Hff4ex33wkVXkQitXf/2ezdf3aw+Ek+GTsU2FXwuA2YmPD5E881syagCaC2tpZMJpMwRIIkDue+bGT8v/wIgA3NXwOgz4kjJY3TG2WzWdWYEjHUmboas/UAPNRyDQB3NbeSPdGPTLYeKlhnkkZvRbZ5wudPPNfdW4AWgIaGBm9sbEwYonsPr9wGwOVVAwDYXZ37xx96eCeljNMbZTIZ1ZgSMdSZuhpXPQDAgj6XAdBYs5NMtp7Gmp3QOLNiaSRZumkDhhU8rgP2JHz+05krIiIlkKTRtwIjzazezPoCM4ElCZ//dOaKiEgJdLt04+7HzKwZWA5UAfPd/RUzm5XfP9fMLgTWAwOBE2b2dWCMux8oNrdcxYiIyMkSXabY3ZcCSztsm1tw/01yyzKJ5oay+c8/EToFEYnQ524Me3wb1fXod4+9JnQKIhKhSeN2dT+ojKK6BMKAvbsZsHd36DREJDKvvzmQ198cGCx+VI1+4oK5TFwwt/uBIiIldP8T13H/E9cFix9VoxcRiZEavYhIyqnRi4iknBq9iEjKRXV65aZpM0KnICIRuuPjLweNH1Wj3zt6bOgURCRCEy5/I2j8qJZuBrXtZFBb2C8AEJH4bNt1Ltt2nRssflSNvmHRfBoWzQ+dhohE5qEnJ/DQkxOCxY+q0YuIxEiNXkQk5dToRURSTo1eRCTlojq98qXpt4ZOQUQi1PzJDUHjR9Xo37l4dOgURCRCYy95O2j8qJZuBu/YwuAdW0KnISKR2fif57PxP88PFj+qRv+Rp5/gI08/EToNEYnM7KfGM/up8cHiR9XoRURilOo1+odXbgudgohIcDqiFxFJOTV6EZGUS/XSTUfrZ9weOgURidBdt6wLGj+qRv9eXX3oFEQkQqOG7Q8aP1GjN7OpwI+AKmCeu3+vw37L7/84cAi4zd1fzO97DTgIHAeOuXtDybLvodotGwF9AUmM3n//fdra2jh8+HDoVKiurqauro4+ffqETkUqZN3mIUC4LyDpttGbWRUwB5gCtAGtZrbE3V8tGDYNGJn/mQg8kr9tN9nd3ylZ1qfoymWLADX6GLW1tTFgwABGjBhB7rgkDHdn3759tLW1UV+vvzBjMW/pOCBco0/yZuwEYLu773D3o8BCYHqHMdOBf/ectcAgMxtS4lxFTtnhw4c577zzgjZ5ADPjvPPO6xV/WUg8kjT6ocCugsdt+W1Jxziwwsw2mFnTqSYqcrpCN/l2vSUPiUeSNfpi/1V6D8Z81N33mNkFwEoz2+Luq08Kkvsl0ARQW1tLJpNJkFrXhh4+8oHHZx8/mN+e+97YPieOlCROb5bNZlUj8OEPf5iDBw9WJqEEDh8+3OPXRa/lGSibW57b8/5AADLZerIn+pHJ1kMF60zS6NuAYQWP64A9Sce4e/vtW2a2mNxS0EmN3t1bgBaAhoYGb2xsTFZBFzp+MvbyqgEA7K7O/eMPPbyTUsTpzTKZjGoENm/ezIABAyqTUALV1dVcddVVPZqj1/IMtOoBABb0uQyAxpqdZLL1NNbshMaZFUsjSaNvBUaaWT2wG5gJfLbDmCVAs5ktJPcm7O/d/Q0z6w98yN0P5u/fBPzP0qXfM7/+7KxQoUUkYvfeuiZo/G4bvbsfM7NmYDm50yvnu/srZjYrv38usJTcqZXbyZ1e+cX89FpgcX5N8ixggbv/ouRVJHSwtuNbCxKtpiJvF02ZAjNmwOHDcOedJ++/+ebcz3vvwd13f3BfS0t58pRUGH7hgaDxE51H7+5LyTXzwm1zC+478NUi83YA404zx5IZurEVgN1jrwmciYjEZPXLuZXtSeMKzlnJL+sw+Vtljx/VJ2Mvf24JoEYvdH0EXl3d9f5Bg3QELz3y+LN/DHRo9BWki5qJiKScGr2ISMqp0YuIpFxUa/QiIhXR/kZrLxFVo19z29dCpyAiEbrviyd9RrSiolq6OXTOYA6dM/gD2/S9siJSbrXnHqL23EPB4kfV6C9a/ysuWv+r0GmISGRWtNazojXcZamjWroZ9fxyAH7XcH3gTEQkJj9dnbvWzU3X7AwSP6ojehGRGKnRi4iknBq9iEjKqdGLiKRcVG/GPv/lvwudgvQSukqxVNKDX1kVNH5Ujf5IzcDQKYhIhAbVHOl+UBlF1egvfuGXAOy49s8CZyKh6SrFUknPrLkUgJuv2x4kflRr9BevXcXFa8P+CSUi8XnmhUt55oVLg8WPqtGLiMRIjV5EJOXU6EVEUk6NXkQk5aI662bVV/8hdAoiEqEf/83KoPFT2+iLXWf+eN9+ATKR3sLdMbPQaeDuoVOQCqvuezxo/KiWbkauXsbI1ctCpyEBVFdXs2/fvuBN1t3Zt28f1dXVQfOQylqUGc2izOhg8VN7RF/M8A1rAPjtpGmBM5FKq6uro62tjbfffjt0KlRXV1NXVxc6DamglRtGADCjccvJO1c9AJO/Vdb4UTX6zrQv83xjyqjAmUi59OnTh/r6cN/wI5HoZV8K3i7R0o2ZTTWzrWa23czuKbLfzOzH+f0bzezqpHNFRKS8um30ZlYFzAGmAWOAz5jZmA7DpgEj8z9NwCM9mCsiImWUZOlmArDd3XcAmNlCYDrwasGY6cC/e+6drrVmNsjMhgAjEswtqWJn24iIlNXpLtm0zy/TWn2SRj8U2FXwuA2YmGDM0IRzATCzJnJ/DQBkzWxrgtxOzbIn2+8NBt5pf/A/yhYwqA/UmFIx1Ahx1JnSGv8egMd+DnRZ49+fTpDhne1I0uiLnXjc8Ry1zsYkmZvb6N4CVPTir2a23t0bKhmz0lRjesRQp2osjySNvg0YVvC4DtiTcEzfBHNFRKSMkpx10wqMNLN6M+sLzASWdBizBPir/Nk3fwL83t3fSDhXRETKqNsjenc/ZmbNwHKgCpjv7q+Y2az8/rnAUuDjwHbgEPDFruaWpZJTE8P3BKnG9IihTtVYBhb6I+EiIlJeUV3rRkQkRmr0IiIpF02jN7NhZrbKzDab2Stm9rX89nPNbKWZ/TZ/e07oXE9VFzXOyD8+YWZn9KlrXdT4AzPbkr8Ex2IzGxQ611PVRY335et7ycxWmNkfhc71VHVWY8H+u8zMzWxwqBxPVxev4z+a2e786/iSmX287LnEskaf/6TuEHd/0cwGABuATwK3Afvd/Xv5a/Gc4+7fDJjqKeuiRgdOAI8Cd7n7+oBpnpYuaqwDfpk/AeD7ACl8Hdvc/UB+zJ3AGHefFTDVU9ZZje7+qpkNA+YBo4Hx7n5GfoCqi9fxFiDr7g9VKpdojujd/Q13fzF//yCwmdwnd6cD/5Yf9m/kXogzUmc1uvtmdy/fJ40rqIsaV7j7sfywteQa/xmpixoPFAzrTycfPjwTdPH/I8DDwN2cwfVBtzVWVDSNvpCZjQCuAn4N1ObP+Sd/e0G4zEqnQ42p1EWNtwOp+IaZjjWa2f1mtgu4FfhOuMxKp7BGM/sEsNvdXw6aVIkV+W+1Ob8MN78Sy8XRNXozqwH+N/D1DkdIqRFzjWZ2L3AMeCJUbqVSrEZ3v9fdh5GrrzlkfqVQWCO51+1eUvILrF2R1/ER4BLgI8AbwA/LnUNUjd7M+pD7B3/C3X+W37w3v5bWvqb2Vqj8SqGTGlOlsxrN7AvAfwNu9TP8zacEr+MC4C8rm1VpFanxEqAeeNnMXiO3/PaimV0YLsvTU+x1dPe97n7c3U8Aj5G7QnBZRdPozcyAfwE2u/v/Kti1BPhC/v4XgKcrnVupdFFjanRWo5lNBb4JfMLdD4XKrxS6qHFkwbBPAEW+l+7MUKxGd9/k7he4+wh3H0HuGlpXu/ubAVM9ZV28jkMKhn0K+E3ZcznDD3wSM7PrgeeBTeTOQIHcNUF/DTwJXAT8Dpjh7vuDJHmauqixH/AT4HzgPeAld/9YkCRPUxc1/phcnfvy29aewWekdFbjl4DL8tteB2a5++4gSZ6mzmp096UFY14DGs7gs246ex0/Q27ZxoHXgK+0v09YtlxiafQiIrGKZulGRCRWavQiIimnRi8iknJq9CIiKadGLyKScmr0IiIpp0YvIpJy/w9GOEEKL1RkzAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "two_histograms(pd.Series(expectation_x), pd.Series(expectation_y))" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[19.984214946863215,\n", " 