Р 1. Рассмотрим функцию $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$. Докажите, что размер максимального трудного множества случайной функции f не более $\mathcal{O}(\log n)$ с высокой вероятностью (хотя бы константной).

Р 2. Пусть в матрице функции $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ все строки различны. Докажите, что $C(f) > \log n$.

Определение 1

Пусть $f\colon X\times Y\to Z$ и μ — распределение на $X\times Y$. Заметим, что для любого коммуникационного протокола Π для функции f распределение μ индуцирует распределение на листьях данного протокола естественным образом. Внешней информационной стоимостью (или внешним информационным разглашением) протокола Π по распределению μ будем называть величину:

$$IC_u^{\text{ext}}(\Pi) = I(\Pi(X,Y) : X,Y).$$

Внутреннее информационное разглашение протокола Π на распределении μ :

$$IC_{u}^{int}(\Pi) = I(\Pi(X,Y) : X \mid Y) + I(\Pi(X,Y) : Y \mid X).$$

Также определим внешнюю информационную сложность самой функции $\mathrm{IC}^{\mathrm{ext}}_{\mu}(f) = \min_{\Pi} \mathrm{IC}^{\mathrm{ext}}_{\mu}(\Pi).$

Р 3. Докажите, что для любой булевой функции f и любого распределения μ существует такой протокол Π для KW_f , что $\mathrm{IC}^{\mathrm{int}}_{\mu}(\Pi) \leq 2\log n$.

Подсказка: попробуйте рассмотреть прокол, где Алиса пересылает Бобу биты входа до тех пор, пока они не найдут бит различия.

Определение 2

Пусть $F:\{0,1\}^* \to \{0,1\}^*$ — вычислимая функция. Сложность описания x относительно F определим следующим образом: $K_F(x) := \min\{|p| \mid F(p) = x\}$. Будем говорить, что способ описания F не хуже G, обозначим $F \prec G$, если существует такая константа c_G , что для $\forall x \in \{0,1\}^*$, $K_F(x) \leq K_G(x) + c_G$.

Оптимальным будем называть такой способ описания U, который не хуже любого другого. **Колмогоровской сложностью** x будем называть значение $K(x) := K_{II}(x)$.

- **Р 4.** Колмогоровская сложность обладает следующими свойствами.
 - а) Существует c такая, что для всех x: $K(x) \le |x| + c$.
 - b) Существует c такая, что для всех x: $K(xx) \le |x| + c$.
 - с) Для любых оптимальных F_1 и F_2 выполняется $F_1 \prec F_2$ и $F_2 \prec F_1$, т.е. существует такая константа c, что $|K_{F_1}(x) K_{F_2}(x)| \le c$.
- **Р 5.** Докажите, что ряд $\sum_{x \in \{0,1\}^*} 2^{-K(x)}$ расходится.

Р 5.1. Приведите пример такой матрицы M_f , что $L(f) > \chi(f) = \chi_0(f) + \chi_1(f)$.

Р 5.2.] Докажите, что

$$\log \chi(f) \le C(f) \le \mathcal{O}(\log \chi_0(f) \log \chi_1(f)),$$

где $\chi_0(f)$, $\chi_1(f)$ — количество нулевых (единичных) прямоугольников в минимальном разбиении M_f .

P 5.9. Докажите, что $C(\operatorname{CIS}_G) = \mathcal{O}(\log^2 n)$. Где x интерпретируется как характеристическая функция некоторой клики в графе G, а y — как характеристическая функция некоторого независимого множества в графе G. $\operatorname{CIS}_G(x,y) = 1$, если клика и независимое множество имеют общую вершину, обе стороны знают граф G.

Р 6.7. Докажите, что $R_{\frac{1}{10}}^{\text{pub}}(\text{DISJ}_n^{\leq k}) = \mathcal{O}(2^{2k})$, где в функции $\text{DISJ}_n^{\leq k}$ множества игроков имеют размеры не больше k, $\text{DISJ}_n^{\leq k}(x,y) = 1$, если множества не пересекаются.