19.937716832362014,\n", " 19.92249400068564,\n", " 19.95007199177237,\n", " 20.035035995886183,\n", " 19.943388755570794,\n", " 19.93931264998286,\n", " 19.91475317106616,\n", " 19.94220603359616,\n", " 19.955306822077475,\n", " 19.91356187864244,\n", " 19.93993829276654,\n", " 19.887845389098388,\n", " 20.036674665752486,\n", " 20.005603359616043,\n", " 19.954285224545767,\n", " 19.920778196777512,\n", " 19.906856359273227,\n", " 19.897050051422692,\n", " 19.905095989029824,\n", " 19.97172951662667,\n", " 19.980773054508056,\n", " 19.92652896811793,\n", " 19.958222488858418,\n", " 19.90515255399383,\n", " 19.959883441892355,\n", " 19.909190949605758,\n", " 19.987816249571477,\n", " 20.01818135070278,\n", " 19.94153753856702,\n", " 19.98694377785396,\n", " 19.952773397326023,\n", " 19.994782310593074,\n", " 19.897386013027084,\n", " 19.96725745629071,\n", " 19.919060678779566,\n", " 19.945210833047653,\n", " 20.060377099760025,\n", " 20.02730716489544,\n", " 19.949122386013027,\n", " 19.93239801165581,\n", " 20.023865272540284,\n", " 19.932872814535482,\n", " 19.9618820706205,\n", " 19.9395594789167,\n", " 19.92301679808022,\n", " 19.95420809050394,\n", " 19.961194720603356,\n", " 20.034084676037022,\n", " 19.99086390126843,\n", " 19.89694549194378,\n", " 19.913476174151526,\n", " 19.885363387041483,\n", " 20.014958861844363,\n", " 19.973455605073703,\n", " 19.905714775454236,\n", " 19.91692320877614,\n", " 20.0181367843675,\n", " 19.953866986630103,\n", " 19.920114844017824,\n", " 19.964592046623242,\n", " 19.922829962290024,\n", " 19.969833733287622,\n", " 19.91735687350017,\n", " 19.92257284881728,\n", " 19.993635584504627,\n", " 19.983575591360985,\n", " 19.93375899897155,\n", " 19.905512512855676,\n", " 19.960027425437094,\n", " 19.877723688721293,\n", " 19.92542509427494,\n", " 19.915217689406926,\n", " 19.878798423037367,\n", " 19.937552279739457,\n", " 19.916998628728145,\n", " 19.926580390812482,\n", " 19.976774082961946,\n", " 19.932490572505998,\n", " 19.974732601988343,\n", " 19.930632499142956,\n", " 19.926369557764826,\n", " 19.973764141241002,\n", " 19.903507027768256,\n", " 19.952970517655125,\n", " 19.904408639012683,\n", " 19.93645869043538,\n", " 19.976019883441893,\n", " 19.955435378813853,\n", " 19.92624614329791,\n", " 19.993705862187177,\n", " 19.943697291738086,\n", " 19.956300994172093,\n", " 19.915258827562564,\n", " 19.898762427151183,\n", " 19.942725402811107,\n", " 19.92143812135756,\n", " 19.931390126842647,\n", " 19.90028968117929,\n", " 19.947027768255058,\n", " 19.921544394926297,\n", " 20.032384298937266,\n", " 19.956834076105586,\n", " 19.95916352416867,\n", " 19.87954405210833,\n", " 19.93994686321563,\n", " 19.959091532396297,\n", " 19.93464175522797,\n", " 19.9745697634556,\n", " 19.906088447034623,\n", " 19.9453651011313,\n", " 19.963681864929722,\n", " 19.999701748371617,\n", " 19.893177922523137,\n", " 19.91438978402468,\n", " 19.876321563249917,\n", " 19.97666952348303,\n", " 19.954341789509773,\n", " 20.011535824477203,\n", " 19.960390812478575,\n", " 19.906381556393555,\n", " 19.978952691121012,\n", " 19.950723345903327,\n", " 19.92711518683579,\n", " 19.980349674322934,\n", " 19.93575934178951,\n", " 19.962308878985258,\n", " 19.936654096674665,\n", " 19.984388069934866,\n", " 19.93988687007199,\n", " 19.960481659238944,\n", " 19.93478745286253,\n", " 19.909468632156326,\n", " 19.971892355159408,\n", " 19.94097874528625,\n", " 19.92960575934179,\n", " 19.97326876928351,\n", " 19.986194720603358,\n", " 19.970284538909837,\n", " 19.952718546451834,\n", " 19.99497086047309,\n", " 19.931839218375043,\n", " 19.95283510455948,\n", " 19.911049022968804,\n", " 19.943476174151524,\n", " 19.94665066849503,\n", " 19.906143297908812,\n", " 19.922269454919437,\n", " 19.95958690435379,\n", " 19.93111244429208,\n", " 19.90349160095989,\n", " 19.949304079533768,\n", " 19.956295851902638,\n", " 19.94912752828248,\n", " 19.868618443606444,\n", " 19.998143640726774,\n", " 19.854055536510113,\n", " 19.89189406924923,\n", " 19.98979945149126,\n", " 19.925611930065138,\n", " 19.933104216660954,\n", " 19.973080219403496,\n", " 19.984055536510112,\n", " 19.917223174494342,\n", " 19.949703462461436,\n", " 19.980776482687695,\n", " 19.967685978745287,\n", " 19.939393212204322,\n", " 19.970887898525884,\n", " 20.021170723345904,\n", " 19.99094103531025,\n", " 19.978921837504284,\n", " 19.921948920123413,\n", " 20.00449605759342,\n", " 19.957110044566335,\n", " 19.986696948920123,\n", " 20.035947891669522,\n", " 19.94077819677751,\n", " 19.90982859101817,\n", " 19.957545423380186,\n", " 19.971933493315053,\n", " 19.977977374014397,\n", " 19.910946177579703,\n", " 19.90995886184436,\n", " 19.93363044223517,\n", " 19.945966746657525,\n", " 19.962233459033257,\n", " 19.939749742886526,\n", " 19.96028968117929,\n", " 19.91628899554337,\n", " 19.946878642440865,\n", " 20.00045594789167,\n", " 19.949422351731233,\n", " 19.879101816935208,\n", " 19.97139698320192,\n", " 19.94908981830648,\n", " 19.925898183064792,\n", " 19.942812821391843,\n", " 19.92867500857045,\n", " 19.914902296880356,\n", " 19.944880013712716,\n", " 19.920248543023654,\n", " 19.9103651011313,\n", " 19.9492320877614,\n", " 19.94397668837847,\n", " 19.996463832704833,\n", " 19.951338704148096,\n", " 19.93647754542338,\n", " 19.90908981830648,\n", " 19.938030510798765,\n", " 19.90116386698663,\n", " 19.880068563592733,\n", " 19.94881384984573,\n", " 19.93597188892698,\n", " 19.939206376414123,\n", " 19.98990743914981,\n", " 19.934384641755226,\n", " 19.983244772026055,\n", " 19.97494000685636,\n", " 19.970126842646554,\n", " 19.99646726088447,\n", " 19.944381213575596,\n", " 19.947332876242715,\n", " 19.94938121357559,\n", " 20.022365443949266,\n", " 19.90831847788824,\n", " 19.98712889955434,\n", " 19.877130613644155,\n", " 19.942495714775454,\n", " 19.932619129242372,\n", " 19.929245800479947,\n", " 20.022123757284884,\n", " 19.950762769969145,\n", " 19.96796194720603,\n", " 19.905702776825503,\n", " 19.920471374700035,\n", " 19.914348645869044,\n", " 19.92004285224546,\n", " 19.919713747000344,\n", " 19.929892012341444,\n", " 19.892730545080564,\n", " 19.937667123757286,\n", " 19.937910524511484,\n", " 19.907922523140215,\n", " 19.940075419952006,\n", " 19.96659067535139,\n", " 19.957718546451833,\n", " 19.943351045594788,\n", " 19.948745286253,\n", " 19.975886184436067,\n", " 19.97249571477545,\n", " 19.981371271854645,\n", " 19.941331847788828,\n", " 19.921371271854646,\n", " 19.889652039766887,\n", " 19.913687007199176,\n", " 19.94749914295509,\n", " 19.87571820363387,\n", " 19.986750085704493,\n", " 19.9758056222146,\n", " 19.96781453548166,\n", " 19.938609873157354,\n", " 19.928911552965378,\n", " 19.926076448405897,\n", " 19.92320706205005,\n", " 19.99120671923209,\n", " 19.94620329105245,\n", " 19.977420294823446,\n", " 19.92760198834419,\n", " 19.96925779910867,\n", " 19.94578333904697,\n", " 19.940682207747685,\n", " 19.996971203291054,\n", " 19.89393555022283,\n", " 19.967178608159067,\n", " 19.946085018854987,\n", " 19.988606444977716,\n", " 19.89155639355502,\n", " 19.952322591703805,\n", " 19.876976345560507,\n", " 20.062973945834763,\n", " 19.960457661981486,\n", " 20.00077134041824,\n", " 19.986307850531368,\n", " 19.92589989715461,\n", " 19.90340075419952,\n", " 19.943567020911892,\n", " 20.005874185807336,\n", " 19.91652725402811,\n", " 19.92378985258828,\n", " 19.94818992115187,\n", " 19.97255742200891,\n", " 19.903433321906068,\n", " 19.922010627356876,\n", " 19.915731916352417,\n", " 19.951583818992116,\n", " 19.968416181007886,\n", " 19.944617757970516,\n", " 19.922908810421667,\n", " 19.966564964004114,\n", " 19.883272197463146,\n", " 19.995083990401096,\n", " 19.992526568392183,\n", " 19.963471031882072,\n", " 19.955226259856016,\n", " 19.949842303736716,\n", " 20.019418923551594,\n", " 19.912764826876927,\n", " 19.910846760370244,\n", " 19.930776482687694,\n", " 19.931314706890642,\n", " 19.981789509770312,\n", " 20.004826876928348,\n", " 19.93214775454234,\n", " 19.889004113815567,\n", " 19.970116558107645,\n", " 20.018052793966405,\n", " 19.959991429550907,\n", " 19.955968460747343,\n", " 19.939921151868358,\n", " 19.948882413438465,\n", " 19.906551251285567,\n", " 19.886594103531024,\n", " 19.960613644154954,\n", " 19.99470517655125,\n", " 19.952821391840935,\n", " 19.97309050394241,\n", " 19.955409667466572,\n", " 19.98243914981145,\n", " 19.960891326705518,\n", " 19.966330133699003,\n", " 19.969926294137814,\n", " 19.94559650325677,\n", " 19.979784024682893,\n", " 19.9509736030168,\n", " 20.002900239972575,\n", " 19.964413781282136,\n", " 19.901073020226264,\n", " 19.95788309907439,\n", " 19.969271511827223,\n", " 19.984165238258484,\n", " 19.944429208090504,\n", " 19.902302022625985,\n", " 19.994206376414127,\n", " 19.93340418237916,\n", " 19.903705862187177,\n", " 19.94086218717861,\n", " 19.972482002056907,\n", " 19.959415495371957,\n", " 19.985954748028796,\n", " 19.912896811792937,\n", " 19.966028453890985,\n", " 19.946098731573535,\n", " 20.000083990401098,\n", " 19.98041652382585,\n", " 19.904600617072337,\n", " 19.97176208433322,\n", " 19.94446348988687,\n", " 19.943707576276996,\n", " 19.944717175179978,\n", " 19.92313849845732,\n", " 19.89629413781282,\n", " 19.96525197120329,\n", " 19.919794309221803,\n", " 19.94719403496743,\n", " 19.976631813507026,\n", " 19.94908124785739,\n", " 19.944391498114502,\n", " 19.977456290709632,\n", " 19.936597531710664,\n", " 19.96809736030168,\n", " 19.93948405896469,\n", " 19.968798423037367,\n", " 19.947567706547822,\n", " 19.991292423723,\n", " 20.004873157353448,\n", " 19.878404182379157,\n", " 19.958541309564623,\n", " 19.932860815906754,\n", " 19.888728145354815,\n", " 19.92982687692835,\n", " 19.956571820363383,\n", " 19.989418923551593,\n", " 19.949549194377784,\n", " 19.93944463489887,\n", " 19.960217689406925,\n", " 19.839907439149812,\n", " 19.944381213575593,\n", " 19.89067706547823,\n", " 19.989804593760713,\n", " 19.906138155639358,\n", " 19.94640555365101,\n", " 19.913376756942064,\n", " 19.86291566678094,\n", " 19.91759170380528,\n", " 19.911624957147755,\n", " 19.946590675351388,\n", " 19.922499142955093,\n", " 19.9552811107302,\n", " 19.90489886870072,\n", " 19.97372471717518,\n", " 19.95877613986973,\n", " 19.997187178608158,\n", " 19.93734830305108,\n", " 19.974016112444293,\n", " 19.95628385327391,\n", " 19.9967603702434,\n", " 19.90123414466918,\n", " 19.965512512855675,\n", " 19.903981830647925,\n", " 19.941424408639012,\n", " 19.937387727116903,\n", " 19.962908810421666,\n", " 19.896542680836475,\n", " 19.93457319163524,\n", " 19.993688721288997,\n", " 19.88089132670552,\n", " 19.90096331847789,\n", " 19.95696263284196,\n", " 19.930510798765855,\n", " 19.984838875557077,\n", " 19.963962975659925,\n", " 19.920762769969144,\n", " 19.907586561535826,\n", " 19.972727116900927,\n", " 19.899844017826535,\n", " 19.917979088104214,\n", " 19.927775111415837,\n", " 19.940188549880013,\n", " 19.959408639012686,\n", " 19.90936235858759,\n", " 19.884274940006858,\n", " 19.861249571477547,\n", " 19.907958519026398,\n", " 19.817691121014743,\n", " 19.969749742886524,\n", " 19.91104216660953,\n", " 19.88093932122043,\n", " 19.894184093246487,\n", " 19.95220774768598,\n", " 19.886870071991773,\n", " 19.90508913267055,\n", " 19.99871786081591,\n", " 19.956268426465545,\n", " 19.930087418580733,\n", " 19.98260541652383,\n", " 19.962192320877612,\n", " 19.99551594103531,\n", " 19.944521768940692,\n", " 19.874562907096333,\n", " 19.930726774082963,\n", " 19.956006170723345,\n", " 19.928306479259515,\n", " 19.99658724717175,\n", " 19.91642783681865,\n", " 19.888189921151866,\n", " 19.93136441549537,\n", " 19.969316078162496,\n", " 19.999537195749056,\n", " 19.95554508056222,\n", " 19.963620157696262,\n", " 19.977699691463833,\n", " 20.001292423723005,\n", " 19.935665066849506,\n", " 19.86235858758999,\n", " 19.93588104216661,\n", " 19.889717175179978,\n", " 19.981564964004114,\n", " 19.96281110730202,\n", " 19.993172780253683,\n", " 19.97290538224203,\n", " 19.908152211175867,\n", " 20.00394926294138,\n", " 19.942314021254713,\n", " 19.934509770311962,\n", " 19.99724888584162,\n", " 19.932343160781627,\n", " 19.93174837161467,\n", " 19.96106273568735,\n", " 19.993292766540964,\n", " 19.95300822763113,\n", " 19.93326876928351,\n", " 19.93503942406582,\n", " 19.969511484401785,\n", " 19.96645697634556,\n", " 19.987588275625644,\n", " 19.94878471031882,\n", " 19.952204319506343,\n", " 19.965788481316423,\n", " 19.98726774082962,\n", " 19.896643812135753,\n", " 19.999924580047995,\n", " 19.92515083990401,\n", " 19.895781624957145,\n", " 20.004672608844704,\n", " 19.9607113472746,\n", " 19.90630613644155,\n", " 19.91566849502914,\n", " 19.965217689406924,\n", " 19.928525882756254,\n", " 19.976146726088448,\n", " 19.925207404868015,\n", " 19.931364415495374,\n", " 19.993507027768253,\n", " 19.900125128556738,\n", " 19.886148440178268,\n", " 20.01544394926294,\n", " 19.911880356530684,\n", " 19.983961261570105,\n", " 19.914058964689747,\n", " 19.935198834418923,\n", " 19.91219574905725,\n", " 19.920047994514913,\n", " 19.91826705519369,\n", " 20.003421323277337,\n", " 19.892620843332192,\n", " 19.966506684950293,\n", " 19.847228316763797,\n", " 19.910769626328417,\n", " 19.987826534110386,\n", " 20.0257302022626,\n", " 19.937339732601988,\n", " 19.962415152553994,\n", " 20.006866643812135,\n", " 19.95226774082962,\n", " 19.896952348303053,\n", " 20.016768940692494,\n", " 20.023330476516968,\n", " 19.94597188892698,\n", " 19.917346588961262,\n", " 19.876786081590677,\n", " 19.984226945491944,\n", " 19.92267055193692,\n", " 19.917790538224207,\n", " 19.948709290366814,\n", " 20.000013712718545,\n", " 20.008573877271168,\n", " 19.909660610215973,\n", " 19.971943777853962,\n", " 19.928824134384644,\n", " 19.991878642440863,\n", " 19.942517997943092,\n", " 19.951311278711003,\n", " 19.929652039766882,\n", " 19.96999142955091,\n", " 19.997629413781283,\n", " 19.901258141926636,\n", " 19.920130270826192,\n", " 19.90684264655468,\n", " 19.885831333561878,\n", " 19.90443435035996,\n", " 19.92818992115187,\n", " 19.91567706547823,\n", " 19.919602331162153,\n", " 19.94117243743572,\n", " 19.94126671237573,\n", " 19.8928745286253,\n", " 19.976948920123416,\n", " 19.940581076448407,\n", " 19.956715803908125,\n", " 19.987116900925606,\n", " 19.92176722660267,\n", " 19.90082104902297,\n", " 19.9298594446349,\n", " 19.953690435378814,\n", " 19.952934521768942,\n", " 19.900944463489886,\n", " 19.90717517997943,\n", " 19.977883099074393,\n", " 19.928599588618447,\n", " 19.92187178608159,\n", " 19.85062907096332,\n", " 19.972919094960577,\n", " 19.947831676379842,\n", " 19.96440349674323,\n", " 19.990671923208772,\n", " 19.943820706205006,\n", " 19.91735173123072,\n", " 19.862264312649984,\n", " 19.917084333219062,\n", " 19.920973603016797,\n", " 19.929334933150496,\n", " 19.959914295509083,\n", " 19.942375728488173,\n", " 19.89617586561536,\n", " 19.90655810764484,\n", " 19.930642783681865,\n", " 19.944670894754886,\n", " 19.964916009598905,\n", " 20.002020911895784,\n", " 19.929904010970173,\n", " 19.948147068906408,\n", " 19.859742886527254,\n", " 19.82916181007885,\n", " 19.92546280425094,\n", " 19.971664381213575,\n", " 19.94616215289681,\n", " 19.89045423380185,\n", " 19.87785224545766,\n", " 19.909060678779568,\n", " 19.919290366815222,\n", " 19.9609924580048,\n", " 19.957017483716147,\n", " 20.020671923208777,\n", " 19.89743914981145,\n", " 19.94847960233116,\n", " 19.882968803565305,\n", " 19.96504970860473,\n", " 19.943577305450805,\n", " 19.9961141583819,\n", " 19.903303051079877,\n", " 19.942130613644157,\n", " 19.984825162838533,\n", " 19.893015083990402,\n", " 19.99678950977031,\n", " 19.952274597188893,\n", " 19.982656839218375,\n", " 19.960893040795337,\n", " 19.932680836475832,\n", " 19.976431264998286,\n", " 19.914924580047998,\n", " 19.903114501199862,\n", " 19.97826019883442,\n", " 19.892970517655126,\n", " 19.8578745286253,\n", " 19.915865615358246,\n", " 19.932972231744944,\n", " 19.91037367158039,\n", " 19.910239972574562,\n", " 19.978021940349674,\n", " 19.903733287624274,\n", " 19.950642783681868,\n", " 19.91476688378471,\n", " 19.938364758313337,\n", " 20.011683236201577,\n", " 19.898198491600958,\n", " 19.9453462461433,\n", " 19.94348131642098,\n", " 19.89957147754542,\n", " 19.997293452176894,\n", " 19.85990743914981,\n", " 19.932871100445663,\n", " 19.945392526568394,\n", " 20.044295509084677,\n", " 19.95911210147412,\n", " 19.98763798423037,\n", " 19.98429379499486,\n", " 19.96589132670552,\n", " 19.91990058279054,\n", " 19.933801851217,\n", " 19.924298937264314,\n", " 19.983123071648954,\n", " 19.88052622557422,\n", " 19.93243057936236,\n", " 19.92462632841961,\n", " 19.896696948920127,\n", " 19.965977031196438,\n", " 19.96065649640041,\n", " 19.92657696263284,\n", " 19.91495029139527,\n", " 19.955068563592732,\n", " 19.944249228659583,\n", " 19.946624957147755,\n", " 19.937380870757625,\n", " 19.91464346931779,\n", " 19.86518169352074,\n", " 19.946779225231403,\n", " 19.9210113129928,\n", " 19.92287624271512,\n", " 19.96305450805622,\n", " 19.9548405896469,\n", " 19.888762427151185,\n", " 19.87162667123757,\n", " 19.956432979088106,\n", " 19.963277339732603,\n", " 19.9831830647926,\n", " 19.978285910181693,\n", " 20.026810078848133,\n", " 20.01243743572163,\n", " 19.911887212889958,\n", " 19.886528968117933,\n", " 19.919127528282484,\n", " 19.962351731230715,\n", " 19.907058621871787,\n", " 19.893872128899556,\n", " 19.989628042509427,\n", " 19.971708947548855,\n", " 19.955581076448407,\n", " 19.914600617072335,\n", " 19.913140212547138,\n", " 19.939182379156666,\n", " 19.97703633870415,\n", " 19.88461775797052,\n", " 19.98248885841618,\n", " 19.948435035995885,\n", " 19.92167123757285,\n", " 19.962404868015085,\n", " 19.95957319163524,\n", " 19.941849502913954,\n", " 19.948232773397326,\n", " 19.869864586904352,\n", " 19.947065478231057,\n", " 19.93484916009599,\n", " 19.989739458347618,\n", " 19.97269283510456,\n", " 19.961491258141926,\n", " 19.924931436407267,\n", " 19.934307507713402,\n", " 19.962817963661298,\n", " 19.960887898525883,\n", " 19.912224888584163,\n", " 20.00857216318135,\n", " 19.980303393897838,\n", " 19.9368443606445,\n", " 19.923105930750772,\n", " 19.938464175522796,\n", " 19.888659581762084,\n", " 19.956945491943777,\n", " 19.968801851217002,\n", " 19.964600617072335,\n", " 19.9885018854988,\n", " 19.98092389441207,\n", " 20.018606444977717,\n", " 19.91606273568735,\n", " 19.93296366129585,\n", " 19.965803908124787,\n", " 19.911602673980116,\n", " 20.029718889269798,\n", " 19.964629756599244,\n", " 19.916628385327392,\n", " 19.894955433664723,\n", " 19.931206719232087,\n", " 19.910601645526224,\n", " 19.954893726431266,\n", " 19.969566335275967,\n", " 19.94747000342818,\n", " 19.946688378471034,\n", " 19.970997600274252,\n", " 19.911594103531023,\n", " 19.946631813507025,\n", " 19.939177236887215,\n", " 19.926530682207748,\n", " 19.969175522797393,\n", " 19.87517312307165,\n", " 19.90668837847103,\n", " 19.982451148440177,\n", " 19.966222146040455,\n", " 19.953153925265685,\n", " 19.91522111758656,\n", " 19.98894926294138,\n", " 20.047104902296883,\n", " 19.90034281796366,\n", " 19.977194034967432,\n", " 19.984370929036682,\n", " 19.92037538567021,\n", " 19.92667980802194,\n", " 19.918104216660954,\n", " 19.885560507370585,\n", " 19.883232773397324,\n", " 19.978625299965717,\n", " 19.98153753856702,\n", " 19.976547823105932,\n", " 19.87164038395612,\n", " 19.936525539938295,\n", " 19.96585018854988,\n", " 19.96117586561536,\n", " 19.937398011655812,\n", " 19.95456633527597,\n", " 19.90665923894412,\n", " 19.90365272540281,\n", " 19.953666438121356,\n", " 20.005116558107645,\n", " 19.962003770997605,\n", " 19.866110730202262,\n", " 19.965017140898183,\n", " 20.019472060335964,\n", " 19.954302365443947,\n", " 19.950594789166953,\n", " 19.90149640041138,\n", " 19.937826534110386,\n", " 19.968244772026054,\n", " 19.948657867672267,\n", " 19.979773740143983,\n", " 19.928393897840248,\n", " 19.91068735001714,\n", " 19.955418237915666,\n", " 19.931148440178266,\n", " 19.984463489886867,\n", " 19.9969849160096,\n", " 19.897404868015084,\n", " 19.91129585190264,\n", " 19.988839561193007,\n", " 20.00071991772369,\n", " 19.955325677065478,\n", " 19.914002399725746,\n", " 19.92397326019883,\n", " 19.920833047651698,\n", " 19.956530682207745,\n", " 19.98407953376757,\n", " 19.934984573191638,\n", " 19.93730716489544,\n", " 19.939084676037023,\n", " 19.909034967432294,\n", " 19.920325677065478,\n", " 20.003488172780255,\n", " 19.9609924580048,\n", " 19.916393555022285,\n", " 19.90556736372986,\n", " 19.9378745286253,\n", " 19.887745971888926,\n", " 19.930418237915667,\n", " 19.965154268083648,\n", " 19.923651011312995,\n", " 19.862605416523827,\n", " 19.921470689064105,\n", " 19.979873157353442,\n", " 19.91373328762427,\n", " 19.949610901611244,\n", " 19.994228659581765,\n", " 19.940065135413096,\n", " 19.905707919094958,\n", " 19.99494857730545,\n", " 19.90177236887213,\n", " 19.912355159410353,\n", " 20.011261570106274,\n", " 19.964129242372298,\n", " 19.99035481659239,\n", " 19.9352434007542,\n", " 19.947925951319853,\n", " 19.942848817278026,\n", " 19.99384641755228,\n", " 20.044341789509772,\n", " 19.950591360987314,\n", " 19.94618443606445,\n", " 19.980903325334246,\n", " 19.941755227973946,\n", " 19.960639355502227,\n", " 19.97620671923209,\n", " 19.94579019540624,\n", " 19.95156839218375,\n", " 19.952482002056907,\n", " 19.986218717860815,\n", " 19.963681864929722,\n", " 19.91952176894069,\n", " 19.92303565306822,\n", " 19.992149468632157,\n", " 19.97158896126157,\n", " 19.923272197463145,\n", " 19.938052793966406,\n", " 19.96507884813164,\n", " 19.924873157353446,\n", " 20.018589304079534,\n", " 19.927757970517654,\n", " 19.902463147068907,\n", " 19.89091018169352,\n", " 19.93142440863901,\n", " 19.949094960575934,\n", " 19.963186492972234,\n", " 19.953364758313334,\n", " 19.949826876928352,\n", " 20.0051028453891,\n", " 19.899513198491604,\n", " 19.92670037709976,\n", " 19.98525025711347,\n", " 19.95669866300994,\n", " 19.937754542338016,\n", " 19.927461432979086,\n", " 19.91905553651011,\n", " 19.982811107302023,\n", " 19.960769626328418,\n", " 19.961708947548853,\n", " 19.915281110730202,\n", " 19.953640726774083,\n", " 19.901259856016456,\n", " 20.017437435721632,\n", " 19.92081247857388,\n", " 19.995181693520742,\n", " 19.986971203291052,\n", " 19.934688035653068,\n", " 19.856453548165923,\n", " 19.91229688035653,\n", " 19.9882773397326,\n", " 19.934052108330476,\n", " 19.90710490229688,\n", " 19.912142612272884,\n", " 19.967351731230718,\n", " 19.97516283853274,\n", " 19.916127871100446,\n", " 19.950483373328762,\n", " 19.90882756256428,\n", " 20.004804593760714,\n", " 19.944658896126157,\n", " 19.966518683579018,\n", " 19.894497771683238,\n", " 19.970762769969145,\n", " 19.9622660267398,\n", " 19.894496057593418,\n", " 19.898615015426806,\n", " 19.90824648611587,\n", " 19.923568735001712,\n", " 19.940382242029482,\n", " 19.967684264655468,\n", " 19.897127185464516,\n", " 19.980831333561877,\n", " 20.018417895097702,\n", " 19.96715632499143,\n", " 19.878039081247856,\n", " 19.99444292080905,\n", " 19.910401097017484,\n", " 19.887080905039426,\n", " 19.984365786767228,\n", " 19.900217689406926,\n", " 19.921779225231404,\n", " 19.95019540623929,\n", " 20.00072848817278,\n", " 19.928409324648612,\n", " 19.95997086047309,\n", " 19.951906067877957,\n", " 19.97960404525197,\n", " 19.93645697634556,\n", " 19.941573534453205,\n", " 19.904405210833044,\n", " 19.9314141241001,\n", " 20.000529653753855,\n", " 19.985044566335276,\n", " 19.9307867672266,\n", " 19.961222146040452,\n", " 19.98756256427837,\n", " 19.91428179636613,\n", " 19.899850874185805,\n", " 19.905167980802194,\n", " 19.967749400068566,\n", " 19.950589646897498,\n", " 20.011859787452863,\n", " 20.007517997943093,\n", " 19.930934178950977,\n", " 19.96663009941721,\n", " 19.92043709290367,\n", " 19.98895783339047,\n", " 19.897319163524166,\n", " 19.960829619472058,\n", " 19.980493657867672,\n", " 19.96472574562907,\n", " 19.918597874528626,\n", " 19.91189406924923,\n", " 19.88340246828934,\n", " 19.94197291738087,\n", " 19.96752485430237,\n", " 19.93011141583819,\n", " 20.00856359273226,\n", " 19.927358587589993,\n", " 19.88627528282482,\n", " 19.924790881042167,\n", " 19.946600959890297,\n", " 19.897567706547825,\n", " 20.01786595817621,\n", " 19.93899725745629,\n", " 19.937262598560164,\n", " 19.91206205005142,\n", " 19.91387727116901,\n", " 19.913680150839905,\n", " 19.948397326019883,\n", " 19.95016969489201,\n", " 19.89975831333562,\n", " 19.954761741515256,\n", " 19.907339732601987,\n", " 19.89760198834419,\n", " 19.933711004456633,\n", " 19.880805622214602,\n", " 19.953373328762428,\n", " 19.952464861158724,\n", " 20.021136441549537,\n", " 20.009621186150156,\n", " 19.893882413438465,\n", " 20.016004456633528,\n", " 19.909693177922524,\n", " 19.979650325677067,\n", " 19.926643812135755,\n", " 19.969885155982173,\n", " 19.928436750085705,\n", " 19.998770997600275,\n", " 19.93911895783339,\n", " 19.900118272197464,\n", " 19.95949777168324,\n", " 19.884881727802536,\n", " 19.927482002056905,\n", " 19.926069592046623,\n", " 20.010188549880013,\n", " 19.9692509427494,\n", " 19.91386527254028,\n", " 19.92583990401097,\n", " 19.946784367500857,\n", " 19.893844703462463,\n", " 19.93159753171066,\n", " 19.889180665066853,\n", " 19.979261227288312,\n", " 19.935481659238945,\n", " 19.967908810421665,\n", " 19.94424237230031,\n", " 19.924379499485774,\n", " ...]" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "expectation_x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }