
A N U P R A O A N D A M I R Y E H U D AYO F F

C O M M U N I C AT I O N
C O M P L E X I T Y

dedicated to our families

Contents

Preface 9

Conventions and Preliminaries 11

Introduction 17

I Communication 23

1 Deterministic Protocols 25

Rectangles 27

Balancing Protocols 29

From Rectangles to Protocols 30

Lower Bounds 32

Rectangle Covers 42

Direct-sums in Communication Complexity 44

2 Rank 51

Communication Complexity and Rank 52

Properties of Rank 53

Lower bounds based on rank 54

Non-Negative Rank 56

Better Upper Bounds using Rank 58

6

3 Randomized Protocols 65

Some Protocols 65

Randomized Communication Complexity 69

Public Coins vs Private Coins 72

Nearly Monochromatic Rectangles 73

4 Numbers On Foreheads 77

Some Protocols 77

Defining Protocols in the Number-on-Forehead model 81

Cylinder Intersections 81

Lower Bounds from Ramsey Theory 83

5 Discrepancy 89

Definitions 89

Discrepancy and Communication 90

Convexity in Combinatorics 91

Lower Bounds for Inner-Product 93

Disjointness and Discrepancy 96

Concentration of Measure 103

6 Information 117

Entropy 117

Chain Rule and Conditional Entropy 121

Divergence and Mutual Information 129

Lower Bound for Indexing 131

The Power of Interaction 136

Randomized Complexity of Disjointness 140

7 Compressing Communication 147

Simulations 149

7

Compressing Protocols with No Private Randomness 150

Correlated Sampling 152

Compressing a Single Round 154

Internal Compression of Protocols 163

Direct Sums in Randomized Communication Complexity 166

Other Methods to Compress Protocols 168

8 Lifting 171

Decision Trees 171

The Lifting Theorem 172

Separating Rank and Communication 178

II Applications 183

9 Circuits and Proofs 185

Boolean Circuits 185

Karchmer-Wigderson Games 186

Monotone Circuit-Depth Lower Bounds 188

Monotone Circuit-Depth Hierarchy 190

Boolean Formulas 191

Boolean Depth Conjecture 194

Proof Systems 195

Resolution Refutations 195

Cutting Planes 199

10 Memory Size 207

Lower Bounds for Streaming Algorithms 210

Lower Bounds for Branching Programs 215

8

11 Data Structures 221

Dictionaries 221

Ordered Sets 222

Lower Bounds on Static Data Structures 228

Lower bounds on Dynamic Data Structures 234

Graph Connectivity 239

12 Extension Complexity of Polytopes 247

Transformations of Polytopes 249

Algorithms from Polytopes 253

Extension Complexity 256

Slack Matrices 262

Lower Bounds on Extension Complexity 266

13 Distributed Computing 277

Some Protocols 277

Lower Bounds 279

Computing the Girth 281

List of Figures 283

Bibliography 289

Index 299

1 Yao, 1979

Preface

Communication is an essential part of our lives, and plays
a central role in our technology. Communication complexity is a
mathematical theory that addresses a basic question:

If two or more parties want to compute something about the informa-
tion they jointly possess, how long does their conversation need to
be?

It provides a systematic framework for measuring, discussing, and
understanding communication.

The fundamental nature of communication complexity leads to
many deep connections with the study of computation in general. This
is not surprising—it is hard to imagine a computing machine that
does not include communicating components. Moreover, the costs
associated with communication are often the most significant costs
involved in carrying out the computation. For example, in the human
brain, most of the mass consists of white matter rather than gray matter.
It is the white matter that facilitates communication between different
regions of the brain.

In the years following the basic definitions by Yao1, communi-
cation complexity has become a standard tool for identifying the
limitations of computation. The theory is general enough that it cap-
tures something important about many computational processes, yet
simple and elegant enough that beautiful ideas from a wide range of
mathematical disciplines can be used to understand it. In this book,
we guide the reader through the theory along a path that includes
many exquisite highlights of mathematics—including from geometry,
probability theory, matrix analysis, algebra, and combinatorics. We
shall apply the theory to discover basic truths about boolean circuits,
proofs, data structures, linear programs, distributed systems, and
streaming algorithms. Communication complexity is simultaneously
beautiful and widely applicable.

The main protagonist of our story is the disjointness problem. Here
Alice and Bob each have access to their own set, and want to figure
out whether or not these sets are disjoint. For example, imagine

10

Like this.

that Alice and Bob want to know if there is a movie that they would
both enjoy. Alice knows the collection of movies that she would like
to see, and Bob knows the movies he would like to see. How long
does their conversation need to be? Set disjointness appears in many
applications of communication complexity, and it helps to illustrate
many techniques applicable to understanding communication.

Our exposition is in two parts. The first part, entitled Communi-
cation, focuses on communication complexity per se. Here commu-
nication protocols are rigorously defined and the foundations of
the theory are built. The second part, entitled Applications, uses the
theory to derive conclusions about a variety of different models of
computation. In the first part, disjointness serves as a litmus test to
see how the ideas we develop are progressing. In the second part, re-
sults about disjointness help to determine the limits of other models
of computation.

We intend to present the key ideas in the field in the most elegant
form possible. This is a textbook of basic concepts, and not a survey
of the latest research results. The reader is encouraged to discover
the wider body of work that forms the theory of communication
complexity by following the many references that are cited in the
book.

Each page of the book has a large margin, where one can find
references to the relevant literature, diagrams, and additional expla-
nations of arguments in the main text.

Acknowledgements

Thanks to Noga Alon, Anil Ananthaswamy, Arkadev Chattopad-
hyay, Morgan Dixon, Yaniv Elchayani, Yuval Filmus, Abe Friesen,
Mika Göös, Jeff Heer, Pavel Hrubeš, Weston Karnes, Guy Kindler,
Vincent Liew, Venkatesh Medabalimi, Or Meir, Shay Moran, Aram
Odeh, Rotem Oshman, Sebastian Pokutta, Kayur Patel, Sivaramakr-
ishnan Natarajan Ramamoorthy, Cyrus Rashtchian, Thomas Rothvoß,
Makrand Sinha, and Avi Wigderson for many contributions to this
book.

We thank the National Science Foundation, the Israel Science
Foundation, the Simons Institute for the Theory of Computing, the
Technion-IIT, and the University of Washington for their support.

bit = binary digit

D is the domain and R is the range of
the function

Conventions and Preliminaries

In this chapter, we set up notation and recall some standard facts that
are used throughout the book.

Sets, Numbers, and Functions

[a, b] denotes the set of real numbers x in the interval a ≤ x ≤ b. For a
positive integer n, we use [n] to denote the set {1, 2, . . . , n}. Following
the convention in computer science, we often refer to the numbers
0 and 1 as bits. All logarithms in this book are computed in base 2,
unless otherwise specified.

There is a natural identification between the subsets of [n] and
binary strings {0, 1}n. Every set X ⊆ [n] corresponds to its indicator
vector x ∈ {0, 1}n, defined by xi = 1 if and only if i ∈ X for all i ∈ [n].

Given a vector x = (x1, x2, . . . , xn), we write x≤i to denote
(x1, . . . , xi). We define x<i similarly. We write xS to denote the projec-
tion of x to the coordinates specified by the set S ⊆ [n].

A function f : D → R is an object that maps every element x in the
set D to a unique element f (x) of the set R. A boolean function is a
function that evaluates to a bit, namely R = {0, 1}.

Given two functions f , g that map natural numbers to real num-
bers, we write f (n) ≤ O(g(n)) if there are numbers n0, c > 0, such
that if n > n0 then f (n) ≤ cg(n). We write g(n) ≥ Ω(f (n)) when
f (n) ≤ O(g(n)). We write f (n) ≤ o(g(n)), if limn→∞

f (n)
g(n) = 0.

Graphs

A graph is a pair G = (V, E), where V is a set and E is a collection
of subsets of V of size 2. The elements of V are called vertices and
the elements of E are called edges. The size of the graph G is the
number of vertices in it. A clique C ⊆ V in the graph is a subset of
the vertices such that every subset of C of size 2 is an edge of the
graph. An independent set I ⊆ V in the graph is a set that does
not contain any edges. A path in the graph is a sequence of vertices
v1, . . . , vn such that {vi, vi+1} is an edge for each i. A cycle is a path

12

This notation is similar to how f (x) is
often used to refer to the function f ,
when x is a variable, and a fixed value
when x is fixed. This notation makes
many equations more succinct. We shall
encounter complicated scenarios where
there are several random variables with
a complicated conditioning structure.
In those cases, it is helpful to use as
succinct a notation as possible.

whose first and last vertices are the same. A cycle is called simple if
all of its edges are distinct. A graph is said to be connected if there is
a path between every two distinct vertices in the graph. A graph is
called a tree if it is connected and has no simple cycles. The degree of
a vertex in a graph is the number of edges it is contained in. A leaf
in a tree is a vertex of degree one. Every tree has at least one leaf. It
follows by induction on n that every tree of size n has exactly n− 1
edges.

Probability

Throughout this book, we consider only finite probability spaces, or
uniform distributions on intervals of real numbers.

Let p be a probability distribution on a finite set Ω. That is, p is
a function p : Ω → [0, 1] and ∑a∈Ω p(a) = 1. Let A be a random
variable chosen according to p. That is, for each a ∈ Ω we have
Pr[A = a] = Prp[A = a] = p(a). We use the notation p(a) to denote
both the distribution of the variable A, and the number Pr[A = a].
The meaning is clear from the context. For example, if Ω = {0, 1}2

and A is uniformly distributed in Ω then p(a) denotes the uniform
distribution on Ω. However if a = (0, 0) then p(a) denotes the
number 1/4. Random variables are denoted by capital letters (like
A) and values they attain are denoted by lower-case letters (like
a). An event E is a subset of Ω. The probability of the event E is
Pr[E] = ∑a∈E p(a). Events are denoted by calligraphic letters.

Given a distribution on 4-tuples p(a, b, c, d), we write p(a, b, c)
to denote the marginal distribution on the variables a, b, c (or the
corresponding probability). We often write p(ab) instead of p(a, b),
for conciseness of notation. We also write p(a|b) to denote either the
distribution of A conditioned on the event B = b, or the number
Pr[A = a|B = b]. In the example above, if B = A1 + A2, and b = 1,
then p(a|b) denotes the uniform distribution on {(0, 1), (1, 0)} when a
is a free variable. When a = (0, 1) then p(a|b) = 1/2.

Given g : Ω → R, we write Ep(a) [g(a)] to denote the expected
value of g(a) with respect to p. So, Ep(a) [g(a)] = ∑a∈Ω p(a)g(a).

The statistical distance, also known as total variational distance,
between two probability distributions p(a) and q(a) is defined to be

|p− q| = 1
2 ∑

a
|p(a)− q(a)| = max

E
p(E)− q(E), The proof of the second equality is a

good exercise.

where the maximum is taken over all events E . For example, if p is
uniform on Ω = {0, 1}2 and q is uniform on {(0, 1), (1, 0)} ⊂ Ω then
when a is a free variable |p(a)− q(a)| denotes the statistical distance
between the distributions, which is 1/2, and when a = (0, 0) we have

13

The binomial coefficient (n
k) is the number

of subsets of [n] of size k.

|p(a)− q(a)| = 1/4.

We sometimes write p(x)
ε≈ q(x) to indicate that |p(x)− q(x)| ≤ ε.

Suppose A, B are two random variables in a probability space p. For

ease of notation, we write p(a|b) ε≈ p(a) for average b to mean that

E
p(b)

[|p(a|b)− p(a)|] ≤ ε.

Some Useful Inequalities

Markov

Suppose X is a non-negative random variable, and γ > 0 is a number.
Markov’s inequality bounds the probability that X exceeds γ in terms
of the expected value of X:

E [X] > p(X > γ) · γ ⇒ p(X > γ) <
E [X]

γ
.

Concentration

A sum of independently distributed bits concentrates around its
expectation. Namely, the value of the sum is close to its expected
value with high probability. The Chernoff-Hoeffding bound controls
this concentration. Suppose X1, . . . , Xn are independent identically
distributed bits. Let µ = E [∑n

i=1 Xi]. The bound says that for any
0 < δ < 1,

Pr

[∣∣∣∣∣ n

∑
i=1

Xi − µ

∣∣∣∣∣ > δµ

]
≤ e−δ2µ/3.

When δ ≥ 1, the following bound applies

Pr

[
n

∑
i=1

Xi > (1 + δ)µ

]
≤ e−δµ/3.

These bounds give estimates on binomial coefficients. The idea is
to consider X1, . . . , Xn that are uniformly distributed and indepen-
dent random bits. For a number 0 ≤ a ≤ n/2, we have

∑
k∈[n]:|k−n/2|>a

(
n
k

)
≤ 2n · e− 2a2

3n .

The following upper bounds on binomial coefficients is also useful:
for all k ∈ [n], (

n
k

)
≤ 2n+1
√

πn
.

14

0 0.5

0.6

0.8

1

x

e−x

1− x

2−2x

One can often prove that a function
is convex by showing that its second
derivative is non-negative on the
domain.

1 2 3 4
x

x log x√
x

Approximations

We will often need to approximate linear functions with exponentials.
The following inequalities are useful: e−x ≥ 1− x for all real x, and
1− x ≥ 2−2x when 0 ≤ x ≤ 1/2.

Cauchy-Schwartz Inequality

The Cauchy-Schwartz inequality says that for two vectors x, y ∈ Rn,
their inner product is at most the products of their norms.∣∣∣∣∣ n

∑
i=1

xiyi

∣∣∣∣∣ = |〈x, y〉| ≤ ‖x‖ · ‖y‖ =
√

n

∑
i=1

x2
i ·
√

n

∑
i=1

y2
i .

Convexity

A function f : [a, b]→ R is said to be convex if

f (x) + f (y)
2

≥ f
(

x + y
2

)
,

for all x, y in the domain. It is said to be concave if

f (x) + f (y)
2

≤ f
(

x + y
2

)
.

Some convex functions: x2, ex, x log x. Some concave functions:
log x,

√
x. Note that f is convex if and only if − f is concave.

Jensen’s inequality says if a function f is convex, then

E [f (X)] ≥ f (E [X]),

for any random variable X ∈ [a, b]. Similarly, if f is concave, then

E [f (X)] ≤ f (E [X]).

In this book, we often say that an inequality follows by convexity
when we mean that it can be derived by applying Jensen’s inequality
to a convex or concave function.

A consequence of Jensen’s inequality is the Arithmetic-Mean
Geometric-Mean inequality:

∑n
i=1 ai

n
≥
(

n

∏
i=1

ai

)1/n

,

which can be proved using the concavity of the log function:

log
(

∑n
i=1 ai

n

)
≥ ∑n

i=1 log ai

n
= log

(
n

∏
i=1

a1/n
i

)
.

15

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

/ 1 2 3 4

0 0 0 0 0
1 1 3 2 4
2 2 1 4 3
3 3 4 1 2
4 4 2 3 1

Figure 1: The addition, multiplication
and division tables of F5.

Basic Facts from Algebra

A few places in this book require knowledge about polynomials and
finite fields. We cannot give a comprehensive introduction to these
topics here, but we state some basic facts that are relevant to this
book.

A field F is a set containing 0 and 1 that is endowed with the
operations of addition, multiplication, subtraction and division. If
a, b ∈ F then a + b, ab, a− b must also be elements of F, and a/b is an
element of F as long as b 6= 0. We require that a− a = 0 for all a ∈ F,
and a/a = 1 for all a 6= 0. Several other requirements should be met,
like commutativity and distributivity.

The simplest example of a field is the field of rational numbers. In
applications, however, it is often useful to consider fields that have
a finite number of elements. The simplest example of a finite field
is a prime field. For a prime number p, there is a unique field Fp

containing the p elements 0, 1, 2, . . . , p − 1. These numbers can be
added, subtracted and multiplied modulo p to get the corresponding
field operations. One can define division as well, using the property
that p is prime.

Vector Spaces

Given a field F, the set Fn can be viewed as a vector space over F.
The elements of Fn are called vectors. Addition of vectors is defined
coordinate-wise, so (v + w)i = vi + wi, for all i, and multiplication by
a scalar c ∈ F is defined as c · (v1, v2, . . . , vn) = (cv1, cv2, . . . , cvn), for
c ∈ F.

Linear combinations of vectors are taken using scalar coefficients
from the field F. The usual notions of dimension, linear dependence
and linear independence make sense here. A subspace V of Fn is
a set that is closed under additions and multiplications by scalars.
Given a subspace V ⊆ F, we define its dual subspace

V⊥ =

{
w ∈ Fn :

n

∑
i=1

viwi = 0 for all v ∈ V

}
.

The following fact is useful: If V ⊆ Fn is a subspace, the sum of the
dimensions of V and V⊥ is always exactly n.

Polynomials

A polynomial over the variables X1, X2, . . . , Xn is an expression of the
form

aX1X2X2
3 + bX3X3

7X5 − cX1X4
4 .

16

It is a linear combination of monomials, where the coefficients a, b, c
are elements of a field. Every polynomial corresponds to a function
that can be computed by evaluation, and every function f : Fn → F

can be described by a polynomial.
A polynomial is called multilinear if every monomial is a product

of distinct variables. For example: the polynomial

X1X2X3 + 3X3X7X5 − 2X1X4.

is multilinear, and the polynomial X2
1 is not. A useful fact is that

every function f : {0, 1}n → F can be uniquely represented as
multilinear polynomial of n variables with coefficients from F.

x1 C

x2

x3C

x3C

x5

x4

C C

C

f

C CC

x6CCC

x7C

x9

C

C

C

C

C

x10

C

C

x11

x12

CC C

Figure 2: Any chip can be broken into
two pieces while cutting few wires.

2 Thompson, 1979

Introduction

The concept of a conversation is universal. One of the goals
of this book is to develop methods to determine the most efficient
conversations for specific tasks. We start by exploring some examples
that illustrate how such conversations arise, and why they are worthy
of study.

We begin the story with one of the earliest applications of com-
munication complexity: proving lower bounds on the area required
for digital chips2. A chip design specifies how to compute a function
f (x1, . . . , xn) by laying out the components of the chip on a flat grid,
as in Figure 2. Each component either stores one of the inputs to
the function, or performs some computation on the values coming
from adjacent components. It is vital to minimize the area used in the
design, because this affects the cost, power consumption, reliability,
and speed of the chip.

Since there are n inputs, we need area at least n to compute func-
tions that depend on all of their inputs. Can we always find chip
designs with area proportional to n? The framework of communi-
cation complexity can be used to show that many functions require
area proportional to n2, no matter what chip design is used!

The crucial insight is that the layout of the chip yields a conver-
sation whose outcome is the value of f . If a chip design has area A,
one can argue that there must be a way to cut the chip into two parts,
each containing a similar number of the inputs, so that only ≈

√
A

wires are cut. Imagine that each part of the chip represents a person.
The chip design describes how f can be computed by two people,
each of whom knows roughly half of the input to f , with a conversa-
tion whose length is proportional to the number of wires that were
cut. So, if we can show that computing f requires a conversation of
length t, we can conclude that the area A must be at least ≈ t2, no
matter how the components of the chip are laid out. In this book,
we shall develop a wide variety of tools for proving that functions
require conversations whose length is proportional to n. The area of
any chip for such a function must be proportional to n2.

18

3 Hartmanis and Stearns, 1965

Strictly speaking, the simulation
increases by a factor of max{n, t},
where n is the length of the input.
However, for any computation that
depends on the whole input, this
maximum is t.

4 Hennie, 1965

Figure 3 looks very similar to the
famous Sierpinski gasket, which is a
well known fractal in the plane. The
gasket’s area is zero and its Hausdorff
dimension is ≈ 1.585. The properties of
disjointness we establish this text imply
analogous statements for the Sierpinski
gasket.

A second example comes from a classical result about Turing ma-
chines. Turing machines are widely regarded as a universal model of
computation—the extended Church-Turing thesis says that anything
that is efficiently computable is efficiently computable by a Turing
machine. A Turing machine can be thought of as a program written
for a computer that has access to one or more tapes. Each tape has
a head that points at a location on the tape. In each step of computa-
tion, the machine can read or write a single symbol at the location
corresponding to a head, or move the head to an adjacent location.
A Turing machine with more tapes is more powerful than a Turing
machine with fewer tapes, but how much more powerful?

A classical result3 shows that one can simulate a Turing machine
that has access to 2 tapes with a Turing machine that has access to
just 1 tape. However, the simulation may increase the number of
steps of the computation by a factor of t, where t is the running-time
of the machine. One can use communication complexity to show that
this loss is unavoidable4.

To see why this is the case, we use the communication complexity
of the disjointness function. Imagine that Alice knows a set X ⊆ [n],
and Bob knows a set Y ⊆ [n]. Their common goal is to compute
whether or not the sets are disjoint—namely whether or not there is
an element that is in both sets (see Figure 3). Later in the book, we
prove that Alice and Bob must communicate Ω(n) bits in order to
achieve this goal.

Now, a Turing machine with access to two tapes can compute dis-
jointness in O(n) steps. If the sets are represented by their indicator
vectors x, y ∈ {0, 1}n, then the machine can copy y to the second tape,
and scan both x and y, searching for an index i with xi = 1 = yi. All
of these operations can be carried out in O(n) steps.

However, one can use communication complexity to prove that a
Turing machine with 1 tape must take at least Ω(n2) steps to com-
pute disjointness. The idea is that a machine that computes disjoint-
ness in T steps can be used by Alice and Bob to compute disjointness
using ≈ T

n bits of communication. Intuitively, Alice and Bob can
write down the input (x, y) on the single tape of the machine and
try to simulate the execution of the machine. Neither of them knows
the contents of the whole tape, but they can still simulate the execu-
tion of the machine with a small amount of communication. Every
time the machine transitions from Alice’s part of the tape to Bob’s
part, she sends him a short message to indicate the line of code that
should be executed next. Bob then continues the execution. One can
show that this simulation can be carried out in such a way that each
message sent between Alice and Bob corresponds to Ω(n) steps of
the Turing machine. So, if we start with a 1-tape machine that runs

19

Figure 3: Disjointness when n = 8.
Each row corresponds to a set X ⊆ [8],
and each column corresponds to a set
Y ⊆ [8]. The X, Y entry is black if and
only if X and Y are disjoint.

The terms deterministic and randomized
will be formally defined later in the
book.

See Chapter 3.

in time� n2, we end up with a protocol of length� n bits that
computes disjointness. This is impossible.

The two examples we have discussed above give some feel for
communication problems and why we are interested in studying
them. Next, we continue this informal introduction with several other
interesting examples of communication problems and protocols.

Some Protocols

A communication protocol specifies a way for a set of people to have
a conversation. Each person has access to a different source of infor-
mation, which is modeled as an input to the protocol. The protocol
itself is assumed to be known to all the people that are involved in
executing it. Their goal is to learn some feature of all the information
that they collectively know.

Equality Suppose Alice and Bob are given two n-bit strings. Alice is
given x and Bob is given y, and they want to know if x = y. There
is a trivial solution: Alice can send her input x to Bob, and Bob
can let her know if x = y. This is a deterministic protocol that takes
n + 1 bits of communication. Interestingly, we shall prove that no
deterministic protocol is more efficient. On the other hand, for
every number k, there is a randomized protocol that uses only k + 1
bits of communication and errs with probability at most 2−k—the
parties can use randomness to hash their inputs and compare the
hashes. More on this in Chapter 3.

20

For example, the median of (1, 2, 3) and
(2, 3, 4) is 2, the third element in the list
(1, 2, 2, 3, 3, 4).

A clique is a set of vertices that are all
connected to each other. An indepen-
dent set is a set of vertices that contains
no edges. The degree of a vertex is the
number of its neighbors.

C

I

v

Figure 4: The vertices that are not
neighbors of v cannot be involved in
any intersection between C and I.

Median Suppose Alice is given a list of numbers from [n] and Bob is
given a different list of numbers from [n]. They want to compute
the median element of the list that is obtained by combining these
lists. If t is the total number of elements in their lists, this is the
dt/2e’th element after the lists are combined and sorted. There is
a simple protocol that takes O(log n · log t) bits of communication.
In the first step, Alice and Bob each announce the number of
their elements that are at most n/2. This takes O(log t) bits of
communication. If there are k elements that are at most n/2 and
k ≥ dt/2e, then Alice and Bob can safely discard all the elements
that are larger than n/2 and recurse on the numbers that remain.
If k < dt/2e, then Alice and Bob can recurse after throwing out all
the numbers that are at most n/2, and replacing dt/2e by dt/2e − k.
There can be at most O(log n) steps before all of their elements
must come from a set of size 1. This single number is the median.

Cliques and Independent Sets Here Alice and Bob are given a graph
G on n vertices. In addition, Alice knows a clique C in the graph,
and Bob knows an independent set I in the graph. They want to
know whether C and I share a common vertex or not, and they
want to determine this using a short conversation. Describing C
or I takes about n bits, because in general the graph may have 2n

cliques or 2n independent sets. So, if Alice and Bob try to tell each
other what C or I is, that will lead to a very long conversation.

Here we discuss a clever interactive protocol allowing Alice and
Bob to have an extremely short conversation for this task. They
will send at most O(log2 n) bits. If C contains a vertex v with
degree less than n/2, Alice sends Bob the name of v. This takes
just O(log n) bits of communication. Now, either v ∈ I, or Alice
and Bob can safely discard all the non-neighbors of v, since these
cannot be a part of C. This eliminates at least n/2 vertices from
the graph. Similarly, if I contains a vertex v of degree at least n/2,
Bob sends Alice the name of v. Again, either v ∈ C, or Alice and
Bob can safely delete all the neighbors of v from the graph, which
eliminates about n/2 vertices. If all the vertices in C have degree
more than n/2, and all the vertices in I have degree less than n/2,
then C and I do not share a vertex. The conversation can safely
terminate. So, in each round of communication, either the parties
know that C ∩ I = ∅, or the number of vertices is reduced by
a factor of 2. After k rounds, the number of vertices is at most
n/2k. If k exceeds log n, the number of vertices left will be less
than 1, and Alice and Bob will know if C and I share a vertex
or not. This means that at most log n vertices can be announced
before the protocol ends, proving that at most O(log2 n) bits will

21

See Chapter 2.

See Chapters 4 and 5. In Chapter 4, we
prove that when k > log n, it is enough
for each party to announce the number
of elements in [n] that are in i of the
sets visible to her for i = 0, 1, . . . , k.

See Chapter 4.

See Chapter 6.

be exchanged before Alice and Bob learn what they wanted to
know.

One can show that if the conversation involves only one message
from each party, then at least Ω(n) bits must be revealed for the
parties to discover what they want to know. So, interaction is vital
to bringing down the length of the conversation.

Disjointness with sets of size k Alice and Bob are given two sets A, B ⊆
[n], each of size k � n, and want to know if the sets share a
common element. Alice can send her set to Bob, which takes
log (n

k) ≈ k log(n/k) bits of communication. There is a randomized
protocol that uses only O(k) bits of communication. Alice and Bob
sample a random sequence of sets in the universe, Alice announces
the name of the first set that contains A. If A and B are disjoint,
this eliminates half of B. In Chapter 3, we prove that repeating this
procedure gives a protocol with O(k) bits of communication.

Disjointness with k parties The input is k sets A1, . . . , Ak ⊆ [n], and
there are k parties. The i’th party knows all the sets except for the
i’th one. The parties want to know if there is a common element in
all sets. We know of a clever deterministic protocol with O(n/2k)

bits of communication, and we know that Ω(n/4k) bits of com-
munication are required. We do not know of any randomized
protocol with communication better than the deterministic proto-
col discussed above, but we do know every randomized protocol
must have communication at least Ω(

√
n/2k).

Summing 3 numbers The input is three numbers x, y, z ∈ [n]. Alice
knows (x, y), Bob knows (y, z) and Charlie knows (x, z). The
parties want to know whether or not x + y + z = n. Alice can tell
Bob x, which would allow Bob to announce the answer. This takes
O(log n) bits of communication. There is a clever deterministic
protocol that communicates

√
log n bits, and one can show that

the length of any deterministic conversation must increase with n.
In contrast, there is a randomized protocol that solves the problem
with a conversation whose length is a constant.

Pointer Chasing The input consists of two functions f , g : [n] → [n],
where Alice knows f and Bob knows g. Let a0, a1, . . . , ak ∈ [n] be
defined by setting a0 = 1, and ai = f (g(ai−1)). The goal is to com-
pute ak. There is a simple k round protocol with communication
O(k log n) that solves this problem, but any protocol with fewer
than k rounds requires Ω(n) bits of communication.

Part I

Communication

Although there are many other reason-
able ways to define a communication
protocol, they are all captured by the
definitions we give here, up to some
small change in the length of the
communication.

The setup is analogous for k party
protocols. Let X1,X2, . . . ,Xk be k sets. A
k-party communication protocol defines
a way for k parties to communicate
information about their inputs, where
the i’th party gets an input from the set
Xi . Every vertex v is associated with a
party i and a function fv : Xi → {0, 1}.

1
Deterministic Protocols

We start our formal discussion by defining exactly what we
mean by a deterministic communication protocol. The definition is
meant to capture a conversation between two parties. To be useful,
the definition must be fairly general. It should capture settings where
the parties have access to different information, and want to use that
information to generate meaningful messages. The conversations
may be interactive—messages should be allowed to depend on earlier
messages.

Suppose Alice’s input is an element from a set X and Bob’s input
is an element from a set Y . A communication protocol (see Fig-
ure 1.1) is an algorithm to generate a conversation between Alice and
Bob. A protocol π is specified by a rooted binary tree. Every internal
vertex v has 2 children. Every internal vertex v is owned by either
Alice or Bob—we denote the owner by owner(v). The vertex v is also
associated with a function fv that maps an input of owner(v) to {0, 1}.
For example, if owner(v) is Alice, then fv : X → {0, 1}. We interpret
the output bit of fv as one of the children of v in the binary tree by
associating 0 with the left child and 1 with the right child.

The outcome of the protocol π on input (x, y) ∈ X × Y is a leaf in
the protocol tree, computed as follows. The parties begin by setting
the current vertex to be the root of the tree. If owner(v) is Alice, she
announces the bit fv(x). Similarly, if owner(v) is Bob, he announces
the bit fv(y). Both parties set the new current vertex to be the child
of v indicated by the announced value of fv. This process is repeated
until the current vertex is a leaf, and this leaf is the outcome of the
protocol.

The input (x, y) induces a path from the root of the protocol tree to
the leaf π(x, y). This path corresponds to the conversation between
the parties. A protocol, however, is not a conversation as we usually
think of it. A protocol encodes all possible messages that may be
sent by the parties during any potential conversation. It produces a

26 communication complexity

fa(x) = 0

b

c

a

fb(x) = 1

fc(y) = 1

0

owned by Bob

owned by Alice Figure 1.1: An execution of a protocol.

The length is the longest path from root
to leaf in the tree.

If round(x, y) denotes the number of
edges (v, u) on the path from the root
of the tree to the leaf π(x, y) so that
owner(v) 6= owner(u), then the number
of rounds is 1 plus the maximum value
of round(x, y) over all inputs x and y.
For example, suppose Alice sends 2 bits,
then Bob sends 3 bits, and then Alice
sends 1 bit to end the protocol. The
length is 6 and the number of rounds is
3.

We could have chosen a different defi-
nition of when the protocol computes a
function—we might require only that
any party that knows the messages
of the protocol and one of the inputs
can deduce g(x, y). This distinction is
sometimes important, but for boolean
functions it is not important, because
any party that knows the value of
g(x, y) can announce it with one more
bit of communication.

conversation only when it is executed using a particular input.
The point of the definition above is to firmly focus on the number

of bits communicated. We do not account for the methods used to
generate the messages sent, nor the time it takes to compute them.
We allow the protocol designer to pick the best possible message to
send ahead of time. This choice leads to a versatile and clean model.
It also allows us to bring many tools from mathematics to bear on
understanding the model.

The length of the protocol π, denoted ‖π‖, is the depth of the
protocol tree. It is the length of the longest possible conversation that
may occur when the protocol is executed. The number of rounds of the
protocol is the maximum number of alternations between the Alice
and Bob during any execution.

In some practical applications—for example protocols that run
between computers on the internet—conversations consist of only a
few rounds of interaction, so it makes sense to limit the discussion to
bounded round protocols. In other applications—like algorithms that
exchange information between two parts of the same chip—it is not
very expensive to have many rounds of interaction.

Let us make some basic observations that follow from the defini-
tions:

Fact 1.1. The number of rounds in π is always at most ‖π‖.

Since the number of leaves in a rooted binary tree of depth d is at
most 2d, we have:

Fact 1.2. The number of leaves in the protocol tree of π is at most 2‖π‖.

We are primarily interested in protocols that compute something
using the inputs x, y. Given a function g : X × Y → Z we say that
π computes g if π(x, y) determines g(x, y) for every input (x, y) ∈
X × Y . Namely, we say π computes g if there is a map h from the

deterministic protocols 27

X

Y Figure 1.2: A combinatorial rectangle.

For brevity, we often say rectangles,
instead of combinatorial rectangles.

For k party protocols, a rectangle is a
cartesian product of k sets.

leaves of the protocol tree to Z so that h(π(x, y)) = g(x, y) for all x, y.
The communication complexity of a function g is the minimum

length achieved by a protocol that computes g. In other words, the
communication complexity is c if there is a protocol of length c that
computes g, but no protocol can compute g with less than c bits of
communication.

Now that we have a concrete mathematical model for communi-
cation, we can start to investigate the structure of this model. In the
rest of this chapter, we discuss the basic properties of protocols, show
some natural operations on them, and describe several methods for
proving lower bound on the communication complexity of specific
functions.

Rectangles

To understand a computational model, it is often helpful to
identify simple building blocks that make the model. Combinatorial
rectangles are the building blocks of communication protocols.

The inputs to a communication problem come from a Cartesian
product of the form X ×Y . A rectangle is a subset of this space of the
form

R = A× B ⊆ X ×Y .

See Figure 1.2. The following lemma provides an equivalent way to
view rectangles that is useful.

Lemma 1.3. A set R ⊆ X × Y is a rectangle if and only if whenever
(x, y), (x′, y′) ∈ R, we have (x′, y), (x, y′) ∈ R.

28 communication complexity

Figure 1.3: The evolution of the rectan-
gle corresponding to the current vertex
of the protocol tree as the protocol
executes. The leaves define a partition
into rectangles, which is shown in all
steps.

Proof. If R = A × B is a rectangle, then (x, y), (x′, y′) ∈ R means
that x, x′ ∈ A and y, y′ ∈ B. Thus (x, y′), (x′, y) ∈ A × B. On the
other hand, if R is an arbitrary set with the given property, if R is
empty, it is a rectangle. If R is not empty, choose (x, y) ∈ R. Define
A = {x′ : (x′, y) ∈ R} and B = {y′ : (x, y′) ∈ R}. Then by
the promised property of R, we have A × B ⊆ R, and for every
element (x′, y′) ∈ R, we have x′ ∈ A, y′ ∈ B, so R ⊆ A × B. Thus
R = A× B.

If a function f (x, y) is determined by whether or not (x, y) belongs
to a rectangle A× B, then it certainly has a very simple communica-
tion protocol. Indeed, if Alice and Bob want to know if their inputs
belong to the rectangle, Alice can send a bit indicating if x ∈ A, and
Bob can send a bit indicating if y ∈ B. These two bits determine
whether or not (x, y) ∈ A× B.

The importance of rectangles stems from the fact that every proto-
col can be described using rectangles. For every vertex v in a protocol
π, let Rv ⊆ X ×Y denote the set of inputs (x, y) that would lead the
protocol to pass through the vertex v during the execution, and let

Xv = {x ∈ X : ∃y ∈ Y (x, y) ∈ Rv},
Yv = {y ∈ Y : ∃x ∈ X (x, y) ∈ Rv}.

Lemma 1.4. For every vertex v in the protocol tree, the set Rv is a rectangle
with Rv = Xv ×Yv. Moreover, the rectangles given by all the leaves of the
protocol tree form a partition of X ×Y .

Proof. The lemma follows by induction. For the root vertex r, we
see that Rr = X × Y , so indeed the lemma holds. Now consider an
arbitrary vertex v such that Rv = Xv ×Yv. Let u, w be the children of v
in the protocol tree. Suppose the first party is associated with v, and
u is the vertex that the parties move to when fv(x) = 0. Define:

Xu = {x ∈ Xv : fv(x) = 0},
Xw = {x ∈ Xv : fv(x) = 1}.

We see that Xu and Xw form a partition of Xv, and Ru = Xu × Yu

and Rw = Xw × Yw form a partition of Rv. In this way, we see that
the leaves in the protocol tree induce a partition of the entire space of
inputs into rectangles.

When the purpose of a protocol is to compute a boolean function
g : X × Y → {0, 1}, it is useful to understand the concept of a
monochromatic rectangle. We say that a rectangle R ⊂ X × Y is
monochromatic with respect to g if g is constant on R. See Figure 1.4.
We say that the rectangle is 1-monochromatic if g only takes the value 1
on the rectangle, and 0-monochromatic if g only takes the value 0 on R.

deterministic protocols 29

Figure 1.4: A boolean function g
represented as a matrix. The black
entries are 1’s and the white entries
are 0’s. A monochromatic rectangle is
highlighted in gray.

Figure 1.5: Balancing a protocol.

Figure 1.6: Every rooted binary tree
must contain a vertex that accounts
for at least 1/3rd fraction, but no more
than a 2/3rd fraction of all the leaves.

Fact 1.5. If a protocol π computes a function g : X ×Y → {0, 1}, and v is
a leaf in π, then Rv is a monochromatic rectangle with respect to g.

Combining this fact with Lemmas 1.2 and 1.4 gives:

Theorem 1.6. If the communication complexity of g : X × Y → {0, 1} is
c, then X ×Y can be partitioned into at most 2c monochromatic rectangles
with respect to g.

This theorem is very useful for proving lower bounds on commu-
nication complexity—to prove that the communication complexity
of g is high, it suffices to show that X × Y cannot be covered by few
monochromatic rectangles.

Balancing Protocols

Does it ever make sense to have a protocol tree that has large
depth but relatively few vertices? In other words, does it make sense
to have a protocol tree that is not balanced? It turns out that one can
always balance a protocol while approximately preserving the size of
the tree. The following theorem captures this:

Theorem 1.7. If π is a protocol with ` leaves, then there is a protocol that
computes the outcome π(x, y) with length at most d2 log3/2 `e.

To prove the theorem, we need a well-known lemma about trees.

Lemma 1.8. In every protocol tree with ` > 1 leaves, there is a vertex v such
that the subtree rooted at v contains r leaves, and `/3 ≤ r < 2`/3.

30 communication complexity

Figure 1.7: A partition into rectangles
that cannot be realized by any protocol.

1 Yannakakis, 1991; and Aho et al., 1983

Proof. Consider the sequence of vertices v1, v2, . . . defined as follows.
The vertex v1 is the root of the tree, which is not a leaf by the assump-
tion on `. For each i > 0, the vertex vi+1 is the child of vi that has
the most leaves under it, breaking ties arbitrarily. Let `i denote the
number of leaves in the subtree rooted at vi. Then, `i+1 ≥ `i/2, and
`i+1 < `i. Since `1 = `, and the sequence is decreasing until it hits 1,
there must be some i for which `/3 ≤ `i < 2`/3.

Given the lemma, we can prove Theorem 1.7:

Proof of Theorem 1.7. In each step of the balanced protocol, the parties
pick a vertex v as promised by Lemma 1.8, and decide whether
(x, y) ∈ Rv using two bits of communication. That is, Alice sends
a bit indicating if x ∈ Xv and Bob sends a bit indicating if y ∈ Yv.
If x ∈ Xv and y ∈ Yv, then the parties repeat the procedure at the
subtree rooted at v. Otherwise, the parties delete the vertex v and its
subtree from the protocol tree and continue the simulation. In each
step, the number of leaves of the protocol tree is reduced by a factor
of at least 2

3 , so there can be at most log3/2 ` such steps.

From Rectangles to Protocols

Does every partition into rectangles correspond to a pro-
tocol? Given that protocols correspond to partitions by rectangles,
as in Theorem 1.6, one might wonder if there is a converse to the
theorem. We cannot hope to show that every partition corresponds
to a protocol—see Figure 1.7 for a counterexample. Nevertheless, we
can show that small partitions yield efficient protocols1.

Theorem 1.9. Let R be a collection of 2c rectangles that form a partition
of X × Y . For (x, y) ∈ X × Y , let Rx,y be the unique rectangle in R that
contains (x, y). Then there is a protocol of length O(c2) that on input (x, y)
computes Rx,y.

deterministic protocols 31

See Chapter 8 for more details.

2 Göös et al., 2015; and Ambainis et al.,
2016

The probabilistic method shows that
there is a function that has a monochro-
matic rectangle cover of size 2c, but
communication complexity Ω(c2). We
discuss this the end of this chapter.

1
2

3

Figure 1.8: Rectangles 1 and 2 intersect
vertically, while rectangles 1 and 3
intersect horizontally.

x

y

Figure 1.9: Either there is a rectangle
consistent with x that intersects at most
half of the other rectangles horizontally,
or there is a rectangle consistent with y
that intersects at most half of the other
rectangles vertically.

Recall that Rx,y is the unique rectangle
containing (x, y).

Recent work2 has shown that Theorem 1.9 is tight. There is a
boolean function g under which the inputs can be partitioned into 2c

monochromatic rectangles, yet no protocol can compute g using o(c2)

bits of communication.

Proof of Theorem 1.9. The parties are given inputs (x, y) and know a
collection of rectangles R that partition the set of inputs. The aim of
the protocol is to find the unique rectangle containing (x, y). In each
round of the protocol, one of the parties announces the name of a
rectangle in R. We shall ensure that each such announcement allows
the parties to discard at least half of the remaining rectangles.

A key concept we need is that of rectangles intersecting horizontally
and vertically. We say that two rectangles R = A× B and R′ = A′ × B′

intersect horizontally if A intersects A′, and intersect vertically if B
intersects B′. The basic observation is that if x ∈ A∩ A′ and y ∈ B∩ B′,
then (x, y) ∈ A× B and (x, y) ∈ A′ × B′. This proves:

Fact 1.10. Two disjoint rectangles cannot intersect both horizontally and
vertically.

So, given any rectangle from our collection, every other rectangle
can intersect it horizontally, or vertically, but not in both ways. This
suggests an approach to reduce the space of potential rectangles that
could cover (x, y). Consider this definition:

Definition 1.11. Say that a rectangle R = (A× B) ∈ R is horizontally
good if x ∈ A, and R horizontally intersects at most |R|/2 rectangles in
R. Say that R is vertically good if y ∈ B, and R vertically intersects at
most |R|/2 rectangles in R. Say that R is good if it is either horizontally
good or vertically good.

Good rectangles can be used to reduce the number of rectangles
under consideration. If Alice can find a rectangle R that is horizon-
tally good, then announcing the name of this rectangle eliminates
at least half of the rectangles from consideration. A similar thing
happens if Bob can announce a rectangle that is vertically good.
Moreover, we claim that there is always at least one good rectangle:

Claim 1.12. Rx,y is good.

Proof. Fact 1.10 implies that every rectangle in R does not intersect
Rx,y both horizontally and vertically. Thus either at most half of the
rectangles in R intersect Rx,y horizontally, or at most half of them
intersect Rx,y vertically. See Figure 1.9.

In each step of the protocol, one of the parties announces the name
of a good rectangle R, which must exist, since Rx,y is good. This takes
at most c + 1 bits of communication. The announcement leads to at

32 communication complexity

There are 22n different inputs, and 2
possible choices for each input.

In general, (x− 1) · (1 + x + x2 + . . . +
xr) = xr+1 − 1.

least half of the rectangles in R being discarded. If R is horizontally
good, then the parties can discard all the rectangles that do not
intersect R horizontally. Otherwise they discard all the rectangles that
do not intersect R vertically.

When only one rectangle remains, the protocol achieves its goal.
Since R can survive at most c such discards, the communication
complexity of the protocol is at most O(c2).

Lower Bounds

One of the major challenges of theoretical computer science
is to prove good lower bounds on the computational complexity of
reasonable computational models. Communication complexity is
a clean enough model that many interesting lower bounds can be
proved. It is also extremely basic—this allows us to translate these
lower bounds to other computational models.

Counting Arguments

Counting arguments are a standard way to establish the existence
of hard functions in a given computational model. In a nutshell, a
counting argument shows that almost all functions have very large
complexity by establishing that there are a huge number of functions,
but relatively few efficient algorithms.

Suppose we wish to compute f : {0, 1}n × {0, 1}n → {0, 1}.
The communication complexity of every such function is at most
n + 1. Alice can just send her input to Bob, and Bob replies with
the value of f . Surprisingly, we can use counting to show that this
trivial protocol is the best one can hope to do, for almost all functions
f . We shall prove that almost all functions require n − 1 bits of
communication.

There are 222n
possible functions f : {0, 1}n × {0, 1}n → {0, 1}. Now,

suppose we are interested in functions that can be computed using
c bits of communication. We wish to find an upper bound on the
number of such functions. To do so, we need to estimate the number
of deterministic protocols of length c. A protocol tree of depth c has
at most 2c leaves, and at most

1 + 2 + 4 + . . . + 2c−1 = 2c − 1 ≤ 2c

non-leaf vertices. Each node in the tree is owned by either Alice or
Bob, and is associated with a function describing how they compute
the next bit that they transmit. The number of choices for each node

deterministic protocols 33

is at most 2 · 22n
= 22n+1 ≤ 22n+1

. This gives at most(
22n+1

)2c

= 22n+c+1

protocols of length c.
Now every protocol with 2c leaves can compute at most 22c

boolean functions, since there are 22c
different ways to map the

leaves to outputs of the function. So, the total number of functions
with communication complexity c is at most

22n+c+1 · 22c
= 22c+2n+c+1

.

We see that the fraction of such functions among all functions is

22c+2n+c+1

222n = 22c+2n+c+1−22n
,

which is extremely small whenever c < n− 1. In other words, the vast
majority of functions have almost full communication complexity.

Lower Bounds for Explicit Functions

The real difficulty with proving lower bounds arises when we try
to prove lower bounds for specific problems of interest, rather than
showing that there are some functions that have high complexity. Our
ability to prove lower bounds for explicit functions hinges on our
understanding of the underlying computational model.

The characterization provided by Theorem 1.6 is strong enough
that it allows us to prove sharp lower bounds for many specific func-
tions. For a given function of interest, if we show that the input space
cannot be partitioned into 2c monochromatic rectangles, then there is
no protocol computing the function with c bits of communication.

Size of Monochromatic Rectangles

The simplest way to show that the input space cannot be partitioned
into a few monochromatic rectangles is to show that there are no
large monochromatic rectangles. If all monochromatic rectangles are
small, then many of them are needed to cover the inputs.

Disjointness We start with one of the most important functions in
communication complexity, our running example, the disjointness
function Disj : 2[n] × 2[n] → {0, 1}. See Figure 3. The function is
defined by

Disj(X, Y) =

1 if X ∩Y = ∅,

0 otherwise.
(1.1)

34 communication complexity

Figure 1.10: The equality function does
have large monochromatic rectangles.

As always, Alice can send her whole set X to Bob, which gives a
protocol with communication n + 1. Is this the best that they can
do? Is there a non-trivial protocol?

A first attempt for proving a lower bound might to show that
there is no large monochromatic rectangle. However, the Disj

function does have large monochromatic rectangles. The rectangle
R = {(X, Y) : 1 ∈ X, 1 ∈ Y} has density 1

4 , and is 0-monochromatic.
The solution is to show that there are no large 1-monochromatic
rectangle.

Claim 1.13. Every 1-monochromatic rectangle of Disj has size at most 2n.

Proof. Indeed, suppose R = A× B is a 1- monochromatic rectangle.
Let X′ = ∪X∈AX be the union in all the sets of A and Y′ = ∪Y∈BY.
Then X′ and Y′ must be disjoint, so |X′|+ |Y′| ≤ n. On the other
hand, |A| ≤ 2|X

′ |, |B| ≤ 2|Y
′ |, so |R| = |A||B| ≤ 2|X

′ |+|Y′ | ≤ 2n.

In addition, the number of 1 inputs of Disj is exactly 3n. This is
because for every element of the universe, there are 3 possibilities.
The element is only in X, or only in Y, or in neither. Overall, at
least 3n/2n = 2(log 3−1)n monochromatic rectangles are needed to
cover the 1’s of Disj.

Theorem 1.14. The deterministic communication complexity of Disj is
more than (log 3− 1)n.

This gives a lower bound that is sharp up to a constant factor, but
we did not prove that n + 1 bits of communication are required. We
now discuss two examples where this method yields optimal lower
bounds.

Equality Consider the equality function EQ : {0, 1}n × {0, 1}n → {0, 1}
defined as:

EQ(x, y) =

1 if x = y,

0 otherwise.
(1.2)

Again, the trivial protocol has length n + 1. Can we do better? As
with disjointness, the equality function does have large monochro-
matic rectangles. The rectangle R = {(x, y) : x1 = 0, y1 = 1} has
density 1

4 , and is 0-monochromatic. Again, the solution is to show
that equality does not have a large 1-monochromatic rectangle.

Claim 1.15. If R is a 1-monochromatic rectangle, then |R| = 1.

deterministic protocols 35

Figure 1.11: Inner-product when n = 8.
Each row corresponds to x, and each
column corresponds to y. The entries
correspond to 〈x, y〉.

We shall show in Chapter 5 that this
function satisfies the strong property
that the fraction of 1’s is very close to
the fraction of 0’s in every rectangle
that is not exponentially small.

Proof. Observe that if x 6= x′, then the points (x, x) and (x′, x′)
cannot be in the same monochromatic rectangle. Otherwise, by
Lemma 1.3, the element (x, x′) would also have to be included in
this rectangle. Since the rectangle is monochromatic, we would
have EQ(x, x′) = EQ(x, x), which is a contradiction.

Since there are 2n inputs x with EQ(x, x) = 1, this means 2n

rectangles are needed to cover such inputs. There is also at least
one more 0-monochromatic rectangle. So, we need more than 2n

monochromatic rectangles to cover all the inputs. We conclude:

Theorem 1.16. The deterministic communication complexity of EQ is
exactly n + 1.

Inner-Product The Hadamard matrix is a well-known example of a
matrix that has many nice combinatorial properties. It corresponds
to the inner-product function IP : {0, 1}n × {0, 1}n → {0, 1}

IP(x, y) =
n

∑
i=1

xiyi mod 2. (1.3)

This function can be viewed as the inner product over the finite
field F2.

Here, we leverage linear algebra to place a bound on the size of
the largest monochromatic rectangle.

Claim 1.17. Every 0-monochromatic rectangle in the Hadamard matrix
has size at most 2n.

36 communication complexity

Proof. Suppose R = A× B is a 0-monochromatic rectangle. This
means that for every x ∈ A and y ∈ B, we have IP(x, y) = 0. Let
V be the span of the elements of A over F2. If the dimension of
V is d1, we have that |A| ≤ |V| = 2d1 . Moreover, we must have
B ⊆ V⊥, where V⊥ is the dual subspace of V. If d2 denotes the
dimension of the dual, then we have d1 + d2 = n. Thus, we have
|R| = |A| · |B| ≤ 2d1 · 2d2 = 2n.

Now, let us compute the number of inputs to IP for which IP(x, y) =
0. When x = 0, the inner product is always 0. This gives 2n inputs.
When x 6= 0, exactly half the settings of y must give 0. If xi = 1 for
some i, then for any input y, define y′ to be the same as y except
in the i’th coordinate. Then we see that IP(x, y) − IP(x, y′) = 1
mod 2, so exactly one of IP(x, y), IP(x, y′) is 0. Overall, the number
of inputs for which IP(x, y) = 0 is

2n + (2n − 1)2n/2.

Finally, we see that the number of 0-rectangles needed to cover the
0’s is at least

2n + (2n − 1)2n/2
2n = 1 +

2n − 1
2

> 2n−1.

We get an almost sharp lower bound.

Theorem 1.18. The deterministic communication complexity of IP is at
least n.

Fooling Sets

In some cases, the size of the largest monochromatic rectangle does
not suffice to pin-point the communication complexity. For example,
the lower bound for disjointness was off by a constant factor from
the upper bound. The reason, in a nutshell, was that disjointness has
many large monochromatic rectangles. The fooling set method allows
us to prove sharp lower bounds even when there are many large
monochromatic rectangles.

Definition 1.19. A set S ⊂ X ×Y is called a fooling set for a function g if
every monochromatic rectangle with respect to g can share at most 1 element
with S.

Note that any partition of the inputs into monochromatic rect-
angles must be at least as large as the size of a fooling set for g.
Therefore, Theorem 1.6, implies the following lower bound.

Theorem 1.20. If g has a fooling set of size s, then the communication
complexity of g is at least log s.

deterministic protocols 37

Figure 1.12: The greater than function
has large monochromatic rectangles of
both types.

Let us explore some concrete applications of this method:

Disjointness Fooling sets allow us to determine the communication
complexity of Disj exactly.

Claim 1.21. The set S = {(X, [n]− X) : X ⊆ [n]} is a fooling set for
Disj.

Proof. If a rectangle contains both (X, [n]− X) and (X′, [n]− X′) for
X 6= X′, then it also contains both (X, [n]− X′) and (X′, [n]− X).
However, at least one of the last pair of sets must intersect, while
the first two pairs are disjoint.

For every (x, y) ∈ S, Disj(x, y) = 1. Since |S| = 2n, and at least one
more 0-monochromatic rectangle is required, this proves:

Theorem 1.22. The deterministic communication complexity of Disj is
n + 1.

Greater-than Our second example for using fooling sets is the greater-
than function, GT : [n]× [n]→ {0, 1}, defined as:

GT(x, y) =

1 if x > y,

0 otherwise.
(1.4)

The trivial protocol computing greater-than has length dlog ne+ 1
bits. We now prove that this is tight.

Observe that GT has many large 0-monochromatic rectangles, like
R = {(x, y) : x < n/2, y > n/2}, and many large 1-monochromatic
rectangles, like R = {(x, y) : x > n/2, y < n/2}. The lower bound
relies on the following fooling set.

Claim 1.23. The set of n points S0 = {(x, x) : x ∈ [n]} is a fooling set
for GT.

Proof. If R is monochromatic and contains two distinct pairs
(x, x), (x′, x′) ∈ R, then it also contains both (x′, x) and (x, x′).
However, if say x′ > x, we must have GT(x′, x) 6= GT(x, x).

Since S0 is a fooling set, at least |S0| monochromatic rectangles are
needed to cover the 0’s. Similarly, the set

S1 = {(x + 1, x) : x ∈ [n− 1]}

is a fooling set, and so |S1| monochromatic rectangles are needed
to cover the 1’s. So, |S0|+ |S1| = 2n− 1 rectangles are needed in
total. This proves that the communication complexity of greater
than is at least dlog(2n− 1)e. One can prove that this quantity is at
least dlog ne+ 1.

38 communication complexity

3 Miltersen et al., 1998

Figure 1.13: A (7, 4)-rich function.

Theorem 1.24. The deterministic communication complexity of GT is
dlog(n)e+ 1 for n > 1.

Asymmetric Communication

In the examples above, the scenario was symmetric—both parties had
similar roles and amounts of knowledge. Now we discuss asymmet-
ric scenarios—cases where one party has much more information
than the other.

The concept of richness is useful for understanding asymmetric
communication3. Intuitively, a function g is rich if there is a large
set V of Bob’s inputs, so that each y ∈ V has many inputs x with
g(x, y) = 1.

Definition 1.25. A function g : X × Y → {0, 1} is said to be (u, v)-rich
if there is a set V ⊆ Y of size |V| = v such that for all y ∈ V, we have
|{x ∈ X : g(x, y) = 1}| ≥ u.

At first sight, it may seem that richness implies the existence of
large 1-monochromatic rectangles. This is not true. Nevertheless,
when g has an efficient asymmetric protocol, then there must be a
large 1-monochromatic.

Lemma 1.26. If g : X × Y → {0, 1} is (u, v)-rich with u, v > 0, and
if there is a protocol for g where Alice sends at most a bits and Bob sends
at most b bits, then g admits a 1-monochromatic rectangle of dimensions
u
2a × v

2a+b .

Proof. The statement is proved inductively. For the base case, if
the protocol does not communicate at all, then g(x, y) = 1 for all
x ∈ X , y ∈ Y , and the statement holds.

If Bob sends the first bit of the protocol, then Bob partitions Y to
Y0 ∪ Y1. One of these two sets must have at least v/2 of the inputs
y that show that g is (u, v)-rich. By induction, this set contains a
1-monochromatic rectangle of dimensions u

2a × v/2
2a+b−1 , as required.

On the other hand, if Alice sends the first bit, then this bit par-
titions X into two sets X0,X1. Every input y ∈ Y that has u ones
must have u/2 ones in either X0 or X1. Thus there must be at least
v/2 choices of inputs y ∈ Y that have u/2 ones for g restricted to
X0 × Y or for g restricted to X1 × Y . By induction, we get that there
is a 1-monochromatic rectangle with dimensions u/2

2a−1 × v/2
2a−1+b , as

required.

How can we use richness to prove lower bounds? The idea is
quite simple. We need to show that g is rich, and does not have
1-monochromatic rectangles that are too large. The lemma above

deterministic protocols 39

2 Y

2 X

Figure 1.14: An input to the lopsided
disjointness problem with n = 12, k =
3, t = 2.

Figure 1.15: The lopsided disjointness
matrix with n = 7, k = 2. The columns
corresponds to sets of size at most
k from [n]. The rows correspond to
arbitrary subsets of [n].

then implies that g has no efficient asymmetric protocols. Here are a
couple of examples using this approach:

Lopsided Disjointness This is an asymmetric version of disjointness,
where Alice’s input is promised to be a small set, while Bob’s
input can be an arbitrary set. Suppose Alice is given a set X ⊆ [n]
of size k < n, and Bob is given a set Y ⊆ [n]. Their goal is to
compute the usual Disj function. The obvious protocol is for Alice
to send her input to Bob, which takes log (n

k) bits. In Chapter 2,
we show that the communication complexity of this problem is at
least log (n

k).

What can we say about the communication complexity of this
problem if Alice is forced to send much less than log (n

k) bits?

To answer this question, we need to analyze rectangles of a certain
shape. We restrict our attention to a special family of sets for Alice
and Bob, as in Figure 1.14. We assume that the inputs are of the
following form. Suppose that n = 2kt, that X contains exactly one
element from 2t(i− 1) + 1, . . . , 2ti for each i ∈ [k], and Y contains
exactly one element of 2i− 1, 2i for each i ∈ [kt].

For such inputs, we can deduce the following bound on the size of
1-monochromatic rectangles.

Claim 1.27. If A × B is a 1-monochromatic rectangle for lopsided
disjointness, then |B| ≤ 2kt−k|A|1/k

.

Proof. We claim that |⋃X∈A X| ≥ k|A|1/k. Indeed, if the union⋃
X∈A X has ai elements in {2t(i− 1) + 1, . . . , 2ti}, then using the

arithmetic-mean geometric mean inequality:∣∣∣∣∣ ⋃
X∈A

X

∣∣∣∣∣ = k

∑
i=1

ai ≥ k

(
k

∏
i=1

ai

)1/k

≥ k|A|1/k.

The set
⋃

X∈A X cannot contain both 2i, 2i + 1 for any i, since one
of these two elements belongs to a set in B. Thus, the number of
possible choices for sets in B is at most 2kt−k|A|1/k

.

40 communication complexity

This is a loose upper bound on the
number of ways we can extend the
basis of the span of A to be of size n/2.

For each basis vector vi , there are at
least 2n/2 available choices. So, there
are at least (2n/2)n/2 = 2n2/4 choices for
v1, . . . , vn.

Next we argue that the lopsided disjointness function is rich:

Claim 1.28. Lopsided disjointness is (tk, 2kt)-rich.

Proof. Every choice for the set Y as above allows for tk possible
choices for X that are disjoint.

By Lemma 1.26, any protocol where Alice sends a bits and Bob
sends b bits induces a 1-monochromatic rectangle with dimensions
tk/2a × 2kt−a−b. Claim 1.27 yields

2kt−a−b ≤ 2kt−kt/2a/k

⇒ a + b ≥ n
2a/k+1 .

We conclude:

Theorem 1.29. Assume that the inputs are X, Y ⊆ [n] and Alice’s inputs
X is promised to be of size k. If Alice sends at most a bits and Bob sends
at most b bits in a protocol computing Disj, then a + b ≥ n

2a/k+1
.

For example, when k = 2, if Alice sends at most log n bits to
Bob, then Bob must send at least Ω(

√
n) bits to Alice in order to

compute lopsided disjointness.

Span Suppose Alice is given a vector x ∈ Fn
2 , and Bob is given an n

2 -
dimensional subspace V ⊆ Fn

2 , described by a basis v1, v2, . . . , vn/2

for V. Their goal is figure out whether or not x ∈ V. That is, they
want to compute the boolean function that is 1 if and only if x can
be expressed as a linear combination of v1, . . . , vn/2.

To prove a lower bound, we start by claiming that the inputs do
not have 1-monochromatic rectangles of a certain shape:

Claim 1.30. If A × B is a 1-monochromatic rectangle, then |B| ≤
2n2/2−n log |A|.

Proof. For every x ∈ A and V ∈ B, we have that x ∈ V. So, for
every x in the span of A, we x ∈ V for all V ∈ B. The dimension
of the span of A is at least log |A|. The number of n

2 -dimensional
subspaces that contain this span is thus at most (2n

n/2−log |A|) ≤
2n2/2−n log |A|.

Next, we bound the richness:

Claim 1.31. The span problem is (2n/2, 2n2/4/n!)-rich.

Proof. There are at least 2n2/4 choices for v1, . . . , vn, and and each
contains 2n/2 vectors.

deterministic protocols 41

4 Krapchenko, 1971

Applying Lemma 1.26, if there is a protocol where Alice sends a
bits and Bob sends b bits, then

2n2/4−a−b ≤ 2n2/2−n log 2n/2−a

⇒ b ≥ n2/4− a(n + 1).

Theorem 1.32. If Alice sends a bits and Bob sends b bits to solve the span
problem, then b ≥ n2/4− a(n + 1).

This shows that one of the parties must send a linear number of
the bits in their input. For example, if Alice sends at most n/8 bits,
then Bob must send at least Ω(n2) bits in order to solve the span
problem.

Lower Bounds for Relations

We have seen several methods for proving lower bounds for boolean
functions. We end this section with a method—called Krapchenko’s
method4— for proving lower bounds for relations. Here each input
to Alice and Bob may have more than one valid output.

Consider the following example. Let

X = {x ∈ {0, 1}n :
n

∑
i=1

xi = 0 mod 2},

and

Y = {y ∈ {0, 1}n :
n

∑
i=1

yi = 1 mod 2}.

For every x ∈ X , y ∈ Y , there is at least one index i ∈ [n] such that
xi 6= yi. The relation we are interested in is the subset of X ×Y × [n]
consisting of all triples (x, y, i) so that xi 6= yi.

Suppose Alice is given x ∈ X and Bob is given y ∈ Y , and
they want to compute an index i such that xi 6= yi. How much
communication is required?

In the trivial protocol, Alice sends Bob her entire string. In fact, we
can use binary search to do better. Notice that

∑
i≤n/2

xi + ∑
i>n/2

xi 6= ∑
i≤n/2

yi + ∑
i>n/2

yi mod 2.

Alice and Bob can exchange two bits: ∑i≤n/2 xi mod 2 and ∑i≤n/2 yi

mod 2. If these values are not the same, they can safely restrict their
attention to the strings x≤n/2, y≤n/2 and continue. On the other hand,
if the values are the same, they can continue the protocol on the
strings x>n/2, y>n/2. In this way, they can eliminate half of their input
strings. This yields a protocol of communication complexity 2dlog ne.

It is fairly easy to see that log n bits of communication are necessary—
that is the number of bits it takes to write down the answer. More

42 communication complexity

formally, we need at least n monochromatic rectangles to cover the n
pairs of the type (0, ei), where ei is the i’th unit vector.

Now we shall prove that 2 log n bits are necessary, using a variant
of fooling sets. Consider the set of inputs

S = {(x, y) ∈ X ×Y : x, y differ in exactly 1 coordinate}.

The set S contains n · 2n−1 inputs, since one can pick an input of S by
picking x ∈ X and flipping any of the n coordinates.

We will not be able to argue that every monochromatic rectangle
must contain only one or few element of S. Instead, we prove that if a
monochromatic rectangle contains many elements of S, then it must
be large.

Claim 1.33. Suppose R is a monochromatic rectangle that contains r
elements of S. Then |R| ≥ r2.

Proof. The key observation here is that two distinct elements (x, y), (x, y′)
in S cannot be in the same monochromatic rectangle. For if the rect-
angle was labeled i, then (x, y), (x, y′) must disagree in the i’th coordi-
nate, but since they both belong to S we must have y = y′. Similarly
we cannot have two distinct elements (x, y), (x′, y) ∈ S that belong to
the same monochromatic rectangle.

Therefore, if R = A× B has r elements of S, we must have |A| ≥ r
and |B| ≥ r. So, |R| ≥ r2.

Now, we can prove that the binary search protocol is essentially
the best one can do.

Theorem 1.34. Any protocol computing the above relation must communi-
cate at least d2 log ne bits.

Proof. Suppose there are t monochromatic rectangles that partition
the set S, and the i’th rectangle covers ri elements of S. Thus,

|S| = n2n−1 =
t

∑
i=1

ri.

Since the rectangles are disjoint, |X × Y| = 22n−2 ≥ ∑t
i=1 r2

i . The
Cauchy-Schwartz inequality implies

22n−2 ≥
t

∑
i=1

r2
i ≥

(
t

∑
i=1

ri/
√

t

)2

= n222n−2/t.

So, t ≥ n2.

Rectangle Covers

deterministic protocols 43

= U U

Figure 1.16: A 1-cover of size 3.

Rectangle covers have an interesting in-
terpretation in terms of non-deterministic
communication complexity. Here, the
parties are allowed to make guesses.
If a function has a 1-cover of size C,
then given any input that evaluates to 1,
Alice and Bob can non-deterministically
guess the name of a rectangle that
covers their input, and then check that
their inputs are consistent with the
guessed rectangles. On the other hand,
if their inputs correspond to a 0, no
guess will convince them that their
input is a 1.

Equality was defined in (1.2).

For those familiar with the complexity
classes P and NP, Theorem 1.36 can be
interpreted as saying that in the context
of two-party communication complexity
P = NP ∩ coNP.

An efficient partition of the 1’s of the
input space into rectangles also leads to
an efficient protocol. See Exercise 1.1.

Rectangles are the the building blocks of 2-party communication
complexity. Every communication protocol yields a partition of the
input space to rectangles. What happens if we count the number
of monochromatic rectangles needed to cover all of the inputs? In
other words, what if we relax the requirement that the rectangles
need to be disjoint, but keep the requirement that the rectangles are
monochromatic?

Definition 1.35. For z ∈ {0, 1}, we say that a boolean function has a
z-cover of size C if there are C monochromatic rectangles whose union
contains the inputs that evaluate to z.

Consider the equality function. For i ∈ [n], b ∈ {0, 1}, define the
rectangle

Ri,b = {(x, y) : xi = b, yi 6= b}.
This is a 0-cover of size 2n. There is no 1-cover of comparable size—
the fooling set method showed that at least 2n monochromatic rectan-
gles are needed to cover the 1’s. So, equality has a 0-cover of size 2n,
but no 1-cover of size less than 2n.

By Theorem 1.6, every function that admits a protocol with com-
munication c also admits a 1-cover of size at most 2c and a 0-cover of
size at most 2c. The following extension of Theorem 1.9 shows that
the converse holds as well:

Theorem 1.36. If g has a 0-cover of size 2c0 and a 1-cover of size 2c1 , then
there is a protocol that computes g with O(c0c1) bits of communication.

One can prove Theorem 1.36 by reduction to the clique versus
independent set problem—we leave the details to Exercise 1.2. Theo-
rem 1.36 is stronger than Theorem 1.9, and it is also tight, as we show
next.

Can the logarithm of the cover number be significantly different
from the communication complexity? We have already seen that
equality has a 0-cover of size 2n, but requires communication at least
n + 1. This gives an exponential gap between the size of the 0-cover
and communication complexity. Disjointness also has small 0-cover.
For i = 1, 2, . . . , n, define the rectangle

Ri = {(X, Y) : i ∈ X, i ∈ Y}.

44 communication complexity

In Chapter 6, we prove that actually any
1-cover of disjointness must have size at
least 2Ω(n).

This gives a 0-cover of size n. Yet, by Theorem 1.22 the communica-
tion complexity of disjointness is n + 1. So, there is an exponential gap
between the logarithm of the size of a 0-cover and the communication
complexity. As with equality, the fooling set method shows that every
1-cover for disjointness must have size at least 2n.

Another interesting example is the k-disjointness function. Here
Alice and Bob are given sets X, Y ⊆ [n], each of size k. We shall see
in Chapter 2 that the communication complexity of k-disjointness
is at least log (n

k) ≈ k log(n/k). As above, there is a 0-cover of k-
disjointness using n rectangles. But this time, the function has a small
1-cover as well:

Claim 1.37. k-disjointness has a 1-cover of size d22k · ln((n
k)

2)e.

The proof of the claim uses the probabilistic method. The idea,
pioneered by Erdős, is simple and elegant. To prove that an object
exists, we prove that it occurs with positive probability.

Proof. For every set S ⊆ [n], define the monochromatic rectangle

R = {(X, Y) : X ⊆ S, Y ⊆ [n]− S}.

Now sample t = d22k · ln
(
(n

k)
2
)
e such rectangles independently and

uniformly. The probability that a particular disjoint pair (X, Y) is
included in a particular sample is 2−2k. So, the probability that the
pair is excluded from all the rectangles is

(1− 2−2k)t < e−2−2kt ≤
(

n
k

)−2
. since 1− x < e−x for x > 0.

Since the number of disjoint pairs (X, Y) is at most (n
k)

2, the proba-
bility that there is a disjoint pair that is excluded by the t rectangles
is less than 1. So there must be t rectangles that cover all the 1 in-
puts.

Setting k = log n, we have found a 1-cover with O(n2 log2 n)
rectangles. So, all the entries of the matrix can be covered with
2O(log n) monochromatic rectangles. However, we shall see in Chap-
ter 2 that the communication complexity of k-disjointness is exactly
log (n

k) = Ω(log2 n). This proves that Theorem 1.36 is tight.

Direct-sums in Communication Complexity

The direct-sum question is about the complexity of solving
several copies of a given problem. It can be posed in any computa-
tional model. In communication complexity, it can be phrased as

deterministic protocols 45

No such examples are known for
computing functions.

5 Alon and Orlitsky, 1995

follows If a function g requires c bits of communication, how much
communication is required to compute k copies of g?

More formally, given a function g : {0, 1}n × {0, 1}n → {0, 1},
define

gk : ({0, 1}n)k × ({0, 1}n)k → {0, 1}k

by

gk((x1, . . . , xk), (y1, . . . , yk)) = (g(x1, y1), g(x2, y2), . . . , g(xk, yk)).

If the communication complexity of g is c, then the communication
complexity of gk is at most kc. Can it be much lower?

We shall describe an example where the cost of computing k
copies of a relation is less than k times the cost of computing one
copy. Suppose Alice is given a set S ⊆ [n] of size n/2, with n even.
Bob has no input. The goal of the parties5 is to output an element of
S.

Alice can send Bob the minimum element of her set. This can be
done with communication dlog(n

2 + 1)e, since the elements n/2 +

2, . . . , n can never be the minimum of S. Moreover, dlog(n
2 + 1)e bits

are necessary. Indeed, if fewer bits are sent, then the set of elements
P that Bob could potentially output is of size at most n/2, and so the
protocol would fail if Alice is given the complement of P as input.

On the other hand, we show that the parties can solve k copies of
this problem with k + log(nk) bits of communication, while the naive
protocol would take k log(n/2 + 1) bits of communication. The key
claim is:

Claim 1.38. There is a set Q ⊆ [n]k of size nk2k with the property that for
any S1, S2, . . . , Sk, each of size n/2, there is an element q ∈ Q such that
qi ∈ Si for every i = 1, 2, . . . , k.

This claim gives the protocol—Alice simply sends Bob the name of
the element of Q with the required property. Once again, the proof of
the claim relies on the probabilisitic method.

Proof. To find such a set Q, we pick |Q| elements from [n]k by sam-
pling each element uniformly at random. For any fixed S1, . . . , Sk, the
probability that Q misses this tuple is

(1− (1/2)k)|Q| ≤ e−(1/2)k |Q|.

Setting |Q| = nk2k, the probability that Q does not have an element
that works for some tuple is at most

2nke−(1/2)k |Q| ≤ 2nke−nk < 1.

Thus such a Q does exist.

46 communication complexity

One can show that even computing the
two bits ∧k

i=1g(xi , yi), and ∨k
i=1g(xi , yi)

requires k(
√

c − log n − 1) bits of
communication–see Exercise 1.13.

So, in some cases, some saving is possible. Nevertheless, there is a
non-trivial lower bound6 for the communication complexity of gk in
terms of the communication complexity of g.

Theorem 1.39. If g requires c bits of communication, then gk requires at
least k(

√
c− log n− 1) bits of communication.

The proof uses the fact that we can extract a monochromatic cover
for g from a monochromatic cover for gk. This is summarized in the
following lemma:

Lemma 1.40. If the inputs to gk can be covered with 2` monochromatic rect-
angles, then the inputs to g can be covered with d2n · 2`/ke monochromatic
rectangles.

To prove Theorem 1.39, observe that if gk has communication `,
then its inputs can be covered with 2` monochromatic rectangles, by
Theorem 1.6. Theorem 1.36 and Lemma 1.40 then imply that g has a
protocol with communication (`/k + log n + 1)2. Thus,

c ≤ (`/k + log n + 1)2

⇒ ` ≥ k(
√

c− log n− 1).

Proof of Lemma 1.40. We iteratively find the rectangles that cover the
input space using the following claim.

Claim 1.41. For every non-empty set S ⊆ {0, 1}n × {0, 1}n, there is a
rectangle that is monochromatic under g and covers at least 2−`/k|S| of the
inputs from S.

Proof. The set Sk can be covered by 2` monochromatic rectangles. In
particular, there is a monochromatic rectangle R that covers at least
2−`|S|k of these inputs. For each i ∈ [k], define

Ri = {(x, y) ∈ {0, 1}n × {0, 1}n : ∃(a, b) ∈ R, ai = x, bi = y}.

The set Ri is simply the projection of the rectangle R to the i’th coor-
dinate. The set Ri is also a rectangle, since R is a rectangle. Moreover,
since R is monochromatic under gk, each Ri is monochromatic under
g. Finally, since

k

∏
i=1
|Ri ∩ S| ≥ |R ∩ Sk| ≥ 2−`|S|k.

there must be some i for which |Ri ∩ S| ≥ 2−`/k|S|.

We repeatedly pick rectangles using Claim 1.41 until all of the
inputs to g are covered. Let S ⊆ {0, 1}n × {0, 1}n denote the set of in-
puts to g that have not yet been covered by one of the monochromatic

deterministic protocols 47

rectangles we have already found. Initially, S is the set of all inputs.
Eventually, we reach the empty set. Indeed, after d2n2`/ke steps, the
number of uncovered inputs is at most

22n · (1− 2−`/k)2n2`/k ≤ 22ne−2−`/k ·2n2`/k
= 22n · e−2n < 1. since 1− x ≤ e−x for all x.

Lemma 1.40 is proved.

Exercises

Ex 1.1 — Show that if g : X × Y → {0, 1} is such that g−1(1) can be
partitioned into 2c rectangles, then g has communication complexity
at most O(c2).

Ex 1.2 — Prove Theorem 1.36 by reduction to the protocol for the
cliques and independent sets problem. Hint: define a graph where the
vertices correspond to rectangles in the rectangle cover.

Ex 1.3 — Suppose Alice and Bob each get a subset of size k of [n],
and want to know whether these sets intersect or not. Show that at
least log(bn/kc) bits are required.

Ex 1.4 — Suppose Alice gets a string x ∈ {0, 1}n that has more 0’s
than 1’s, and Bob gets a string y ∈ {0, 1}n that has more 1’s than 0’s.
They wish to communicate to find a coordinate i where xi 6= yi. Show
that at least 2 log n bits of communication are required.

Ex 1.5 — The chromatic number χ(G) of a graph G is the minimum
number of colors needed to color the vertices of G so that no two
adjacent vertices have the same color.

1.Consider the following communication problem. Alice gets a
vertex x in G, Bob gets a vertex y in G, and they need to decide
whether {x, y} is an edge in G. Show that log χ(G) is at most the
deterministic communication complexity this problem. Hint: Recall
that (x, x) is never an edge of the graph.

2.Let H denote the graph on the same vertex set as G, such that
{x, y} is an edge of H if and only if there is a path of length 2
of the form x, z, y in G. Consider the following communication
problem. Alice gets x, Bob gets y and they are promised that {x, y}
is an edge of G. Their goal is for Alice to learn y and Bob to learn
x. Give a protocol with 2 log χ(H) bits for accomplishing this.

Ex 1.6 — Recall the protocol for the median of two lists discussed
in the introduction. Consider the following variant of the median
problem. Alice is given a set X ⊆ [n], Bob is given a set Y ⊆ [n], and

48 communication complexity

their goal is to compute the median of the set X ∪ Y. The difference
here is that we take the union as sets, so there are no repetitions.
Show that the communication complexity of this problem is at least
Ω(n/ log n). Hint: Compute the median of the union of sets, as well as the
union of the lists.

Ex 1.7 — Show that for every 0 ≤ α < 1/2, any deterministic
protocol for estimating the Hamming distance between two strings
x, y ∈ {0, 1}n up to an additive error αn must have length at least
Ω(n). To do this, use an error correcting code. An error correcting
code is a map E : {0, 1}m → {0, 1}O(m) with the property that if x 6= y,
then E(x) and E(y) disagree in at least α fraction of their coordinates.
Such a code exists for every 0 ≤ α < 1/2. Use the code to prove the
lower bound.

Ex 1.8 — Prove the following. Suppose Alice is given a string x ∈
[w]k, and Bob is given a sequence Y of sets Y1, . . . , Yk ⊆ [w]. If there a
protocol that determines whether or not there is an i such that xi ∈ Yi,
with Alice sending a bits and Bob sending b bits, then a + b ≥ wk

2a/k+1
.

Ex 1.9 — Given a function f : {0, 1}2n → {0, 1}, and a subset
S ⊆ [2n], let C(f , S) be the communication complexity of computing
f , when Alice is given the bits of the input that correspond to S, and
Bob is given the bits that correspond to the complement of S. In
Chapter , we saw that the area of a chip computing f can be related
to C(f , S), for some set S containing roughly half of the input. Use a
counting argument to show that there is a universal constant ε > 0
such that for most functions f , it holds that C(f , S) ≥ εn, for every
set S with 2n/3 ≤ |S| ≤ 3n/4.

Ex 1.9 — Give an explicit example of a function f : {0, 1}4n → {0, 1}
for which C(f , S) ≥ Ω(n) for all sets S with |S| ≤ 4n/3. Hint:
Consider functions of the type f (A, B, x) = IP(xA, xAc), where here
A, B ⊂ [m] are disjoint subsets of size m/10, x ∈ {0, 1}m, and xA, xB

are the projections of x onto the the coordinates of A and B.

Ex 1.10 — Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with
the property that for every x ∈ {0, 1}n, there are exactly t choices
for j with f (x, y) = 1, and for every y ∈ {0, 1}n, there are exactly t
choices for x with f (x, y) = 1. Our goal is to show that f must admit
a 0-cover of size at most (2n)t.
To do this, we use Hall’s matching theorem. Let L, R be disjoint sets of
the same size. Given a bipartite graph with vertex set L ∪ R, where
every edge belongs to the set L× R, Hall’s theorem says that if every
subset S ⊆ L is connected to at least |S| vertices in R, then the graph

deterministic protocols 49

must contain a matching, namely |L| disjoint edges.

•Use Hall’s theorem to prove that there are permutations π1, . . . , πt

such that f (x, y) = 1 if and only if y = πr(x) for some r.

•Give a 0-cover of size (2n)t for f .

Ex 1.11 — This exercise shows that an analogue of Theorem 1.36

does not hold for partial functions. These are functions that are
defined on a subset of the domain. Consider the partial function
f : {0, 1}n × {0, 1}n → {0, 1}, where the input to each party is
interpreted as two n/2 bit strings, defined by

f (x, x′, y, y′) =

1 if x = y and x′ 6= y′,

0 if x 6= y and x′ = y′.

Show that there are 2n monochromatic rectangles that cover the
domain of f . A rectangle is considered monochromatic if f takes on
the same value on any two inputs of the rectangle where f has been
defined. Show that the communication complexity of f is at least
Ω(n).

Ex 1.12 — For a boolean function g, define g∧k by

g(x1, x2, . . . , xk, y1, . . . , yk) = ∧k
i=1g(xi, yi).

Show that if g∧k has a 1-cover of size 2`, then g has a 1-cover of size
2`/k.

Ex 1.13 — Show that if g : {0, 1}n × {0, 1}n → {0, 1} requires c bits of
communication, then any protocol computing both ∧k

i=1g(xi, yi) and
∨k

i=1g(xi, yi) requires k(
√

c/2− log n− 1) bits of communication.

The linear algebra method in combi-
natorics, spectral graph theory, and
representation theory are just a few
examples of this paradigm.

Sometimes it is convenient to use
Mxy = (−1)g(x,y) instead.

If the function depends on the inputs of
k parties, the natural representation is
by a k-dimensional tensor rather than a
matrix.

Throughout this chapter, rank is over
the reals, unless explicitly stated
otherwise.

Low-rank boolean matrices have even
more structure. This will be exploited
several times in this chapter.

2
Rank

A matrix is a powerful and versatile way to represent objects.
Once an object is encoded as a matrix, the many tools of linear alge-
bra can be put to use to reason about the object. This broad approach
has a long history in mathematics, and it is useful in communication
complexity as well.

Communication problems between two parties correspond to
matrices in a natural way. A function g : X ×Y → {0, 1} corresponds
to an |X | × |Y| matrix M, where the (x, y)’th entry of M is Mxy =

g(x, y). What do the linear algebraic properties of M tell us about the
communication complexity of g?

The rank of a matrix is a fundamental concept in linear algebra.
It is the maximum size of a set of linearly independent rows in the
matrix. We write rank(M) to denote the rank of M. One reason
why rank is such a useful concept is that is has many equivalent
interpretations:

Fact 2.1. For an m× n matrix M, the following are equivalent:

1. rank(M) = r.

2. r is the maximum size of a set of linearly independent columns in M.

3. r is the smallest number such that M can be expressed as M = AB,
where A is an m× r matrix, and B is an r× n matrix.

4. r is the smallest number such that M can be expressed as the sum of r
matrices of rank 1.

The rank of a matrix is invariant under several natural operations:
scaling the entries of a matrix by the same non-zero number, reorder-
ing the rows, reordering the columns, or taking the transpose does
not change the rank. Coincidentally, communication complexity
is also invariant under these operations—could there be a deeper
relationship between rank and communication?

52 communication complexity

Gaussian elimination can be used to
compute the rank of an n× n matrix in
O(n3) steps.

When we refer to the communication
complexity of M, we mean the commu-
nication complexity of the associated
function.

See Exercise 2.1.

Theorem 2.2 is far from the last word on
the subject. By the end of this chapter,
we will prove that the communication
is bounded from above by a quantity
closer to

√
r.

Below we see many examples where
Theorem 2.4 immediately implies
sharp lower bounds on communication
complexity.

This connection is tantalizing because rank is an old concept
in mathematics, one that we understand quite well. There are effi-
cient algorithms for computing the rank, but no such algorithms
for computing communication complexity. Moreover, rank satis-
fies many properties that do not seem to have natural analogues in
communication complexity. For example, if U, V are invertible, then
rank(UMV) = rank(M).

Communication Complexity and Rank

The many equivalent definitions of rank discussed above yield
inequalities that relate communication complexity and rank. We start
by showing that small rank implies small communication complexity.

Theorem 2.2. The communication complexity of M is at most rank(M) + 1.

Proof. The third characterization of rank in Fact 2.1 is suggestive of
communication complexity. Alice and Bob can use a factorization
M = AB, where A is an m × r matrix and B is an r × n, to get a
protocol for computing g. Alice is given an input x ∈ X and Bob is
given y ∈ Y . If ex ∈ {0, 1}X denotes the standard unit column vector
that is 1 in the x’th entry, and ey ∈ {0, 1}Y denotes the standard unit
column vector that is 1 in the y’th entry, then

g(x, y) = eᵀx Mey = eᵀx ABey.

Now, Alice can send Bob eᵀx A, and then Bob can multiply this vector
with Bey, and send back Mx,y. This involves transmitting a vector
of at most r + 1 numbers. It seems like we have shown that the
communication complexity is at most r + 1. But there is a catch—each
of the numbers in the vector eᵀx A may require many bits to encode.

To salvage this approach, we ensure that A is also boolean.

Claim 2.3. M = AB, where A is a boolean m× r matrix and B is an r× n
matrix.

Let A be an m × r matrix consisting of r columns of M that are
linearly independent. Since r is the rank of M, every other column of
M is a linear combination of these r columns. So, there is some r× n
matrix B with AB = M. The parties use the same protocol as above,
except that now every entry in the vector eT

x A can be encoded with a
bit, since A is boolean.

Conversely, the decomposition of communication protocols in
terms of combinatorial rectangles shows that large rank implies large
communication complexity.

rank 53

When M is the all 1’s matrix,
log(rank(M) + 1) = 1, but the com-
munication complexity is 0.

Fact 2.6 follows from the definition of
rank.

Fact 2.7 follows from the fact that the
rank of M is the minimum number of
rank 1 matrices that add up to M.

Theorem 2.4. If M is not the all 1’s matrix, then the communication
complexity of M is at least log(rank(M) + 1).

Proof. By Theorem 1.6, we know that M can be partitioned into 2c

monochromatic rectangles. For every rectangle R of the partition, let
z denote the value of the function in the rectangle, and let MR denote
the matrix whose (x, y)’th entry is z if (x, y) ∈ R, and 0 otherwise.
We have rank(MR) ≤ 1. Moreover, M can be expressed as the sum of
2c such matrices, and at least one of these matrices is 0, since M has
at least one zero. By Fact 2.1, rank(M) ≤ 2c − 1.

How sharp are the two bounds above? Which of the two quantities
rank(M) and log(rank(M)) is closer to the communication complexity
of M? This is the issue we explore in the rest of this chapter.

Properties of Rank

In order to better understand the relationship between rank and
communication complexity, we review some of the nice properties of
rank.

A matrix R is called a submatrix of M if R can be obtained by
repeatedly deleting rows and columns of M. In other words, it is
the matrix specified by a subset of the columns of M and a subset of
the rows of M. It is the matrix obtained by restricting the inputs to a
rectangle.

Fact 2.5. If R is a submatrix of M then rank(R) ≤ rank(M).

Fact 2.6. rank

([
A C
0 B

])
≥ rank(A) + rank(B).

Fact 2.7. |rank(A)− rank(B)| ≤ rank(A + B) ≤ rank(A) + rank(B).

A consequence of Fact 2.7 is that the constants used to represent
a function g(i, j) do not significantly change the rank. For example,
if M is a matrix with 0/1 entries, one can define a matrix M′ of the
same dimensions by

M′i,j = (−1)Mi,j .

This operation replaces 1’s with −1’s and 0’s with 1’s. Now observe
that M′ = J − 2M, where J is the all 1’s matrix, and so

Fact 2.8. |rank(M′)− rank(M)| ≤ rank(J) = 1.

Another nice feature of rank is that monochromatic rectangles
correspond to submatrices of rank at most 1. The following fact can
be proved using the previous facts:

54 communication complexity

See Exercise 2.2.

Try to prove Fact 2.10.

Note that communication complexity
must be an integer. log 2n = n, and
log is a strictly increasing function, so
log(2n + 1) > n.

Can you prove a sharp 1 + dlog ne lower
bound using rank?

Fact 2.9. If rank(R) ≤ 1,

rank

([
R
B

])
+ rank

([
R A

])
≤ rank

([
R A
B C

])
+ 3.

The tensor product of an m× n matrix M and an m′ × n′ matrix M′

is the mm′ × nn′ matrix T = M ⊗ M′ whose entries are indexed by
tuples (i, i′), (j, j′) defined by

T(i,i′),(j,j′) = Mi,j ·Mi′ ,j′ .

The tensor product multiplies the rank, a fact that is very useful for
proving lower bounds.

Fact 2.10. rank(M⊗M′) = rank(M) · rank(M′).

When the matrix is both boolean and low-rank, it often enjoys
additional properties. One such property was exploited when we
proved Claim 2.3. A consequence of the claim is:

Lemma 2.11. A matrix with 0/1 entries of rank r has at most 2r distinct
rows, and at most 2r distinct columns.

Proof. If M is a boolean matrix, by Claim 2.3, M = AB where A is a
boolean m× r matrix and B is an r×m matrix. Since A is boolean, A
can have at most 2r distinct rows. But this means M can have at most
2r distinct rows. A similar argument proves that M can have at most
2r distinct columns.

Lower bounds based on rank

The logarithm of the rank always gives a lower bound on
communication complexity. Here we revisit several examples from
the previous chapter, and see what this lower bound gives.

Equality We start with the equality function, defined in (1.2). The
matrix of the equality function is just the identity matrix. The rank
of the matrix is 2n, proving that the communication complexity of
equality is at least dlog(2n + 1)e = n + 1.

Greater-than Consider the greater than function, defined in (1.4).
The matrix of this function is the upper-triangular matrix which
is 1 above the diagonal and 0 on all other points. Once again,
the matrix has full rank. This proves that the communication
complexity is at least log(n + 1).

rank 55

1 Gregoryev, 1982

Polynomials are often used to prove
facts in combinatorics. It may be helpful
to recall the section about polynomials
from the Conventions and Preliminaries
chapter.

Can you come up with a similar
proof that shows that the matrix for
disjointness on sets of size exactly k also
has full rank?

Disjointness Consider our running example, the disjointness function,
defined in (1.1). The size of rectangles did not give sharp lower
bounds on the communication complexity of Disj. To prove sharp
lower bounds using footings sets, we needed to carefully identify
the correct fooling set. We now show that rank gives a sharp lower
bound.

Let Dn be the 0/1 matrix that represents disjointness. Let us order
the rows and columns of the matrix in lexicographic order so that
the last rows/columns correspond to sets that contain n. We see
that Dn can be expressed as:

Dn =

[
Dn−1 Dn−1

Dn−1 0

]
In other words Dn = D1 ⊗ Dn−1 and so

rank(Dn) = 2 · rank(Dn−1) = 2 · 2 · rank(Dn−2) = · · · = 2n,

by Fact 2.10. This proves that the communication complexity of
disjointness is at least dlog(2n + 1)e = n + 1.

k-disjointness Consider the disjointness function restricted to sets
of size at most k. In this case, the matrix is a ∑k

i=0 (
n
i) × ∑k

i=0 (
n
i)

matrix. Let us write Dn,k to represent the matrix for this problem.
See Figure 2.1.

Analyzing the rank of Dn,k is more complicated than the three
examples above. We shall use algebra to prove1 that this matrix
also has full rank. In particular, we a powerful tool from algebra—
polynomials.

For two sets X, Y ⊆ [n] of size at most k, define the monomial
mX(z1, . . . , zn) = ∏i∈X zi, and the string zY ∈ {0, 1}n such that
(zY)i = 0 if and only if i ∈ Y. This ensures that Disj(X, Y) =

mX(zY). The rows of the matrix are associated with the X’s. Any
non-zero linear combination of the rows corresponds to a linear
combination of the monomials we have defined, and so gives a
non-zero polynomial f . We show there must be a set Y of size at
most k so that f (zY) 6= 0, so the linear combination cannot be zero.
This proves that the rank of the matrix is full.

To show this, let X be a set that corresponds to a monomial of
maximum degree in f . Let us restrict the values of all variables
outside X to be equal to 1. This turns f into a non-zero polyno-
mial that only depends on the variables corresponding to X. In
this polynomial, let X′ denote the set of variables in a minimal
monomial that has a non-zero coefficient. Consider the assignment
zY for Y = X − X′. Now, f (zY) is equal to the coefficient of this
minimal monomial, which is non-zero.

56 communication complexity

Figure 2.1: The disjointness matrix D9,4,
which represents disjointness when
restricted to sets of size at most 4 on a
universe of size 9. The sets are ordered
lexicographically. Compare this with
Figure 3.

Try to prove a sharp n + 1 lower bound
using rank.

A matrix is called non-negative if all of
its entries are non-negative.

Inner-product Our final example is the inner product function IP :
{0, 1}n × {0, 1}n → {0, 1} defined by

IP(x, y) =
n

∑
i=1

xiyi mod 2. (2.1)

Here it is helpful to use Fact 2.8. If Pn represents the IP matrix af-
ter sorting the rows and columns lexicographically, and replacing 1
with −1 and 0 with −1, we see that

Pn =

[
Pn−1 Pn−1

Pn−1 −Pn−1

]
=

[
1 1
1 −1

]
⊗ Pn−1.

So, by Fact 2.10, rank(Pn) = 2 · rank(Pn−1). This proves that
rank(Pn) = 2n, and so by Fact 2.8, the communication complexity
of IP is at least n.

Non-Negative Rank

Rank is not the only way to measure the complexity of matrices
using linear algebra. When working with non-negative matrices,
there is another very natural measure, the non-negative rank.

The non-negative rank of a non-negative matrix M, denoted
rank+(M), is the smallest number of non-negative rank 1 matrices
that sum to M. Equivalently, it is the smallest number r such that
such that M = AB, where A is a non-negative m× r matrix and B is a
non-negative r× n matrix. The definitions immediately give:

rank 57

Another example is the matrix indexed
by binary strings x, y ∈ {0, 1}n where
Mx,y = (1− 〈x, y〉)2. Its rank(M) is at
most polynomial in n, but we shall see
in Chapter 6 that rank+(M) ≥ 2Ω(n).

2 Lovász, 1990

Recall the notion of covers from Defini-
tion 1.35.

Fact 2.12. If M is an m × n non-negative matrix then rank(M) ≤
rank+(M) ≤ min{n, m}.

However, rank(M) and rank+(M) may be quite different. For
example, given a set of numbers X = {x1, . . . , xn}, consider the n× n
matrix defined by Mi,j = (xi − xj)

2 = x2
i + x2

j − 2xixj. Since M is
the sum of three rank 1 matrices, namely the matrices corresponding
to x2

i , x2
j and −2xixj, we have rank(M) ≤ 3. On the other hand,

we can show by induction on n that rank+(M) ≥ log n. Indeed, if
rank+(M) = r, then there must be non-negative rank 1 matrices
R1, . . . , Rr such that M = R1 + . . . + Rr. Let the set of positive entries
of R1 correspond to the rectangle A× B ⊂ X× X. Then we must have
that either |A| ≤ n/2 or |B| ≤ n/2, or else there will be an element
x ∈ A ∩ B, but Mx,x = 0 is not positive. Suppose without loss of
generality that |A| ≤ n/2. Let M′ be the submatrix that corresponds
to the numbers of X− A. Then, by induction,

r− 1 ≥ rank+(M′) ≥ log(n/2) = log(n)− 1.

Non-negative rank is a fundamental concept. We shall revisit it
again in Chapter 12. We saw in Theorem 2.4 that the logarithm of the
rank gives a lower bound on communication complexity. The same
argument works for non-negative rank:

Theorem 2.13. If M is not the all 1’s matrix, the communication complexity
of M is at least log(rank+(M) + 1).

Since rank(M) ≤ rank+(M), Theorem 2.2 implies that the commu-
nication complexity is at most rank+(M) + 1. In fact2, there is a much
more efficient communication protocol:

Theorem 2.14. The communication complexity of a boolean matrix M is at
most O(log2(rank+(M))).

The theorem follows from a more general statement:

Lemma 2.15. If a boolean matrix M has a 1-cover of size 2c then the
communication complexity M is at most O(c · log(rank(M))).

Let us use the lemma to prove the theorem. Suppose rank+(M) =

r and write M = R1 + . . . + Rr, where R1, . . . , Rr are non-negative rank
1 matrices. The set of non-zero entries of each matrix Ri must form
a monochromatic rectangle in M with value 1. Thus, M must have a
1-cover of size r. By the lemma, its communication complexity is at
most

O(log(rank+(M)) · log(rank(M))) ≤ O(log2(rank+(M))).

58 communication complexity

3 Lovász and Saks, 1988

4 Göös et al., 2015; and Ambainis et al.,
2016

Proof of Lemma 2.15. For every rectangle R in the 1-cover, we can
write

M =

[
R A
B C

]
.

By Fact 2.9, either

rank
([

R A
])
≤ (rank(M) + 3)/2, (2.2)

or

rank

([
R
B

])
≤ (rank(M) + 3)/2. (2.3)

So, if Alice sees a rectangle R in the cover that is consistent with her
input and satisfies (2.2), she announces its name. Describing R takes
at most c bits. Similarly, if Bob sees a rectangle R that is consistent
with his input and satisfies (2.3), he announces its name.

If they find an R that contains their input, then they deduce that
the output is 1. Otherwise, both parties then restrict their attention
to the appropriate submatrix, which reduces the rank of M by a
constant factor. This can continue for at most O(log(rank(M))) steps.
If neither finds an appropriate R to announce, then they can safely
output 0.

Better Upper Bounds using Rank

Low rank implies low communication complexity, and
vice versa. There is, however, an exponential gap between the two
bounds we have seen so far. The communication complexity is at
least log(rank(M) + 1) and at most rank(M) + 1. Given Theorem 2.14,
one might be tempted to believe that the first inequality is closer to
the truth. This is is the log-rank conjecture due to Lovász and Saks3:

Conjecture 2.16 (Log-rank conjecture). There is a constant α such that
the communication complexity of a non-constant matrix M is at most
logα(rank(M)).

It is known4 that α must be at least 2 for the conjecture to hold.
See Chapter 8 for more details.

In fact, the log-rank conjecture can be stated in a form that has
nothing to do with communication: Is it true that the logarithm of the
rank of a boolean matrix is at most polylogarithmic in the logarithm
of its non-negative rank? Is it true that a boolean matrix of small rank
has a small 1-cover? Is it true that a boolean matrix of small rank

rank 59

5 Lovett, 2014

Lovett actually proved that the com-
munication is bounded from above by
O(
√

r log r), but we prove the weaker
bound here for ease of presentation.

6 Lovász, 1990; and Nisan and Wigder-
son, 1995

Strictly speaking, the rank decreases in
this step only if rank(M) > 3. However,
once rank(M) ≤ 3, the parties can
use the trivial protocol to finish the
computation.

has a large submatrix of even smaller rank? All such statements are
equivalent to the log-rank conjecture.

Here we prove5 a weaker bound:

Theorem 2.17. If the rank of a matrix is r > 1, then its communication
complexity is at most O(

√
r log2 r).

To prove Theorem 2.17, we need to understand something funda-
mental about the structure of low rank boolean matrices. We prove:

Lemma 2.18. Any m× n matrix that has 0/1 entries and rank r ≥ 0 must
contain a monochromatic submatrix of size at least mn · 2−O(

√
r log r).

Before proving the lemma, let us use6 it to get a protocol.

Proof of Theorem 2.17. Let R be the rectangle promised by Lemma 2.18.
We can write the matrix M as:

M =

[
R A
B C

]
.

By Fact 2.9,

rank

([
R
B

])
+ rank

([
R A

])
≤ rank

([
R A
B C

])
+ 3.

Without loss of generality, suppose

rank

([
R
B

])
≤ rank

([
R A

])
. If this does not hold, then Alice speaks.

In this case, Bob sends a single bit to Alice indicating whether y is
consistent with R. If it is consistent, the parties set

M =

[
R
B

]
,

and repeat. They have essentially reduced the rank of the matrix by
half. If y is not consistent with R, then the parties set

M =

[
A
C

]
,

and repeat. In this case, the size of the matrix is less by a factor of
1− 2−O(

√
r log r) = 1− 2−k, for a parameter k, and the rank is still at

most r.
By Lemma 2.11, we can assume that the matrix M has at most 2r

rows and columns. In each step of the protocol, one of the parties
sends a bit, and either reduces the rank, or reduces the size of the
matrix. The number of transmissions of the first type is at most

60 communication complexity

If we replace M with J −M, where J is
the all 1’s matrix, this can increase the
rank by at most 1, but now the role of
0’s and 1’s has been reversed.

7 Gavinsky and Lovett, 2014

8 Rothvoß, 2014

9 John, 1948

O(log r), since after that many transmissions, the rank of the matrix
is reduced to a constant. The number of transmissions of the second
type is at most 2r ln 2 · 2k, since after that many steps, the number of
entries in the matrix has been reduced to

22r(1− 2−k)2r·ln 2·2k
< 22re−2−k ·2r·ln 2·2k

= 1. using 1− x < e−x for x > 0.

Thus, the number of leaves in this protocol is at most(
2r · ln 2 · 2k + O(log r)

O(log r)

)
≤ 2O(

√
r log2 r).

Finally, by Theorem 1.7, we can balance the protocol tree to obtain
a protocol computing M with length O(

√
r log2 r).

It only remains to prove Lemma 2.18. It is no loss of generality to
assume that the matrix has more 0’s than 1’s—if this is not the case,
we can always work with the matrix J − M. The lemma is proved
with two claims. The first claim shows that M must contain a large
rectangle that is almost monochromatic:

Claim 2.19. If at least half of the entries in M are 0’s, then there is a
submatrix T of M of size at least mn · 2−O(

√
r log r) such that the fraction of

1’s in T is at most 1/r3.

The second claim7 shows that a low rank matrix with few ones
must contain a large zero rectangle:

Claim 2.20. If T is 0/1 matrix of rank r ≥ 2, where at most 1/r3 fraction of
the entries are 1’s, then there is a submatrix consisting of at least half of the
rows and half of the columns of T that only contains 0’s.

Proof. Call a row of T good if the fraction of 1’s in it is at most 2/r3.
At least half the rows of T must be good, or else T would have more
than 1/r3 fraction of 1’s overall. Let T′ be the submatrix obtained
by restricting T to the good rows. Since rank(T′) ≤ r, it has r rows
A1, . . . , Ar that span all the other rows of T′. Each row Ai has at most
2/r3 fraction of 1’s, so at most r · 2/r3 ≤ 1/2 fraction of the columns
can contain a 1 in one of these r rows. Let T′′ be the submatrix ob-
tained by restricting T′ to the columns that do not have a 1 in the
rows A1, . . . , Ar. Then T′′ must be 0, since every row of T′ is a linear
combination of A1, . . . , Ar.

It remains to prove Claim 2.19. The claim is proved8 using John’s
theorem9 from convex geometry. Informally, John’s theorem says that
if a convex set is sufficiently round, then it cannot be too long. To
formally state the theorem, we need some definitions.

A set K ⊆ Rr is called convex if whenever x, y ∈ K, then all the
points on the line segment between x and y are also in K. The convex

rank 61

The “
√

r" and “1" in the statement of
Lemma 2.22 can be replaced by any
numbers whose product is

√
r.

The lemma also holds for all matrices
M so that |Mi,j| ≤ 1 for all i, j.

Since A′ has rank r, K′ has full dimen-
sion, and so contains an ellipsoid of
non-zero volume.

hull of a set of points is the smallest convex body containing the
points. The set is called symmetric if whenever x is in K, −x is also in
K. An ellipsoid centered at 0 is a set of the form:

E =

{
x ∈ Rr :

r

∑
i=1
〈x, ui〉2 /α2

i ≤ 1

}
,

where u1, . . . , ur is an orthonormal basis of Rr, and α1, . . . , αr are
non-zero numbers.

Theorem 2.21 (John). Let K ⊆ Rr be a symmetric convex body such that
the unit ball is the most voluminous of all ellipsoids contained in K. Then
every element of K has Euclidean length at most

√
r.

John’s theorem can be used to show that any boolean matrix has a
useful factorization:

Lemma 2.22. Any boolean matrix M of rank r can be expressed as M = AB,
where A is an m× r matrix whose rows are vectors of length at most

√
r, and

B is an r× n matrix whose columns are vectors of length at most 1.

Proof. Since M has rank r, we know that it can be expressed as
M = A′B′, where A′ is an m × r matrix, and B′ is an r × n matrix.
The matrices A′, B′ do not necessarily satisfy the length constraints
we need. To fix this, we use John’s theorem.

Let a1, . . . , am be the rows of A′, and b1, . . . , bn be the columns
of B. Let K′ be the convex hull of {±a1, . . . ,±am}. Our first goal is
to modify K′ to a convex body K so that the ellipsoid of maximum
volume in K is the unit ball.

Suppose

E′ =

{
x ∈ Rr :

r

∑
i=1
〈x, ui〉2 /α2

i ≤ 1

}
is the ellipsoid of maximum volume contained in K′. Using a linear
map, we transform E′ to a unit ball. We define L by its action on the
basis u1, . . . , ur—define L(ui) = αiui. Let K be the convex hull of
the points {±La1,±La2, . . . ,±Lam}. K is just the image of K′ under
L. After applying L, the volume of any set is multiplied by a factor
of α1α2 . . . αr. This has the desired effect—the ellipsoid of maximum
volume in K is now the image of E′ under L, which is a unit ball:

E = L(E′) =

{
x ∈ Rr :

r

∑
i=1
〈x, ui〉2 ≤ 1

}
.

Let A be the matrix whose rows are L(a1), . . . , L(am), and B be the
matrix whose rows are L−1(b1), . . . , L−1(bm). Then, by the choice of L,
we have

M = A′B′ = AB.

62 communication complexity

Figure 2.2: After applying a suitable
linear transformation, the unit ball is
the inscribed ellipsoid of maximum
volume inside K.

0 0.5 1

π
4

π
2

α

arccos(α)
π/2− 2πα/7

Figure 2.3: arccos(α) ≤ π/2− 2πα/7 for
0 ≤ α ≤ 1.

vi

wj

Figure 2.4: The region where all zk’s
must fall to ensure that (i, j) ∈ R, when
Mi,j = 0.

By John’s theorem, the length of all rows of A is at most
√

r, as
desired.

It only remains to argue that columns of B are of length at most
1. This is where we use the fact that M is boolean. Let b ∈ Rr be a
row of B. Consider the unit vector in the same direction e = b/‖b‖.
Since e is of unit length, we have e ∈ K. For every row a of A, we
have | 〈b,−a〉 | = | 〈b, a〉 | = |Mi,j| ≤ 1. Since K is the convex
hull of the rows and the negations of the rows of A, it follows that
‖b‖ = | 〈b, e〉 | ≤ 1.

Now let us use Lemma 2.22 to complete the proof.

Proof of Claim 2.19. Let A, B be the two matrices guaranteed by
Lemma 2.22. Let a1, . . . , am be the rows of A and b1, . . . , bn be the

columns of B. Let θi,j = arccos
(
〈ai ,bj〉
‖ai‖‖bj‖

)
be the angle between the

unit vectors in the directions of ai and bj. We claim that

θi,j

= π
2 if Mi,j = 0,

≤ π
2 − 2π

7
√

r if Mi,j = 1.

When ai, bj are orthogonal, the angle is π/2. When the inner product
is closer to 1, we use the fact that arccos(α) ≤ π/2− 2πα/7, which
implies that the angle is at most arccos

(
1√
r

)
≤ π

2 − 2π
7
√

r .
The existence of the rectangle we seek is proved via the probabilis-

tic method. Consider the following experiment. Sample t vectors
z1, . . . , zt ∈ Rr of length 1 uniformly and independently at random.
Use them to define the rectangle

R = {(i, j) : ∀k ∈ [t] 〈ai, zk〉 > 0,
〈
bj, zk

〉
< 0}.

For fixed (i, j) and k, the probability that 〈ai, zk〉 > 0 and
〈
bj, zk

〉
< 0

rank 63

� 2p

7
p

r

vi

wj

Figure 2.5: The region where all zk’s
must fall to ensure that (i, j) ∈ R, when
Mi,j = 1.

is exactly 1
4 −

π/2−θi,j
2π . So for a fixed (i, j) we get

Pr
z1,...,zt

[(i, j) ∈ R]

=
(

1
4

)t
if Mi,j = 0,

≤
(

1
4 − 1

7
√

r

)t
if Mi,j = 1.

Let R1 denote the number of 1’s in R and R0 denote the number of
0’s. Set t = d7√r log re. We can conclude that

E [R0] ≥
mn

2 · 4t ,

and

E [R1] ≤
mn

2 · 4t ·
(

1− 4
7
√

r

)t
≤ mn

2 · 4t · e
− 4

7
√

r t ≤ mn
2 · 4t · r

−4 log e,

since 1− x ≤ e−x for 0 < x < 1. Now let Q = R0 − r3R1. By linearity
of expectation, we have

E [Q] ≥ mn
2 · 4t · (1− 1/r) ≥ 0.

There must be some rectangle R for which Q ≥ 0. For this rectangle,
R0 ≥ r3R1. The fraction of 1 entries in R is at most

R1

|R| ≤
R0

r3|R| ≤
1
r3 .

Exercises

Ex 2.1 — Show that there is a matrix whose rank is 1, yet its com-
munication complexity is 2. Conclude that the +1 is necessary in
Theorem 2.2.

Ex 2.2 — Prove Fact 2.9.

Ex 2.3 — The matrices we are working with have 0/1 entries, so one
can view these entries as coming from any field—for instance, we can
view them as real numbers, rational numbers or elements of the finite
field F2. This is important, because the value of the rank may depend
on the field used.

1.Give an example of a 3× 3 matrix whose rank over F2 is not the
same as its rank over the reals.

2.Prove that if M has 0/1 entries, then the rank of M over the reals
is equal to its rank over the rationals, which is at least as large as
its rank over F2.

64 communication complexity

M is symmetric if Mi,j = Mj,i .

3.For every r, show that there is matrix whose F2-rank and com-
munication complexity are both r. Conclude that the log-rank
conjecture is false over F2.

Ex 2.4 — Show that if f (x, y) has fooling set S such that f evaluates
to 1 on every point of S. Then, we shall show that rank(M f) ≥

√
|S|.

1.Show that every row and column of M f can contain at most one
element of S. Thus, after rearranging the rows and columns, we
can assume that the elements of S lie on the diagonal.

2.Consider the matrix A = M f ⊕ M f . Prove that rank(A) ≥ |S|.
Conclude that rank(M f) ≥

√
|S|.

Ex 2.5 — Show that there is a boolean matrix of rank at most 2r with
2r distinct rows, and 2r distinct columns. Conclude that Lemma 2.11

is nearly sharp. Hint: Consider the 2r × r matrix M obtained by taking all
possible binary strings of length r. Construct the desired matrix using M
and Mᵀ as submatrices.

Ex 2.6 — For any symmetric matrix M ∈ {0, 1}n×n with ones in all
diagonal entries, show that

2c ≥ n2

|M| ,

where c is the deterministic communication complexity of M, and
|M| is the number of ones in M.

Ex 2.7 — Show that the protocol used to prove Theorem 2.17 works
even if we weaken Lemma 2.18 to only guarantee the existence of
a large submatrix with rank at most r/8, instead of rank at most
1. Conclude that to prove the log-rank conjecture, it is enough to
show that every boolean matrix of rank r contains a submatrix with
mn2−polylog(r) entries and rank r/8.

We do not discuss any lower bounds on
randomized communication complexity
in this chapter. Lower bounds for
randomized protocols can be found in
Chapters 5 and 6.

The protocol uses k2n shared random
bits.

3
Randomized Protocols

Access to randomness is an enabling feature in many com-
putational processes. Randomized algorithms are often easier to
understand and more elegant than their deterministic counterparts.
Sometimes, randomness even allows to achieve results that are im-
possible to achieve deterministically, like in cryptography or data
structures.

In this chapter, we begin our investigation of randomized com-
munication complexity. We show how randomness can be used to
give communication protocols that are far more efficient than the best
possible deterministic protocols for many problems. We start with
some informal examples of randomized protocols. Later, we define
randomized protocols formally, and prove some basic properties.

Some Protocols

Equality Suppose Alice and Bob are given access to n bit strings
x, y, and want to know if these strings are the same or not (1.2).
In Chapter 1, we showed that the deterministic communication
complexity of this problem is n + 1. There is a simple randomized
protocol, where Alice and Bob use a shared random string. The
idea is to use hashing. Alice and Bob use the shared randomness
to sample a random function h : {0, 1}n → {0, 1}k. Then, Alice
sends h(x) to Bob, and Bob responds with a bit indicating whether
or not h(y) = h(x). If h(x) = h(y), they conclude that x = y. If
h(x) 6= h(y), they conclude that x 6= y.

The number of bits communicated is k + 1. The probability of
making an error is at most 2−k—if x = y then h(x) = h(y), and if
x 6= y then the probability that h(x) = h(y) is at most 2−k.

The length of this protocol is short, but it requires a huge number
of shared random coins. Is this necessary? It is not—we can de-

66 communication complexity

Many beautiful explicit constructions of
error correcting codes are also known.

See Exercise 3.1.

1 Håstad and Wigderson, 2007

In Chapter 6, we show that Ω(k) bits
are required even for randomized
protocols.

scribe similar protocols that use much less randomness. Here is
one way to achieve this.

We can reduce the number of random bits used if we use an error
correcting code. This is a function C : {0, 1}n → [2k]m such that
if x 6= y, then C(x) and C(y) differ in all but m/2−Ω(k) coordi-
nates. It can be shown that if m is set to 10n, then for any k, most
functions C will be error correcting codes.

Given a code, Alice can pick a random coordinate of C(x) and
send it to Bob, who can then check whether this coordinate is
consistent with C(y). This takes log m + log 2k = O(log n + k) bits
of communication, and again the probability of making an error is
at most 2−Ω(k). In this protocol, the parties do not require a shared
random string, since the choice of C is made once and for all when
the protocol is constructed, and before the inputs are seen.

Greater-than Suppose Alice and Bob are given numbers x, y ∈ [n]
and want to know which one is greater (1.4). We have seen that
any deterministic protocol for this problem requires log n bits
of communication. However, there is a randomized protocol
that requires only O(log log n) bits of communication. Here we
describe a protocol that requires only O(log log n · log log log n)
communication.

The inputs x, y can be encoded by `-bit binary strings, where
` = O(log n). To determine whether x ≥ y, it is enough to find
the most significant bit where x and y differ. To find this bit, we
use the randomized protocol for equality described above, along
with binary search. In the first step, Alice and Bob exchange k bits
according to the protocol for equality to determine whether the n

2
most significant bits of x and y are the same. If they are the same,
the parties continue with the remaining n

2 bits. If not, the parties
recurse on the n/2 most significant bits.

In this way, after O(log n) steps, they find the first bit where their
inputs differ. In order to ensure that the probability of making an
error in all of these O(log n) steps is small, we set k = O(log log n).
By the union bound, this guarantees that the protocol succeeds
with high probability.

k-Disjointness Suppose Alice and Bob are given sets X, Y ⊆ [n], each
of size at most k. Their goal is to determine if these sets intersect.
In Chapter 2, we used the rank method to argue that at least
log (n

k) ≈ k log(n/k) bits of communication are required. Here
we give a randomized protocol1 of length O(k). The randomized
protocol is much more efficient than the best possible deterministic
protocol when k� n.

randomized protocols 67

Alice can send i using 2dlog ie bits by
sending the binary encoding of i bit
by bit. For each bit, she also sends
an extra bit to indicate whether or
not the transmission is over. In fact,
there is a more efficient encoding
using log(i) + O(log log(i)) bits of
communication.

Xi,s = 1 if i ∈ X before step s, and
Xi,s = 0 otherwise.

The parties use shared randomness to sample a sequence of sets
R1, R2, . . . ⊆ [n]. Alice announces the smallest index i with X ⊆ Ri

and Bob announces the smallest index j with Y ⊆ Rj. This can be
done with at most 2(log(i) + log(j) + 2) bits of communication.
Now Alice can safely replace her set with X ∩ Rj, and Bob can
replace his set with Y ∩ Ri. If the sets were disjoint, they remain
disjoint, and if they were not disjoint, they must still intersect.

They repeat the above process until they communicate O(k) bits. If
one of their sets eventually becomes empty, then they know that
X, Y are disjoint. If both of their sets are non-empty, they conclude
that X, Y must intersect. We shall prove that they arrive at the
correct conclusion with probability at least 2/3.

Let us start by analyzing the expected number of bits that are
communicated in the first step.

Claim 3.1. The expected length of the first step is at most

2(|X|+ |Y|+ 2).

Proof. We start by proving that E [i] = 2|X| and E [j] = 2|Y|. The
probability that the first set in the sequence contains X is exactly
2−|X|. In the event that it does not contain X, we are picking the
first set that contains X from the rest of the sequence. Thus:

E [i] = 2−|X| · 1 + (1− 2−|X|) · (E [i] + 1)

⇒E [i] = 2|X|.

The bound on the expected value of j is the same.

Convexity now implies that the expected length of the first step is
at most

E [2(log(i) + log(j) + 2)] ≤ 2(log(E [i]) + log(E [j])) + 4

= 2(|X|+ |Y|+ 2).

The intuition is that although 2(k + 2) bits are sent in the first
round, when X, Y are disjoint, the sets in the second round are half
as large. So, roughly 2(k/2 + 2) bits are sent in the second round,
and again the sets are halved. The expected length of the protocol
should look like a geometric sum of the form 2k ·∑∞

i=0 2−i, which is
at most 4k. Let us make this more formal.

For each i ∈ [n], let Xi,s be the indicator random variable for the
event that i ∈ X before step s of the above process. Define Yi,s

68 communication complexity

Y

X

Rj Figure 3.1: When X, Y are disjoint, half
of X will be eliminated in expectation.

Indeed, since X, Y are disjoint, in each
step the probability that an element of
X survives is exactly 1/2.

similarly. If X ∪Y is not empty before step s, Claim 3.1 shows that
the expected number of bits communicated in step s is at most

2 ·
(

2 + ∑
i∈[n]

Xi,s + Yi,s

)
≤ 4 ·

(
∑

i∈[n]
Xi,s + Yi,s

)
.

Moreover, the expected value of this sum is small when X, Y are
disjoint:

Claim 3.2. If X, Y are disjoint, then

E

 ∑
i∈[n]

∞

∑
s=1

Xi,s + Yi,s

 ≤ 4k.

Proof. By linearity of expectation,

E

 ∑
i∈[n]

∞

∑
s=1

Xi,s + Yi,s

 = ∑
i∈[n]

∞

∑
s=1

E [Xi,s] + E [Yi,s] .

If Xi,1 = 0, then Xi,s = 0 for all s. If Xi,1 = 1, then the probability
that Xi,s = 1 is exactly 2−s+1, so

∑
i∈X

∞

∑
s=1

E [Xi,s] = ∑
i∈X

∞

∑
s=1

2−s+1 = 2|X| ≤ 2k.

The same bound holds for E

[
∑i∈[n] ∑∞

s=1 Yi,s

]
.

When X, Y are disjoint, Claim 3.2 implies that the expected num-
ber of bits communicated during all the steps where the parties
still have elements is at most 16k. By Markov’s inequality, the prob-
ability that the protocol communicates more than 3 · 16k = 48k bits
in such steps is at most 1/3.

We conclude that if the parties run the protocol until 48k + 2 bits
have been communicated on arbitrary inputs, the probability of
making an error is at most 1/3.

randomized protocols 69

If ∆(x, y) > n/2, replace in the analysis
the vector x by its complement vector.

For m = n0.6 we get a protocol of length
O(n0.8), and for m =

√
n/ε the length is

O(ε2n).

Hamming distance Suppose Alice and Bob are given two strings
x, y ∈ {±1}n, and want to estimate the Hamming-distance:

∆(x, y) = |{i ∈ [n] : xi 6= yi}| =
n− 〈x, y〉

2
.

We say that a protocol π approximates the Hamming distance up
to a parameter m, if |π(x, y)− ∆(x, y)| ≤ m for all inputs x, y. In
Exercise 1.7, we showed that for any α < 1/2, approximating the
Hamming distance up to αn requires communication Ω(n). There
is a significantly better randomized protocol, as we see below.

Alice and Bob use shared randomness to sample i1, . . . , ik ∈ [n]
independently and uniformly at random. They communicate 2k
bits to compute the empirical distance

γ = (1/k) · |{j ∈ [k] : xij 6= yij}|,

and output γn.

We now analyze the approximation factor of this algorithm. As-
sume ∆(x, y) ≤ n/2. Define Z1, . . . , Zk by

Zj =

1 if xij 6= yij ,

0 otherwise.

The expected value of each Zj is ∆(x, y)/n. So if m ≤ ∆(x, y), we
can apply the Chernoff-Hoeffding bound to conclude:

Pr[|γk− ∆(x, y)k/n| > mk/n] ≤ e−
(

m
∆(x,y)

)2
· ∆(x,y)k

n · 13

≤ e−
m2k

3∆(x,y)n .

If m > ∆(x, y), we have

Pr[γk > ∆(x, y)k/n + mk/n] ≤ e−
m

∆(x,y) ·
∆(x,y)k

n · 13

≤ e−
mk
3n .

Since m ≤ n and ∆(x, y) ≤ n, in either case this probability is

at most e−
m2k
3n2 . Thus, if we set k = 3n2/m2, we obtain a protocol

whose probability of making an error is at most 1/e.

Randomized Communication Complexity

Randomness can appear in several ways in communication
protocols. The parties could use shared randomness, each party
could toss some private coins, and the inputs could be random as

70 communication complexity

If a randomized protocol never makes
an error, we can fix the randomness to
obtain a deterministic protocol that is
always correct.

In some contexts, it makes sense to
measure the expected length.

Is it possible to reduce the error in an
average-case protocol over some fixed
distribution µ?

well. We now discuss definitions that capture these different uses of
randomness.

We say that a protocol uses public coins if all parties have access
to a common shared random string. We usually denote the public
randomness of the protocol by R. We say that the protocol uses
private coins if each party privately samples an independent random
string. We denote the private coins of Alice and Bob by Ra and Rb.

So there are four potential sources of randomness—R, Ra, Rb and
the input (X, Y). These four random variables are always assumed
to be independent. A randomized protocol is simply a distribution
over deterministic protocols. Once R, Ra, Rb are fixed, we are left with
a deterministic protocol, which we already defined. That is, for all
R, Ra, Rb, there is a deterministic protocol πR,Ra ,Rb that operates on
the input (X, Y). The distribution of R, Ra, Rb can always be assumed
to be uniform over some domain.

Every private coin protocol can be easily simulated by a public
coin protocol. We shall soon see a partial converse—every public
coin protocol can be simulated with private coins, albeit with a small
increase in the length of the protocol.

There are two standard ways to measure the probability that a
randomized protocol makes an error:

Worst-case We say that a randomized protocol has error ε in the
worst-case if for every input, the probability that the protocol makes
an error is at most ε. That is, for all x, y,

Pr
R,Ra ,Rb

[πR,Ra ,Rb(x, y) is wrong] ≤ ε.

Average-case Given a distribution on inputs µ, we say that a protocol
has error ε with respect to µ if the probability that the protocol
makes an error is at most ε when the inputs are sampled from µ.
That is,

Pr
R,Ra ,Rb ,(X,Y)

[πR,Ra ,Rb(X, Y) is wrong] ≤ ε.

In both cases, the length of the protocol is defined to be the maxi-
mum depth of all of the deterministic protocol trees that the protocol
may generate.

Error Reduction

The error in worst-case protocols can be reduced by repetition.
When a protocol has error ε < 1/2 in the worst case, we can run
it several times and output the most common outcome that we see.
This reduces the probability of making an error. If we run the proto-
col k times, and output the most frequent output in all of the runs,

randomized protocols 71

For example, if the error is 1/3, then
repeating the protocol O(log(1/δ))
reduces the error to at most δ.

The minimax principle can be applied
to almost any randomized computa-
tional process. It does not rely on any
features of the communication model.

2 von Neumann, 1928

von Neumann’s minimax principle can
be seen as a consequence of duality in
linear programming.

It may seem overly simplistic to model
two-player games using a matrix. How
can we possibly model an interactive
game like chess using a matrix? The
idea is that each row of the matrix
represents the entire strategy of the
player, encoding how he might respond
at every point during the play. Each
pair of strategies then leads to a winner
(or a draw), and the entries of the
matrix can be set appropriately. As
von Neumann said, “In other words,
the player knows before hand how he
is going to act in a precisely defined
situation: he enters the game with a
theory worked out in detail.”

The classic Rock-Paper-Scissors game
is a zero-sum game with the following
payoff matrix:

R P S

R 0 −1 1
P 1 0 −1
S −1 1 0

there will be an error in the output only if at least k/2 of the runs
computed the wrong answer. By the Chernoff bound, the probability
of error is thus reduced to at most 2−Ω(k(1/2−ε)2). For this reason,
we often restrict our attention to protocols with error 1/3. The error
can be made an arbitrarily small constant with a constant number of
rounds of repetition.

Minimax

Amazingly, the worst-case and average-case complexity of a problem
are related. This principle is called Yao’s minimax principle.

Theorem 3.3. The worst-case randomized communication complexity
of a function g with error at most ε is equal to the maximum, over all
distributions µ on inputs, of the average-case communication complexity of
g with error at most ε with respect to µ.

To prove Theorem 3.3, we appeal to a famous minimax principle
due to von Neumann2:

Theorem 3.4. Let M be an m× n matrix with entries that are real numbers.
Let A denote the set of 1×m row vectors with non-negative entires such that
∑i xi = 1. Let B denote the set of n× 1 column vectors with non-negative
entries such that ∑j yj = 1. Then

min
x∈A

max
y∈B

xMy = max
y∈B

min
x∈A

xMy.

Theorem 3.4 has an intuitive but surprising interpretation in terms
of zero-sum games. A zero-sum game is specified by a matrix M, and
is played between two players: a row player and a column player.
The row player privately chooses a row i of the matrix. The column
player privately chooses a column j. The parties then announce i and
j. The outcome of the game is determined by i and j. The column
player gets a payoff of Mi,j, and the row player gets a payoff of −Mi,j.
This is why it is a zero-sum game—the sum of payoffs is zero. The
column player chooses i in order to maximize Mi,j, and the row
player chooses j in order to minimize Mi,j.

We see that the matrix M encodes the payoffs of the game, and the
vectors x and y represent randomized strategies for playing the game.
The vector x in the theorem corresponds to a distribution on the
rows that the row player may use to choose his row, and the vector y
corresponds to a distribution that the column player may use.

The quantity minx∈A maxy∈B xMy gives the expected value of the
payoff when the row player announces his choice for x first, and
commits to it before the column player picks y. In this case, the row
player picks x to minimize maxy∈B xMy, and the column player then

72 communication complexity

The pair of strategies (x∗, y∗) is called
an equilibrium. Neither player has an
incentive to unilaterally deviate from
this pair of strategies. What are the
equilibrium strategies for Rock-Paper-
Scissors?

picks y to maximize xMy. Similarly, the quantity maxy minx xMy
measures the expected payoff if the column player commits to a
strategy y first, and the row player gets to pick the best strategy x
after seeing y.

The first quantity minx maxy xMy can only be larger than the
second maxy minx xMy. The column player wishes to maximize xMy.
In the first case, the column player has more information than in the
second case, so she can choose a more profitable strategy.

The minimax theorem states that the two quantities are always
equal. There is a strategy y∗ for the column player that guarantees
a payoff that is equal to the amount she would get if she knew the
strategy of the row player. Similarly there is a strategy x∗ for the row
player.

Now we leverage this powerful theorem to prove Yao’s min-max
principle:

Proof of Theorem 3.3. The average-case complexity is at most the
worst-case complexity. If there is a protocol that computes g with er-
ror ε in the worst case, then the same protocol must compute g with
error ε in the average case, no matter what the input distribution is.

Conversely, suppose that for every distribution on inputs, the
average-case complexity of the problem with error ε is at most c.
Consider the matrix M, where every row corresponds to an input
to the protocol, and every column corresponds to a deterministic
communication protocol of length at most c, defined by

Mi,j =

1 if protocol j computes g correctly on input i,

0 otherwise.

A distribution on the inputs corresponds to a choice of x. Since a
randomized protocol is a distribution on deterministic protocols,
a randomized protocol corresponds to a choice of y. The success
probability of a fixed randomized protocol y on inputs distributed
according to x is exactly xMy. So, by assumption, we know that
minx maxy xMy ≥ 1− ε. Theorem 3.4 implies that maxy minx xMy ≥
1− ε as well. There is a fixed randomized protocol y∗ that has error at
most ε under every distribution on inputs.

Public Coins vs Private Coins

Every private coin protocol can certainly be simulated by a
public coin protocol, by making the private randomness visible to
both parties. It turns out that every public coin protocol can also be

randomized protocols 73

3 Newman, 1991

It is known that computing whether or
not two n-bit strings are equal requires
Ω(log n) bits of communication if only
private coins are used. This shows that
Theorem 3.5 is tight.

Only one party uses randomness!

Given a randomized protocol, and
a distribution µ on inputs, one can
always fix the randomness of the
protocol in the way that minimizes
the probability of error under µ. The
result is a deterministic protocol whose
error under µ is at most the error of the
randomized protocol.

simulated by a private coin protocol with only a small increase in
communication3.

Theorem 3.5. If g : {0, 1}n×{0, 1}n → {0, 1} can be computed with c bits
of communication, and error ε in the worst case, then it can be computed by
a private coin protocol with c + log(n/ε2) + O(1) bits of communication,
and error 2ε in the worst case.

Proof. We use the probabilistic method to find the required private
coin protocol. Suppose the public coin protocol uses a random
string R as the source of all randomness. To design the private coin
protocol, we start by picking t independent random strings R1, . . . , Rt

each distributed like R.
For any fixed input (x, y), some of these t random strings lead

to the public coin protocol computing the right answer, and some
lead to the protocol computing the wrong answer. However, the
probability that Ri gives the right answer is at least 1− ε. Thus, by the
Chernoff bound, the probability that 1− 2ε fraction of the t strings
lead to the wrong answer is at most 2−Ω(ε2t). We set t = O(n/ε2)

to be large enough so that this probability is less than 2−2n. By the
union bound, we get that the probability that more than 2εt of these
strings give the wrong answer for some input is less than 1. Thus,
there must be some fixed strings with this property.

The private coin protocol is now simple. We fix R1, . . . , Rt with
the property that for any input (x, y), the fraction of strings giving
the wrong answer is at most 2ε. Alice samples a uniformly random
element i ∈ {1, 2, . . . , t}, and sends i to Bob. This takes at most
log(n/ε2) + O(1) bits of communication. Alice and Bob then run the
original protocol using the randomness Ri.

Nearly Monochromatic Rectangles

Monochromatic rectangles proved to be a very useful concept
for understanding deterministic protocols. A similar role is played by
nearly monochromatic rectangles when trying to understand random-
ized protocols. Here we provide one example of this connection. This
is studied in greater detail in future chapters, where lower bounds on
randomized communication complexity are proved.

The following theorem shows that average-case protocols yields
nearly monochromatic rectangles.

Theorem 3.6. If there is a deterministic c-bit protocol π with error at most ε

under a distribution µ, and a set S such that

Pr[π(X, Y) ∈ S] > 2
√

ε,

74 communication complexity

4 Feige et al., 1994; and Viola, 2015

Ω(log n) bits are required just to output
the index.

then there exists a rectangle R such that

• π has the same outcome for all inputs in R, and this outcome is in S.

• Pr[(X, Y) ∈ R] ≥ √ε · 2−c.

• Pr[π makes an error|(X, Y) ∈ R] ≤ √ε.

Proof. By Theorem 1.6, we know that the protocol induces a partition
of the space into t ≤ 2c rectangles R1, R2, . . . , Rt. In each of these
rectangles, the outcome of the protocol is determined.

For each rectangle Ri in the collection, define the number

ε(Ri) = Pr[the protocol makes an error|(X, Y) ∈ Ri].

Let ρ(Ri) denote the number Pr[(X, Y) ∈ Ri]. If R denotes the rect-
angle that the inputs X, Y belong to, we have that E [ε(R)] ≤ ε.
Markov’s inequality gives Pr[ε(R) >

√
ε] <

√
ε. In addition,

E [1/ρ(R)] =
t

∑
i=1

Pr[R = Ri] ·
1

Pr[(X, Y) ∈ Ri]
= t.

By Markov’s inequality, we get Pr[1/ρ(R) > t/
√

ε] ≤ √ε. Therefore,

Pr[π(X, Y) ∈ S] > 2
√

ε > Pr[ε(R) >
√

ε] + Pr[1/ρ(R) > t/
√

ε].

By the union bound, there must be a rectangle R∗ in the collection
corresponding to an outcome in S, with ε(R∗) ≤ √ε and ρ(R∗) ≥√

ε/t ≥ √ε · 2−c.

Exercises

Ex 3.1 — In this exercise, we design a randomized protocol4 for
finding the first difference between two n-bit strings. Alice and
Bob are given n bit strings x 6= y and want to find the smallest i
such that xi 6= yi. We already saw how to accomplish this using
O(log n log log n) bits of communication. Here we do it with O(log n)
bits of communication. For simplicity, assume that n is a power of
two.
Define a rooted binary tree as follows. Every vertex v in the tree
corresponds to an interval Iv of coordinates from [n]. The root corre-
sponds to the interval Iroot = [n]. Every leaf in the tree corresponds
to an interval of size 1. Every internal vertex v has two children.
The left child corresponds to the left half of Iv, and the right child
corresponds to the right half of Iv.
Extend the tree as follows. At each leaf of the binary tree, attach a
path of length 3 log n. Every vertex of this path represents the same
interval of size 1. The depth of the overall tree is now 4 log n.

randomized protocols 75

Can you guess a distribution on inputs
for which the average case communi-
cation complexity of greater-than with
error 1/3 is Ω(log n)?

Fill in the details of the following protocol. The parties use their
inputs and hashing to start at the root of the tree and try to navigate
to the smallest interval that contains the index i that they seek. In
each step, the parties either move to a parent or move to a child of
the node that they are currently at. When the parties are at a vertex
v that corresponds to the interval Iv, they exchange O(1) hash bits
to confirm that the first difference lies in Iv. If this hash shows that
the first difference does not lie in Iv, they move to the parent of the
current node. Otherwise, they exchange O(1) hash bits to decide to
which child of v to move to.
Prove an upper bound on the expected number of bits communicated
and a lower bound on the success probability:

1.Argue that as long as the number of nodes where the protocol
made the correct choice exceeds the number of nodes where the
parties made the wrong choice by log n, the protocol you defined
succeeds in computing i.

2.Use the Chernoff-Hoeffding bound to argue that the number of
hashes that give the correct answer is high enough to ensure that
the protocol succeeds with high probability on any input.

Ex 3.2 — Show that there is a protocol for computing greater-than
with communication complexity dlog(1/ε)e such that if the inputs
are sampled uniformly and independently, then the average case
error of the protocol is at most ε.

Ex 3.3 — In this exercise, we explore the concept of locality sensitive
hashing. Suppose Alice and Bob are given inputs x, y ∈ {0, 1}n and
they want to know whether the two strings are close in Hamming
distance, or far apart. Show that for every t < n/2, there is a public-
coin protocol of length O(1) with the property that if the Hamming
distance between x, y is at most t, the protocol outputs 1 with prob-
ability 2/3, and if the Hamming distance is at least 2t, the protocol
outputs 0 with probability at least 2/3. Hint: Consider taking the inner
product of x, y with random strings z generated using a biased coin, and
compute E

[
(−1)〈x−y,z〉

]
.

Ex 3.4 — In this exercise, we design a randomized protocol for the
lopsided disjointness problem. Suppose Alice and Bob are given sets
X, Y ⊆ [n] with the promise that |X| ≤ k, and Y is allowed to have
arbitrary size. They wish to determine whether the sets are disjoint.
Give a randomized protocol for the worst case, with error 1/3 such
that in every execution of the protocol, Alice sends at most O(k) bits,
and Bob sends at most O(n) bits.

76 communication complexity

Ex 3.5 — For a real matrix M and ε > 0 define the ε-approximate
rank of M to be rankε(M) = min{rank(A) : |Ai,j −Mi,j| ≤ ε for all i, j}.
1.Find a boolean matrix with rank r and 1/3-approximate rank at

most O(log r). Hint: The equality function.

2.More generally, suppose there is a private coin protocol computing
a boolean function with communication complexity c and error ε.
Then show that rankε(M) ≤ 2c.

3.Prove the following strengthening of Theorem 2.17. The communi-
cation complexity of a matrix M is at most

O(
√

rank1/3(M) log2 rank(M)).

1 Chandra et al., 1983

There is also the number-in-hand model,
where each party has a private input
known only to them. This model is
meaningful as well, but it is sufficiently
similar to the two-party case that we
discuss it only in the exercises.

When there are only k = 2 parties,
this model is identical to the model
of two-party communication we have
already discussed.

4
Numbers On Foreheads

When more than two parties communicate, there are several
ways to model the communication. The number-on-forehead model1

is one way to generalize the case of two-party communication to the
multiparty setting. In this model, there are k parties communicating,
and the i’th party has her input written on her forehead. Namely, the
input to all the parties is of the form (X1, X2, . . . , Xk), and each party
can see k− 1 of the k inputs—all of the k inputs except the one written
on her forehead.

Since each party can see most of the inputs, the parties often do
not need to communicate much. This makes proving lower bounds
for this model more difficult than for the two-party case. In stark
contrast to the models we have discussed before, we do not yet know
of any explicit functions that require the maximum communication
complexity in this model. The challenge of proving strong lower
bounds in this model is related to other deep and difficult questions
in computational complexity theory and combinatorics. For example,
optimal lower bounds in this model imply interesting consequences
in the study of circuit complexity.

Some Protocols

We start with some examples of clever number-on-forehead proto-
cols.

Equality We have seen that every deterministic protocol for comput-
ing equality in the two-party setting must have complexity n + 1.
The complexity of equality is quite different in the number-on-
forehead model. Suppose there are 3 parties. Each party has an
n-bit string written on her forehead. How many bits do they need
to exchange in order to figure out if all 3 strings are the same?

Just two bits! Alice announces whether or not Bob and Charlie’s

78 communication complexity

A protocol solving this problem would
compute both the disjointness function
and the inner product function.

2 Grolmusz, 1998; and Babai et al., 2003

In Chapter 5, we prove that at least
Ω(n/4k) bits of communication are
required.

strings are the same, and Bob announces whether or not Alice and
Charlie’s strings are the same.

Intersection size Suppose there are k parties. The i’th party has a set
Xi ⊆ [n] on her forehead. The parties want to compute the size
of the intersection

⋂k
i=1 Xi. There is a protocol2 that requires only

O(k4(1 + n/2k)) bits of communication.

We start by describing a protocol that requires only O(k2 log n) bits
of communication, as long as n < (k

dk/2e). It is helpful to think of
the input as a k× n boolean matrix, where each row is the indicator
vector of one of the sets. Each of the parties knows all but one
row of this matrix. They wish to compute the number of all 1’s
columns. Let Ci,j denote the number of columns containing exactly
j ones that are visible to the i’th party. The parties compute and
announce the values of Ci,j, for each i, j. Since this involves each
party announcing k + 1 numbers between 0 and n, the communica-
tion complexity of the protocol is at most O(k2 log n).

It remains to prove that given Ci,j for all i, j, there is a unique
possible count for the number of all 1’s columns. Let Zr denote the
number of columns with r ones. We show that there is actually a
unique tuple Z = (Z0, . . . , Zk) consistent with the Ci,j’s. We first
prove:

Claim 4.1. Suppose Z = A and Z = B are two solutions that are both
consistent with the Ci,j’s. Then

|Ar − Br| =
(

k
r

)
· |A0 − B0|,

for each r ∈ {0, 1, . . . , k}.

Proof. Since a column of weight r is observed as having weight
r− 1 by r parties, and having weight r by k− r parties, we have

(k− r + 1)Ar−1 + rAr =
k

∑
i=1

Ci,r−1 = (k− r + 1)Br−1 + rBr.

Rearranging,

|Ar − Br| =
(

k− r + 1
r

)
|Ar−1 − Br−1|

=

(
(k− r + 1)(k− r + 2)

(r)(r− 1)

)
|Ar−2 − Br−2| repeating the same argument for r− 2.

= · · ·

=

(
k
r

)
· |A0 − B0|.

numbers on foreheads 79

The randomized communication of
exactly n is only a constant, since Alice
can use the randomized protocol for
equality to check that whether the
number on her forehead is equal to
what it needs to be for all numbers to
sum to n.

3 Behrend, 1946

Claim 4.1 implies that there can only be one possible value for
Z0, Z1, . . . , Zk—if there were two solutions A 6= B, then since
Ar 6= Br for some r, we must have |A0 − B0| > 0, which implies
that |A0 − B0| ≥ 1, since these are integers. But then we get
n ≥ |Bk/2 − Ak/2| ≥ (k

dk/2e), which is not possible, since n < (k
dk/2e)

by assumption.

To obtain a protocol for general n, the parties divide the columns
of the matrix into blocks of size (k

dk/2e)− 1. They count the number
of all 1’s columns in each block using the above idea separately.
The total communication is at most n

(k
dk/2e)

+ 1

 · k2 log
(

k
dk/2e

)
≤ O(k4(1 + n/2k)). since (k

k/2) ≈ 2k/
√

k.

Exactly n Suppose there are 3 parties. Each party has a number from
[n] written on the forehead. They want to know whether these
numbers sum to n or not.

A trivial protocol is for one of the parties to announce one of the
numbers she sees, and then the relevant party announces the
answer. This takes O(log n) bits of communication.

There is a more efficient protocol that uses just O(
√

log n) bits
of communication. The protocol is based on a construction of
Behrend3. Behrend constructed a large set of integers that avoids
3-term arithmetic progressions. His ideas can be used to show:

Theorem 4.2. One can color the set [m] with 2O(
√

log m) colors with
no monochromatic 3-term arithmetic progression. Namely, for each
a, b ∈ [m], if all three numbers a, a + b, a + 2b are in [m], then they do
not have the same color.

First we explain how Berhend’s coloring yields a protocol. Sup-
pose the three inputs are x, y, z. Consider the numbers

x′ = n− y− z, y′ = n− x− z.

Alice can compute x′, and Bob can compute y′. Observe that

x− x′ = y− y′ = x + y + z− n.

This means that the numbers x + 2y, x′ + 2y, x + 2y′ form an
arithmetic progression, and this progression is non-trivial if and
only if x + y + z = n. In the protocol, the parties set m = 3n,
and check that the three numbers above have the same color in
the coloring promised by Theorem 4.2. If all three colors are the
same, the parties conclude that the sum of their numbers is n. If

80 communication complexity

x + y
2

x

y

Figure 4.1: The average of two distinct
points on a sphere cannot lie on the
sphere—they must lie in the interior.

the colors are not the same, they conclude that the sum is not n.
The length of the protocol is at most O(

√
log n).

Now we turn to proving Theorem 4.2. We start with some intu-
ition from Euclidean geometry. A triple of points a, a + b, a + 2b can
be also thought of as a triple of the form x, (x + y)/2, y. In other
words, we want to find a coloring of [m] so that if x, y have the
same color, then (x + y)/2 has a different color.

The basic observation is that the points on a sphere satisfy a
similar property. If x, y are two distinct vectors of the same length,
then (x + y)/2 is shorter. If we color each vector by its Euclidean
length, then we get the desired property. The idea is to think of
integers as high-dimensional vectors and then color an integer by
the length of the corresponding vector.

Proof of Theorem 4.2. We shall choose parameters d, r with dr > m
and d is divisible by 4. To carry out the above intuition, we need
to convert each number x ∈ [m] into a vector. To do this, we write
each number x ∈ [m] in base d, using at most r digits. Express x as
x = ∑r−1

i=0 xidi, where xi ∈ {0, 1, . . . , d− 1}. Interpret x ∈ [m] as a
vector v(x) ∈ Rr whose i’th coordinate xi.

We would like to color x by the norm of v(x). This could poten-
tially give a very efficient coloring—when d is a constant, the
square of the norm of v(x) can be at most dlogd med2 = O(log m),
so we need only O(log m) colors to encode the norm of v(x).
Unfortunately, this fails. The reason is that algebra over the in-
tegers does not quite correspond to algebra over the vectors—
v(x + y) 6= v(x) + v(y) in general. However, we do have that
v(x + y) = v(x) + v(y) when x, y only involve small digits.

We add the following data to ensure that the digits used in the
analysis are small. Let w(x) be the vector whose i’th coordinate is
the largest number of the form jd/4 such that jd/4 ≤ xi and j is an
integer. w(x) simply rounds each coordinate of v(x) to the closest
multiple of d/4.

Color each number x ∈ [n] by the integer ‖v(x)‖2 = ∑r−1
i=0 x2

i .
and by the whole vector w(x). The number of possible values
for ‖v(x)‖2 is at most O(rd2). The number of choices for w(x)
is at most 2O(r). The total number of possible colors is at most

2O(r+log d). Setting r =
√

log m and d = 2O(
√

log m) gives the
required bound.

It only remains to check that the coloring avoids arithmetic
progressions. For the sake of finding a contradiction, suppose
a, b ∈ [m] are such that a, a + b, a + 2b all get the same color.

numbers on foreheads 81

All three d-ary representations here
involve digits of magnitude at most
d/4.

Then we must have ‖v(a)‖ = ‖v(a + b)‖ = ‖v(a + 2b)‖. So,
v(a), v(a + b), v(a + 2b) all lie on a sphere. We get a contradiction
by proving that

v(a + 2b) + v(a) = 2v(a + b).

To prove this, we need to use the fact that the points also satisfy
w(a) = w(a + b) = w(a + 2b). Given that these are the same, it is
enough to prove

(v(a + 2b)− w(a + 2b)) + (v(a)− w(a)) = 2(v(a + b)− w(a + b)).

Let W denote the integer whose d-ary digit representation corre-
sponds to w(a). Then the left hand side above is the d-ary repre-
sentation of the integer (a + 2b−W) + (a−W) and the right hand
side is the d-ary representation of 2(a + b−W). These are the same
integer, so the two sides are equal.

Defining Protocols in the Number-on-Forehead model

Communication protocols in the number-on-forehead

model are also represented by trees. The formal definitions are
similar to the two-party case, so we provide just a brief overview.

A protocol tree is a rooted directed binary tree. Every inner vertex
in the protocol tree is associated with one of the k parties, and with a
function that maps this party’s input to {0, 1}. Each leaf in the tree is
labelled by some output of the protocol.

Every input x = (x1, x2, . . . , xk) defines a path from the root to
the leaf π(x) of the protocol tree. This path corresponds to the bits
communicated during the execution of the protocol on this input.
The label of the leaf π(x) is the output of the protocol on this input.

A protocol π computes a function g : X1 × · · · × Xk → {0, 1} if
the label of π(x) is g(x) for all inputs x. The length of a protocol is
the depth of the protocol tree. The communication complexity of a
function g is the minimum length of a protocol that computes g.

Cylinder Intersections

Combinatorial rectangles are the basic building blocks of two-
party communication protocols. The corresponding building blocks
in the number-on-forehead model are cylinder intersections. Any set

82 communication complexity

Figure 4.2: A cylinder intersection.
Watch an animation.

Figure 4.3: Figure 4.2 viewed from
above.

S ⊆ X1 × · · · × Xk can be described using its characteristic function:

χS(x1, . . . , xk) =

1 if (x1, . . . , xk) ∈ S,

0 otherwise.

Cylinders are set that are constant in one dimension:

Definition 4.3. A set S ⊆ X1 × · · · × Xk is called a cylinder if χS does not
depend on one of its inputs.

Cylinder intersections are defined as the intersection of cylinders:

Definition 4.4. A set S is called a cylinder intersection if it can be
expressed as an intersection of cylinders. Namely,

χS(x1, . . . , xk) =
k

∏
i=1

χi(x1, . . . , xk),

where χi is a boolean function that does not depend on xi.

Just as for rectangles, we say that a cylinder intersection is monochro-
matic with respect to a function g, if g(x) = g(y) for every two inputs
x, y in the cylinder intersection.

When k = 2, cylinder intersections are the same as rectangles.
However, when k > 2, they are much more complicated to under-
stand than rectangles. Nevertheless, in analogy with the two-party
case, we have the following theorem:

Theorem 4.5. If the deterministic communication complexity of g : X1 ×
· · ·×Xk → {0, 1} in the number-on-forehead model is c, then X1× · · ·×Xk

can be partitioned into at most 2c monochromatic cylinder intersections with
respect to g.

http://homes.cs.washington.edu/~anuprao/pubs/cylshadow.mp4

numbers on foreheads 83

Figure 4.4: A cylinder intersection.
Watch an animation.

Figure 4.5: Figure 4.4 viewed from
above.

Figure 4.6: Figure 4.4 viewed from the
right.

In Chapter 5 we discuss the discrepancy
method, which leads to the strongest
known lower bounds in the number-on-
forehead model.

4 Chandra et al., 1983

Figure 4.7: A monochromatic corner.

Proof sketch. It follows by induction that the set of inputs that are
consistent with every vertex in the protocol tree form a cylinder
intersection.

Lower Bounds from Ramsey Theory

Cylinder intersections are more complicated than rectangles.
This makes proving lower bounds in the number-on-forehead model
challenging. Here we use Ramsey theory to prove a lower bound in
this model. The main message of Ramsey theory is that every large
enough system must contain small pieces that are structured. Let us
see how to use this idea to prove lower bounds in communication
complexity.

Consider the Exactly n problem. Alice, Bob and Charlie are each
given a number from [n], written on their foreheads. They want to
know if their numbers sum to n. We have shown that there is a
protocol that computes this function using O(

√
log n) bits of commu-

nication. Here we show that Ω(log log log n) bits of communication
are required4.

Denote by cn the deterministic communication complexity of the
exactly n problem. We need to identify an obstacle that makes cn

large. The key idea is to focus on a structured subset called a corner.
Three points in [n] × [n] form a corner if they are of the form

(x, y), (x + d, y), (x, y + d) for some integer d. See Figure 4.7. A coloring
of [n]× [n] with C colors is a map from [n]× [n] to [C]. A corner is
monochromatic with respect to the coloring if its three points get the
same color. Let Cn be the minimum number of colors required to
avoid having any monochromatic corners in [n]× [n].

First we show that Cn captures the value of cn:

http://homes.cs.washington.edu/~anuprao/pubs/cylshadow2.mp4

84 communication complexity

The second inequality in the lemma is
not needed for the lower bound. We
state and prove it here since it shows
that the communication problem is
equivalent to a this purely combinato-
rial problem.

5 Graham, 1980; and Graham et al., 1980

In fact, one can prove that every large
enough subset of [n]× [n] contains a
corner.

Figure 4.8: A rainbow-corner.

Lemma 4.6. log Cn/3 ≤ cn ≤ 2 + log Cn.

Proof of Lemma 4.6 . To prove 2 + log Cn ≥ cn, suppose there is a
coloring with Cn colors that avoids monochromatic corners. Alice
announces the color of (n − y − z, y). Bob and Charlie then send a
bit indicating if this color is the same as the color of (x, n − x − z)
and (x, y). The three points (x, y), (x, n− x− z), (n− y− z, y) form a
corner with d = n− x− y− z. So all three point have the same color
if and only if all three points are the same, which can only happen
when x + y + z = n.

To prove that log Cn/3 ≤ cn, suppose there is a protocol solving
the Exactly n problem with c bits of communication. By Theorem 4.5,
every input to the protocol can be colored by one of 2c colors that is
the name of the corresponding cylinder intersection. This induces
a coloring of [n/3]× [n/3]: color (x, y) by the name of the cylinder
intersection containing the point (x, y, n− x− y). We claim that this
coloring avoid monochromatic corners. Indeed, assume that

(x, y), (x + d, y), (x, y + d)

is a monochromatic corner with d 6= 0. That is,

(x, y, n− x− y), (x + d, y, n− (x + d)− y), (x, y + d, n− x− (y + d))

belong to the same cylinder intersection. The point (x, y, n− x− y− d)
must also be in the same cylinder intersection, since it agrees with
each of the three points in two coordinates. This contradicts the
correctness of the protocol: x + y + n− x− y = n but x + y + n− x−
y− d 6= n.

The second step in the proof uses ideas from Ramsey theory5. We
show that the number of colors that are needed to avoid monochro-
matic corners is large:

Theorem 4.7. Cn ≥ Ω
(

log log n
log log log n

)
.

Proof. We prove the theorem by induction. We need to strengthen
the statement in order for the induction to go through. We prove
that the matrix must either contain a monochromatic corner, or a
structure called a rainbow-corner. A rainbow-corner with r colors and
center (x, y) is specified by a set of r distinct colors, and numbers
d1, . . . , dr−1, such that (x + di, y) and (x, y + di) are both colored using
the i’th color, and (x, y) is colored by the r’th color.

We prove that if C > 3 and n ≥ 2C2r
, then any coloring of [n]× [n]

with C colors must contain either a monochromatic corner, or a
rainbow-corner with r colors. When r = C + 1, this means that if

numbers on foreheads 85

Figure 4.9: A rainbow-corner induced
by two smaller rainbow-corners.

n ≥ 2C2(C+1)
, then [n] × [n] must contain a monochromatic corner.

Thus, Cn ≥ Ω
(

log log n
log log log n

)
.

The base case is when r = 2. There are n points of the form
(x, n − x). Since n ≥ 2C2r

> C, two points of the form (x, n − x)
and (x′, n − x′) with x > x′ have the same color. It follows that
(x′, n− x), (x, n− x), (x′, n− x′) are either a monochromatic corner, or
a rainbow-corner with 2 colors.

For the inductive step, assume n = 2C2r
. The set [n] contains

m = 2C2r−C2(r−1)
disjoint intervals I1, I2, . . . , Im, each of size exactly

2C2(r−1)
. By induction, each of the sets Ij × Ij must have either a

monochromatic corner, or a rainbow-corner with r− 1 colors. If one
of them has a monochromatic corner, then we are done. So, suppose
they all have rainbow-corners with r− 1 colors. A rainbow-corner is
specified by choosing the center, choosing the colors and choosing
the offsets for each color. Thus, there are at most

(2C2(r−1)
)2 · Cr · (2C2(r−1)

)C = 22C2(r−1)+r log C+C2r−1
< m

potential rainbow-corners in each of these sets. Since the number of
possible rainbow corners is less than m, there must be some j < j′

that have exactly the same rainbow corner with the same coloring.
These two rainbow corners induce a monochromatic corner centered
in the box Ij × Ij′ , or a rainbow-corner with r colors. See Figure 4.9.

Exercises

Ex 4.1 — Suppose there are k parties in the number-on-forehead
model. The i’th party has the bit Xi ∈ {0, 1} written on their fore-
head, and X1, . . . , Xk are sampled independently and uniformly at
random. Show that there is a protocol for each party to privately
write down a guess for the bit on their own forehead, without any
communication, in such a way that the probability that all parties
guess correctly is 1/2.

Ex 4.2 — Define the generalized inner product function GIP as
follows. For k inputs x1, . . . , xk ∈ {0, 1}n,

GIP(x) =
n

∑
j=1

k

∏
i=1

xi,j mod 2.

This exercise outlines a number-on-forehead GIP protocol using
O(n/2k + k) bits. It is convenient to think about the input X as a k× n
matrix with rows corresponding to x1, . . . , xk.

86 communication complexity

6 Hales and Jewett, 1963

For example, when S = [3] and n = 4
then the set {1132, 2232, 3332} is a
combinatorial line with I = {1, 2} and
v3 = 3, v4 = 2.

–For ` ∈ {0, 1, . . . , k− 1} define c` as the number of columns in X
that start with ` zeroes, followed by either a one or zero, followed
by k− `− 1 ones. Prove that ∑t−1

`=0 c` = GIP(x) mod 2.

–Suppose the parties know a string z ∈ {0, 1}k with the property
that no column of X is equal to z. Find a protocol to compute
GIP(x) using O(k) bits assuming the parties know z.

–Exhibit an overall protocol for GIP by showing that the parties can
agree upon a vector z and communicate to determine c` (mod 2)
using O(n/2k + k) bits.

Ex 4.3 — This exercise explores the direct sum question in the
number-on-forehead model. Given a function g, recall that gn is
the function that computes n copies of g. What can we say about
the communication complexity of gn knowing the communication
complexity of g?
The approach taken in the proof of Theorem 1.39 does not work be-
cause cylinder intersections do not “tensorize” nicely like rectangles
do. However, ideas from Ramsey theory can be used to show that the
communication complexity of grmust increase as r increases.
The key ingredient is the Hales-Jewett theorem6. The theorem gives
insight into the structure of the cartesian product Sn = S× S× · · · S
as n grows, for an arbitrary finite set S. For the precise statement
we need the notion of a combinatorial line. The combinatorial line
specified by a nonempty set of indices I ⊆ [n] and a vector v ∈ Sn

is the set of all x ∈ Sn so that xi = vi for every i /∈ I and xi = xj for
every i, j ∈ I.
Given a set S and a number t, the Hales-Jewett theorem says that
as long as n is large enough, any coloring of Sn with t colors must
contain a monochromatic combinatorial line.
Assume that the communication complexity of g is strictly greater
than the number of parties. Define cn to be communication required
to compute the AND of n copies of g. Prove that

lim
n→∞

cn = ∞.

Ex 4.4 — A three party number-on-forehead puzzle demonstrates
that unexpected efficiency is sometimes possible.
Alice has a number i ∈ [n] on her forehead, Bob has a number j ∈ [n]
on his forehead, and Charlie has a string x ∈ {0, 1}n on his forehead.
On input (i, j, x) the goal is for Charlie to output the bit xk where
k = i + j mod n.
Find a deterministic protocol in which Bob sends one bit to Charlie,
and Alice sends d n

2 e bits to Charlie. Alice and Bob must send Charlie

numbers on foreheads 87

their message simultaneously. Charlie is then able to output the
correct answer.

Ex 4.5 — In this exercise, we find an even more surprising protocol
than in the last exercise. Suppose Alice has a number i ∈ [n] on her
forehead, Bob has a permutation π : [n] → [n] on his forehead, and
Charlie has a string x ∈ {0, 1}n on his forehead. Their goal is to
compute xπ(i). We show that there is a protocol where Alice sends
Charlie at most O(n/ log n) bits, and Bob sends Charlie at most n/2
bits.
To do this, we appeal to a bound on the chromatic number of random
graphs. Recall that the chromatic number is χ(G) if the vertices can
be colored with χ(G) colors so that adjacent vertices get different
colors. It is a theorem that if a graph on n vertices is sampled by
including each edge independently with probability 1/50, then the
chromatic number of the graph is O(n/ log n), except with probabil-
ity 2−Ω(n1.1).

1.Use the bound on the chromatic number of random graphs dis-
cussed above to show that there exist sets S1, . . . , Sn ⊆ [n] with the
property that |Si| ≤ n/2 for all i, and yet, for any π : [n] → [n],
one can color [n] with O(n/ log n) colors so that if i, j get the same
color, then π(j) ∈ Si. Hint: Use the probabilistic method.

2.Use the above property to give the desired protocol.

Ex 4.6 — Let f be a polynomial of total degree d in n variables
x1, . . . , xn over the field F2. There are d + 1 parties in the number-on-
forehead model. The set of coordinates [n] is partition to d + 1 parts
I1, . . . , Id+1. Party j has xIj written on the forehead. Show that the
parties can compute f (x1, . . . , xn) with O(d) bits of communication.

χS(x) =

{
1 if x ∈ S,
0 otherwise.

When the distribution µ is understood
from the context, we refer to this
quantity as the discrepancy of g with
respect to S.

5
Discrepancy

If the elements of a large set are randomly colored either
red or blue, we would expect the coloring to be roughly balanced.
Namely, approximately half of the elements would be red and half
would be blue. Discrepancy is a way to measure the degree to which
the coloring is balanced. It quantifies how “random” the coloring
is. Discrepancy is used in several different areas, such as in geom-
etry and learning theory. Here we use it to prove lower bounds on
communication complexity.

The techniques we have developed for proving lower bounds
in prior chapters all rely on the fact that efficient communication
protocols lead to partitions of the space into a small number of
monochromatic sets. A monochromatic set has large discrepancy;
it does not look like it was randomly colored at all. For a given
boolean function, lower bounds on communication complexity can be
proved by arguing that the discrepancy of large rectangles or cylinder
intersections must be small.

The ideas we develop in this chapter lead to lower bounds for
randomized protocols, and the best known lower bounds in the
number-on-forehead model.

Definitions

Suppose g : D → {0, 1} is a boolean function and µ is a distribution
on the inputs D. Suppose S ⊆ D is a subset of the domain, and let χS

be the characteristic function of the set S. We define the discrepancy
of g with respect to S and µ as∣∣∣∣Eµ [χS(x) · (−1)g(x)

]∣∣∣∣ .

90 communication complexity

See Exercise 5.1.

The same result applies in the number-
on-forehead model when we have a
bound on the discrepancy with respect
to cylinder intersections.

There are two obvious reasons that could make the discrepancy
small— either the set S is small, or g corresponds to a balanced
coloring of S. Moreover, if the discrepancy is very small, then it must
be the case that either S has small measure under µ, or g corresponds
to a very balanced coloring of S.

If µ is relatively well behaved, a random function g will have
low discrepancy with high probability. However, the choice of the
low discrepancy function g certainly depends on S. Indeed, every
g : D → {0, 1} is monochromatic on a set of µ-measure at least 1/2,
so given g, the discrepancy is certainly large with respect to many
sets. Nevertheless, we can hope to establish that a fixed function g
has small discrepancy with respect to sets of a specific structure, like
rectangles or cylinder intersections. For example, we shall consider
the domain D = X × Y and the maximum of the discrepancy with
respect to all the rectangles in D.

A large set with large bias must lead to high discrepancy. The bias
of a function g with respect to a set S is defined to be

biasg(S) = max
b

Pr[g(x) = b|x ∈ S].

Claim 5.1. If S is so that Prµ[x ∈ S] ≥ δ and biasg(S) ≥ 1− ε, then the
discrepancy of g with respect to S is at least (1− 2ε)δ.

Proof. Only points inside S contribute to its discrepancy. Since a 1− ε

fraction of these points have the same value under g, the discrepancy
is at least δ(1− ε− ε) = δ(1− 2ε).

Discrepancy and Communication

Discrepancy can be used to prove lower bounds on randomized
communication complexity. The idea is that any function that has
small discrepancy with respect to all rectangles must have large
communication complexity:

Theorem 5.2. For a fixed distribution µ, if the discrepancy of g with respect
to every rectangle is at most γ, then any protocol computing g with error ε

when the inputs are drawn from µ must have communication complexity at
least log

(
1−2ε

γ

)
.

Proof. Suppose π is a protocol of length c with error ε with respect to
µ. We can assume without loss of generality that π is deterministic.
Let π(x, y) denote the output of the protocol.

By Lemma 1.4, the leaves of the protocol π correspond to rect-
angles R1, . . . , Rt that partition the input space. Moreover, we have

discrepancy 91

See Exercise 5.2.

t ≤ 2c, since the length of the protocol is c. Thus,

1− 2ε ≤ Pr
µ
[π(x, y) = g(x, y)]− Pr

µ
[π(x, y) 6= g(x, y)]

= E
µ

[
(−1)π(x,y) · (−1)g(x.y)

]
= E

µ

[(
t

∑
i=1

χRi (x, y) · ϕ(Ri)

)
· (−1)g(x,y)

]
,

where ϕ(Ri) = −1 if the protocol outputs 1 on inputs from Ri, and
ϕ(Ri) = 1 if the protocol outputs 0. By the triangle inequality,

1− 2ε ≤
t

∑
i=1

∣∣∣∣Eµ [χRi (x, y) · (−1)g(x,y)
]∣∣∣∣

≤ 2c ·max
R

∣∣∣∣Eµ [χR(x, y) · (−1)g(x,y)
]∣∣∣∣ ≤ 2cγ,

where the maximum is taken over all choices of rectangles. Rearrang-
ing, we get 2c ≥ 1−2ε

γ , proving the theorem.

To prove lower bounds on randomized communication complexity,
it suffices to give upper bounds on the discrepancy with respect to
rectangles and cylinder intersections. Simple counting arguments
show that most functions have small discrepancy with respect to
rectangles and cylinder intersections. Our goal in this chapter is to
prove that there are explicit functions g that have small discrepancy.

We explore two general techniques that can be used to bound the
discrepancy. First, we show how to use convexity to bound discrep-
ancy. Later, we show how one can use concentration bounds from
probability theory to control it. As a warmup, let us explore some
examples where convexity is useful in combinatorics.

Convexity in Combinatorics

Convexity plays a key role in solving many combinatorial problems.
At a high level, the approach is to represent a given quantity of
interest in an analytic form, as a sum of real numbers. Convexity
is then used to move from the specific object we started with to an
average case object where the quantity is much easier to bound.

Let us illustrate this general principle by applying it to the fol-
lowing question: how many edges must a graph have before it is
forced to contain a small cycle? A graph on n vertices can have up
to (n

2) edges. We say that the graph has edge density ε if it has ε · (n
2)

edges. There are graphs with constant edge density that have no
3-cycles, like the complete bipartite graph (see Figure 6.4). However,

92 communication complexity

Figure 5.1: A dense graph with no
3-cycles.

The point-line incidence graph of a
projective plane has n vertices, approxi-
mately n3/2 edges, and no 4-cycles. This
show that the lemma is sharp up to
constants.

E(x0, y0) = 1

E(x, y) = 1

E(x, y0) = 1

E(x0, y) = 1

x x0

y

y0

E(x, y) · E(x′, y) is the indicator for a
path of length 2.

as we show below, there are no graphs with constant density without
4-cycles.

Lemma 5.3. Every graph with n vertices and edge density at least 3√
n

contains a 4-cycle.

Proof. Let E(x, y) be the indicator function for the edges of the
graph—for two vertices x, y, we have E(x, y) = 1 when there is
an edge between the vertices x and y, and E(x, y) = 0 otherwise.

Let x, x′, y be 3 vertices chosen independently and uniformly at
random from the graph. By convexity,

E
x,x′

[
E
y

[
E(x, y) · E(x′, y)

]]
= E

y

[
E
x
[E(x, y))]2

]
≥ E

x,y
[E(x, y)]2 .

E(x, y) is 0 only when x = y or {x, y} is not an edge. Since x = y
with probability 1/n and the edge density is at least 3/

√
n, this last

quantity is at least (
3√
n
− 1

n

)2
≥
(

2√
n

)2
≥ 4

n
.

For the sake of reaching a contradiction, suppose that the graph
has no 4-cycles. Then, for each x 6= x′, there can be at most one y
with E(x, y) · E(x′, y) = 1. Otherwise, if E(x, y) · E(x, y) = E(x, y′) ·
E(x, y′) = 1, then the vertices x, y, x′, y′ must form a 4-cycle. So,
whenever x 6= x′, Ey [E(x, y) · E(x′, y)] ≤ 1

n . The probability that
x = x′ is exactly 1/n. So, we get

E
x,x′

[
E
y

[
E(x, y) · E(x′, y)

]]
≤ 1

n
+

1
n
≤ 2

n
,

contradicting the bound we proved above.

We have just seen that dense graphs contain 4-cycles. What can we
say about structures that are more complicated than cycles? We now
show that dense bipartite graphs contain large bipartite cliques. For
example, every bipartite graph with constant edge density contains a
complete bipartite graph of logarithmic size.

Lemma 5.4. Suppose G is a bipartite graph with edge density ε > 0,
and bipartition A, B with |A| = m and |B| = n. Let k ≤ log n

2 log(2e/ε)
. If

ε ≥ 2k/m, then there are subsets A′ ⊆ A and B′ ⊆ B of sizes

|A′| ≥ k and |B′| ≥
√

n

such that every pair of vertices a ∈ A′, b ∈ B′ is connected by an edge.

discrepancy 93

Proof. Pick a uniformly random subset Q ⊆ A of size k. Let R be
all the common neighbors of Q. The induced graph on Q × R is a
complete bipartite clique, which is the structure we are looking for.
We just need to prove that R is large with non-zero probability.

Given any vertex b ∈ B with degree db ≥ k, the probability that b is
included in R is exactly

(db
k)

(m
k)
≥ (db/k)k

(em/k)k =

(
db
em

)k
. since (n

k)
k ≤ (n

k) ≤ (en
k)k for 0 < k ≤ n.

The expected size of the set R is at least

E [|R|] ≥ ∑
b∈B:db≥k

(
db
em

)k
≥ n ·

(
1
n
· ∑

b∈B:db≥k

db
em

)k

since the function x 7→ xk is convex.

= n ·
(

1
emn

· ∑
b∈B:db≥k

db

)k

.

Observe that ∑b∈B:db≥k db is the number of the edges of the graph,
except those that touch vertices in B of degree less than k. This
quantity is at least εmn− kn ≥ εmn

2 , since ε ≥ 2k
m . Thus,

E [|R|] ≥ n ·
(

1
emn

· εmn
2

)k
= n ·

(ε

2e

)k
≥
√

n.

So, there must be some choice of Q, R that proves the lemma.

Lower Bounds for Inner-Product

Moving back to communication complexity, imagine Alice and
Bob are given x, y ∈ {0, 1}n and want to compute the inner product

IP(x, y) = 〈x, y〉 mod 2.

We have seen that this requires n + 1 bits of communication using a
deterministic protocol. Here we show that it requires at least ≈ n/2
bits of communication even using a randomized protocol. To prove
this, we use convexity to show that the discrepancy of IP is small.

Lemma 5.5. For any rectangle R, the discrepancy of IP with respect to R
over the uniform distribution is at most 2−n/2.

Proof. Since R is a rectangle, we can write its characteristic function
as the product of two functions A : {0, 1}n → {0, 1} and B : {0, 1}n →
{0, 1}. The square of the discrepancy with respect to R can be written

94 communication complexity

as(
E
x,y

[
χR(x, y) · (−1)〈x,y〉

])2
=

(
E
x,y

[
A(x) · B(y) · (−1)〈x,y〉

])2

=

(
E
x

[
A(x)E

y

[
B(y) · (−1)〈x,y〉

]])2

≤ E
x

[
A(x)2

(
E
y

[
B(y) · (−1)〈x,y〉

])2
]

. by convexity of z 7→ z2.

Since 0 ≤ A(x) ≤ 1, we can drop A(x) from this expression to get:(
E
x,y

[
χR(x, y) · (−1)〈x,y〉

])2
≤ E

x

[(
E
y

[
B(y) · (−1)〈x,y〉

])2
]

= E
x,y,y′

[
B(y)B(y′) · (−1)〈x,y〉+〈x,y′〉

]
= E

x,y,y′

[
B(y)B(y′) · (−1)〈x,y+y′〉

]
.

In this way, we have completely eliminated the dependence on the
set A from the calculation! We can also eliminate the set B using the
triangle inequality to bound:(

E
x,y

[
χR(x, y) · (−1)〈x,y〉

])2
≤ E

x,y,y′

[
B(y)B(y′) · (−1)〈x,y+y′〉

]
≤ E

y,y′

[∣∣∣∣Ex [(−1)〈x,y+y′〉
]∣∣∣∣]

= E
y,y′

[
n

∏
i=1

(
1+(−1)yi+y′i

2

)]
.

Now, whenever y + y′ is not zero modulo 2, the inner expression is 0.
The probability that y + y′ is zero modulo 2 is exactly 2−n. So(

E
x,y

[
χR(x, y) · (−1)〈x,y〉

])2
≤ 2−n.

Lemma 5.5 and Theorem 5.2 together imply the desired lower
bound on the randomized communication complexity of the inner
product function:

Theorem 5.6. Any 2-party protocol that computes the inner product
function with error at most ε over the uniform distribution must have
length at least n/2− log(1/(1− 2ε)).

So, we have reasonably tight bounds on the communication com-
plexity of IP in the 2-party setting. What happens when more parties
are involved?

discrepancy 95

Each vector xi can be interpreted as
a subset of [n]. The protocol for com-
puting the set intersection size gives
a protocol for computing generalized
inner product with communication
O(k4(1 + n/2k)).

It turns out that similar ideas can be used to analyze the generalized
inner product in the number-on-forehead model1. Here each of the k
parties is given a binary string xi ∈ {0, 1}n. They want to compute

GIP(x) =
n

∑
j=1

k

∏
i=1

xi,j mod 2.

Once again, we can use discrepancy to prove a strong lower bound
on the communication complexity of generalized inner product. This
time, we need to analyze the discrepancy with respect to cylinder
intersections.

Lemma 5.7. The discrepancy of GIP with respect any cylinder intersection
over the uniform distribution is at most e−n/4k−1

.

Proof. Let S be a cylinder intersection. Its characteristic function can
be expressed as the product of k boolean functions χS = ∏k

i=1 χi,
where χi does not depend on xi. Express the square of the discrep-
ancy as (

E
x

[
χS(x) · (−1)GIP(x)

])2

=

(
E

x1,...,xk−1

[
χk(x)E

xk

[
k−1

∏
i=1

χi(x) · (−1)GIP(x)

]])2

≤ E
x1,...,xk−1

χk(x)2

(
E
xk

[
k−1

∏
i=1

χi(x) · (−1)GIP(x)

])2
 . by convexity of z 7→ z2.

Now, we can drop χk(x) from this expression to get:(
E
x

[
χS(x) · (−1)GIP(x)

])2

≤ E
x1,...,xk−1

(E
xk

[
k−1

∏
i=1

χi(x) · (−1)GIP(x)

])2

= E
x1,...,xk ,x′k

[
k−1

∏
i=1

χi(x)χi(x′) · (−1)∑n
j=1(xk+x′k)∏k−1

i=1 xi,j

]
,

where x′k is uniformly distributed and independent of x1, . . . , xk, and
x′ = (x1, . . . , xk−1, x′k). In this way, we have completely eliminated the
function χk from the calculation! Repeating this k− 1 times gives the
bound (

E
x

[
χS(x) · (−1)GIP(x)

])2k−1

≤ E
x2,x′2,...,xk ,x′k

[∣∣∣∣Ex1

[
(−1)∑n

j=1 x1 ∏k
i=2(xi+x′i)

]∣∣∣∣] .

96 communication complexity

If the probability of intersections is
at most ε, then the trivial rectangle
R = X ×Y has high discrepancy:∣∣∣E [χR(X, Y) · (−1)Disj(X,Y)

]∣∣∣
= |Pr[X ∩Y = ∅]− Pr[X ∩Y 6= ∅]|
≥ 1− 2ε.

2 Sherstov, 2012; and Rao and Yehuday-
off, 2015

Whenever there is a coordinate j for which

k−1

∏
i=2

(xi,j + xi′ ,j) 6= 0 mod 2,

the inner expectation is 0. The probability that there is no such j is
exactly (1− 2−k+1)n. So we get(

E
x

[
χS(x) · (−1)GIP(x)

])2k−1

≤ (1− 2−k+1)n ≤ e−n/2k−1
. since 1− z ≤ e−z for all z.

By Lemma 5.7 and the analog of Theorem 5.2 in the number-on-
forehead model:

Theorem 5.8. Any randomized protocol for computing the generalized inner
product in the number-on-forehead model with error ε over the uniform dis-
tribution requires at least n/4k−1 − log(1/(1− 2ε)) bits of communication.

Disjointness and Discrepancy

It is time to consider the discrepancy of our favorite function,
the disjointness function. Can we use discrepancy to prove lower
bounds on its communication complexity? We certainly cannot do
this using the discrepancy of disjointness with respect to the uniform
distribution, since disjointness has quite large monochromatic rectan-
gles, like R = {(X, Y) : 1 ∈ X, 1 ∈ Y}. The discrepancy of disjointness
with respect to R over the uniform distribution is 1

4 . This only gives
us a constant lower bound.

What if we carefully choose some other distribution on inputs?
Can we hope to get a better bound on the discrepancy of rectangles?
If we use a distribution on inputs that gives intersecting sets with
probability at most ε, then the parties could just guess that the sets
intersect without communicating. On the other hand, if the probabil-
ity of intersections is at least ε, then by averaging there must be some
fixed coordinate i such that the sets both contain i with probability at
least ε/n. Setting R = {(X, Y) : i ∈ X, i ∈ Y}, we get∣∣∣E [χR(X, Y) · (−1)Disj(X,Y)

]∣∣∣ = E [χR(X, Y)] ≥ ε/n.

This suggests that the discrepancy method can only give a lower
bound of Ω(log n) if we follow the same approach that was used for
the inner product function.

Nevertheless, one can use discrepancy to give a lower bound on
the communication complexity of disjointness2, even when the proto-

discrepancy 97

This bound is tight. Set

R = {(x, y) : |x| ≥ n/2}.
Then R has density 1/2, and for
X, Y chosen randomly from R, the
probability that Y ⊆ X is at least
1/2 + Ω(1/

√
n). This gives discrepancy

Ω(1/
√

n).

col is allowed to be randomized. The idea is to study the discrepancy
of a function that is related to disjointness under a suitably chosen
distribution.

Above we showed that the discrepancy with respect to rectangles
must be Ω(1/n). Let us start by proving an upper bound of 1/

√
n

on the discrepancy. Consider the following distribution on sets.
Suppose Alice gets a uniformly random set X ⊆ [n], and Bob gets an
independent, uniformly random set Y ⊆ [n] of size 1.

Lemma 5.9. For any rectangle R,∣∣∣E [χR(X, Y) · (−1)Disj(X,Y)
]∣∣∣ ≤ 1√

n
.

Proof. As usual, we express χR(X, Y) = A(X) · B(Y) and carry out a
convexity argument. Express the square of the discrepancy as(

E

[
χR(X, Y) · (−1)Disj(X,Y)

])2

=
(

E

[
A(X) · B(Y) · (−1)Disj(X,Y)

])2

≤ E

[
A(X)2

(
E

[
B(Y) · (−1)Disj(X,Y)

])2
]

by convexity of z 7→ z2.

≤ E
X,Y,Y′

[
B(Y)B(Y′) · (−1)Disj(X,Y)+Disj(X,Y′)

]
≤ E

Y,Y′

[∣∣∣∣EX
[
(−1)Disj(X,Y)+Disj(X,Y′)

]∣∣∣∣] ,

where Y′ is an independent copy of Y. Now observe that for any
fixing of Y, Y′, the inner expectation is 0 as long as Y 6= Y′, since
|Yj| = |Y′j | = 1 for each j. The probability that Y = Y′ is exactly 1/n.
So, the square of the discrepancy is at most 1/n.

Although this bound looks quite weak, we actually can use it to
prove a linear lower bound on the communication complexity of
disjointness. The key observation is that discrepancy tensorizes—the
techniques we have used to bound the discrepancy behave very
nicely when we attempt to compute our function on independent
copies drawn from the same distribution. Specifically, suppose
n1, . . . , nm are non-negative integers, and

(X1, Y1) ⊆ [n1]× [n1], . . . , (Xm, Ym) ⊆ [nm]× [nm]

are pairs of sets, each drawn independently from the same dis-
tribution as above, although on universes of different sizes. Let
X = X1, . . . , Xm, and Y = Y1, . . . , Ym. The variables X and Y are lists
of sets, but we can also think of X, Y as subsets of [n1 + n2 + · · ·+ nm],
by partitioning the space into m intervals of sizes n1, n2, . . . , nm, and

98 communication complexity

Previously, we used discrepancy to
prove lower bounds on randomized
communication complexity. Here we
use it to prove a lower bound where
the proof only gives lower bounds
on deterministic communication
complexity.

The argument we present here even
gives a lower bound on the size of a
1-cover for disjointness.

letting Xj be the intersection of X with the j’th interval. Then the
equations we used above can be easily modified to show that the
discrepancy of the function ∑m

j=1 Disj(Xj, Yj) is at most ∏m
i=1(1/

√
ni):

Lemma 5.10. For any rectangle R,∣∣∣E [χR(X, Y) · (−1)∑m
j=1 Disj(Xj ,Yj)

]∣∣∣ ≤ m

∏
i=1

1√
ni

.

Proof. Express the square of the discrepancy as(
E

[
χR(X, Y) · (−1)∑m

j=1 Disj(Xj ,Yj)
])2

=
(

E

[
A(X) · B(Y) · (−1)∑m

j=1 Disj(Xj ,Yj)
])2

≤ E

[
A(X)2

(
E

[
B(Y) · (−1)∑m

j=1 Disj(Xj ,Yj)
])2
]

by convexity of z 7→ z2.

≤ E
X,Y,Y′

[
B(Y)B(Y′) · (−1)∑m

j=1 Disj(Xj ,Yj)+Disj(Xj ,Y′j)
]

≤ E
Y,Y′

[∣∣∣∣EX
[
(−1)∑m

j=1 Disj(Xj ,Yj)+Disj(Xj ,Y′j)
]∣∣∣∣] ,

where Y′ is an independent copy of Y. For any fixing of Y, Y′, the
inner expectation is 0 as long as Y 6= Y′, since |Yj| = |Y′j | = 1 for each
j. The probability that Y = Y′ is exactly ∏m

i=1(1/ni), so the square of
the discrepancy is at most ∏m

i=1(1/ni).

Lemma 5.10 may not seem useful at first, because under the given
distribution, the probability that X, Y are disjoint is 2−m. However,
we can actually use it to give a linear lower bound on the communica-
tion of two-party deterministic protocols.

Set n = m`, and partition the universe [n] into m disjoint sets of
size `. Consider the distribution on sets X, Y ⊆ [n] where (Xj, Yj) are
subsets of the ` elements in the j’th part of the universe sampled as
above, and X = X1 ∪ · · · ∪ Xm, Y = Y1 ∪ · · · ∪ Xm.

We know that if there is a deterministic protocol for disjoint-
ness over a universe of size n = m` of length c, then there are
T ≤ 2c monochromatic 1-rectangles R1, . . . , RT that cover all
the 1’s of Disj. Now, whenever X, Y are disjoint, we must have
∑m

j=1 Disj(Xj, Yj) = m and ∑T
t=1 χRt(X, Y) ≥ 1. The probability

that X, Y are disjoint is exactly 2−m. Whenever X, Y are not disjoint,
we have that ∑T

t=1 χRt(X, Y) = 0. So,

2−m ≤
∣∣∣∣∣E
[

T

∑
t=1

χRt(X, Y) · (−1)∑m
j=1 Disj(Xj ,Yj)

]∣∣∣∣∣
≤

T

∑
t=1

∣∣∣E [χRt(X, Y) · (−1)∑m
j=1 Disj(Xj ,Yj)

]∣∣∣ by the triangle inequality.

≤ 2c · 1√
`m

.

discrepancy 99

A more careful analysis gives the bound

∏m
j=1

(2k−1−1)√
nj

.

If ` = 16, we get the lower bound c ≥ m = n/16.
We have already seen several approaches for proving lower

bounds on the two-party communication complexity of disjoint-
ness. The discrepancy approach, however, has a unique advantage
over all the methods we have discussed before—it works even in the
number-on-forehead model.

Suppose that there are k parties in the number-on-forehead model.
We shall define a distribution on k sets X1, . . . , Xk ⊆ [n]. Let n =

n1 + n2 + · · ·+ nm, and partition the universe into disjoint sets of size
n1, n2, . . . , nm. Consider the distribution where for each j = 1, . . . , m,
the set of the first party X1,j is picked uniformly at random from the
j’th part of the universe. The sets of the other parties X2,j, . . . , Xk,j are
picked uniformly and independently at random from the j’th part of
the universe, subject to the constraint that their intersection contains
exactly 1 element. The set Xi is the union Xi,1 ∪ · · · ∪ Xi,m.

We can generalize Lemma 5.10 to show:

Lemma 5.11. For any cylinder intersection S,∣∣∣E [χS(X) · (−1)∑m
j=1 Disj(X1,j ,...,Xk,j)

]∣∣∣ ≤ m

∏
j=1

8k
√nj

.

Proof. We prove the lemma by induction on k. When k = 2, the
statement was already proved in Lemma 5.10. So, let us assume
that k > 2, and perform the induction step. To do so, let X′k be an
independent copy of Xk conditioned on X1, . . . , Xk−1. It is helpful to
introduce the following notation. Let Tj = X1,j, . . . , Xk,j denote all the
sets in the j’th part of the universe. Let X′ = X1, . . . , Xk−1, X′k and let
T′j = X1,j, . . . , Xk−1,j, X′k,j.

As usual, we use convexity to bound the discrepancy. Write the
characteristic function of the cylinder intersection as χS = ∏k

i=1 χi,
where χi does not depend on Xi. The square of the discrepancy is(

E

[
χS(X) · (−1)∑m

j=1 Disj(X1,j ,...,Xk,j)
])2

≤ E
X1,...,Xk−1

χk(X)2 ·
(

E
Xk

[
k−1

∏
i=1

χi(X) · (−1)∑m
j=1 Disj(Tj)

])2

≤ E
X1,...,Xk−1

(E
Xk

[
k−1

∏
i=1

χi(X) · (−1)∑m
j=1 Disj(Tj)

])2

= E
X1,...,Xk−1,Xk ,X′k

[
k−1

∏
i=1

χi(X)χi(X′) · (−1)∑m
j=1 Disj(Tj)+Disj(T′j)

]
. (5.1)

Focus on the expression Disj(Tj) +Disj(T′j) for some fixed j. Let vj

denote the common intersection point of X2,j, . . . , Xk,j. Let v′j denote

100 communication complexity

X2,j \ · · · \ Xk�1,j

Xk,j

X 0
k,j

vj v0j

Figure 5.2: Xk,j and X′k,j intersect the
rest of the sets in unique points with
high probability.

the common intersection point of X2,j, . . . , Xk−1,j, X′k,j. When vj = v′j,
we have Disj(Tj) = Disj(T′j), and so this expression is 0 modulo
2. When vj 6= v′j, any intersection in Tj must take place in the set
Xk,j − X′k,j, and any intersection in T′j must take place in X′k,j − Xj,k.
So, we can ignore the part of the sets X1, . . . , Xk−1 that is not in the
symmetric difference of Xk,j and X′k,j. Effectively, after fixing Xk,j and
X′k,j, the intersection of all sets with the points outside the symmetric
difference of Xk,j and X′k,j, and whether or not vj = v′j, we are left
with bounding the discrepancy of a (k − 1)-dimensional cylinder
intersection on sets that are sampled from the universe consisting
of all elements that are in (Xk,j − X′k,j) ∪ (X′k,j − Xk,j) for some j with
vj 6= v′j. We can use induction to bound the discrepancy.

Let Ej be the indicator random variable for the event that one of
the following holds

– vj = v′j, or

– |Xk,j − X′k,j| < nj/32, or

– |X′k,j − Xk,j| < nj/32.

We shall prove below that

E
[
Ej
]
= Pr[Ej = 1] ≤ 1

2
· 82k

nj
. (5.2)

When Ej = 0, we can use induction to bound the contribution of the

j’th part of the universe to the discrepancy by 8k−1√
nj/32

· 8k−1√
nj/32

. This is

because in the j’th part of the universe, the only elements that could
still contain an intersection are the elements belonging to two disjoint
sets: Xk,j − X′k,j and X′k,j − Xk,j. Each of these sets is of size at least
nj/32, and the distribution is independent on these sets. Let Zj be the

discrepancy 101

There are exactly 2k−1 possible ways
in which an element that is not vj can
belong to X2,j, . . . , Xk−1,j, and one of
these ways—where the element belongs
to all the sets—is forbidden.

There are 2k−1 − 1 possibly configura-
tions for each element, and 2k−2 − 1 of
them involve the element belonging to
Xk,j.

random variable defined as

Zj = Ej +
8k−1√
nj/32

· 8k−1√
nj/32

= Ej +
1
2
· 82k

nj
.

Then, (5.2) and the inductive hypothesis give

(5.1) ≤ E

[
m

∏
j=1

Zj

]
≤

m

∏
j=1

E
[
Zj
]
≤

m

∏
j=1

(1
2
+

1
2

)
· 82k

nj
≤

m

∏
j=1

82k

nj
. since the Zj’s are independent of each

other.

It only remains to prove (5.2). Without loss of generality, we can
assume that nj ≥ 82k/2, or the bound is trivial. Since vj and v′j are
uniformly random elements of X2,j ∩ · · · ∩ Xk−1,j, the probability that
they are equal is 1

|X2,j∩···∩Xk−1,j | . We shall argue that |X2,j ∩ · · · ∩ Xk−1,j|
is typically of size at least nj/2k+1. Indeed, once we fix vj, every
other element of the universe is included in X2,j ∩ · · · ∩ Xk−1,j with
probability at least 1

2k−1−1
. Thus, the expected size of the intersection

(not counting vj) is at least

nj − 1
2k−1 − 1

≥ nj

2k ,

since nj ≥ 2k. By the Chernoff-Hoeffding bound, the probability that
the size of the intersection is less than nj/(2 · 2k) is at most

exp
(
− nj

4 · 3 · 2k

)
= exp

(
− nj

3 · 2k+2

)
.

So, we get that the probability that vj 6= v′j is at most

exp
(
− nj

3 · 2k+2

)
+

2k+1

nj
≤ 3 · 2k+2

nj
+

2k+2

nj
=

2k+4

nj
. using exp(−x) ≤ 1/(1 + x) ≤ 1/x for

x > 0.

Next, let us bound the probability that |Xk,j − X′k,j| < nj/32.
Observe that once vj is fixed, every other element in the universe is

included in Xk,j with probability exactly 2k−2−1
2k−1−1

. Once the element is
included in Xk,j, it must be missing from X2,j ∩ · · · ∩ Xk−1,j, and so it
is included in X′k,j with probability exactly 1/2. Thus, the probability

that the element contributes to Xk,j − X′k,j is exactly 1
2 · 2k−2−1

2k−1−1
, and the

expected number of elements in Xk,j − X′k,j, not counting vj, is at least

(nj − 1) · 2k−2 − 1
2(2k−1 − 1)

≥ nj

16
.

By the Chernoff-Hoeffding bound, the probability that |Xk,j − X′k,j|
is of size less than nj/32 is at most exp(−nj/384). By symmetry, the
same bound applies to the probability that |X′k,j − Xk,j| < n/32.

102 communication complexity

In fact, it proves a lower bound on the
number of monochromatic cylinder
intersections needed to cover the 1’s of
disjointness.

3 Sherstov, 2014; and Rao and Yehuday-
off, 2015

Proving sharp bounds on the random-
ized communication complexity of
disjointness in the number-on-forehead
model is an important open problem.

Putting it all together, we have shown:

Pr[Ej = 1] ≤ 2 exp
(
− nj

384

)
+

2k+4

nj

≤ 768
nj

+
2k+4

nj
again using exp(−x) ≤ 1/x for x > 0.

≤
(768

86 +
1

25k−4

)
· 82k

nj
≤ 1

2
· 82k

nj
. since k ≥ 3.

The discrepancy estimate implies a lower bound on the determin-
istic communication complexity of disjointness in the number-on-
forehead model.

Theorem 5.12. Any deterministic protocol for computing disjointness in the
number-on-forehead model with k parties over a universe of size n requires

n
16·82k bits of communication.

Proof. Suppose a deterministic protocol for disjointness has length c.
There are at most 2c monochromatic cylinder intersections S1, . . . , ST

that cover all the 1’s. Whenever X1, . . . , Xk are disjoint, we have that
∑m

j=1 Disj(X1,j, X2,j, . . . , Xk,j) = m. On the other hand, the probability
that X1, . . . , Xk are disjoint is exactly 2−m. Thus, we get

2−m ≤ E

[
T

∑
t=1

χSt(X) · (−1)∑m
j=1 Disj(X1,i ,...,Xk,j)

]

≤
T

∑
t=1

∣∣∣E [χSt(X) · (−1)∑m
j=1 Disj(X1,i ,...,Xk,j)

]∣∣∣
≤ 2c ·

(
m

∏
j=1

8k
√nj

)
.

Setting nj = 16 · 82k for all j, we get that

c ≥ m =
n

16 · 82k .

The best known lower bound on the randomized communication
complexity is not linear3:

Theorem 5.13. Any randomized protocol for computing disjointness in the
worst case with error 1/3 in the number-on-forehead model with k parties
over a universe of size n requires Ω

(√
n

k2k

)
bits of communication.

Theorem 5.13 is proved using discrepancy estimates as above,
combined with ideas from approximation theory. We do not include
the proof here.

discrepancy 103

4 Babai et al., 1986

Later on we shall prove a sharp Ω(n)
lower bound on the randomized com-
munication complexity of disjointness.
We present this proof here for two
reasons. First, it applies to a prod-
uct distribution on the inputs, and is
tight for this case. Second, it sets the
stage for the lower bound on the Gap-
Hamming problem that is explained in
the next section.

For γ ≤ 1/2,

2−2γ2n ≤ (1− γ2)n ≤ e−γ2n.

So, we have the estimates:

1√
2n
≤ γ ≤ ln 2√

n
.

Can you think of a rectangle that shows
that the lemma is tight?

Concentration of Measure

There are several techniques for controlling discrepancy. Here
we explore two techniques from probability theory: the Chernoff-
Hoeffding bound and Talagrand’s inequality.

Disjointness

We start by proving a lower bound on the randomized communi-
cation complexity of two-party protocols computing the disjoint-
ness function. We have already discussed a major obstacle for this
approach—disjointness has large discrepancy. Nevertheless, discrep-
ancy can still be used to prove the following lower bound4:

Theorem 5.14. Any randomized two-party protocol computing disjointness
with error 1/3 must have communication Ω(

√
n).

To prove this theorem, we define a hard distribution on inputs. For
a parameter γ, we independently sample sets X, Y ⊆ [n] by including
each element in each set independently with probability γ. We set
γ ≈ 1/

√
n so that the probability that the sets are disjoint is exactly

(1− γ2)n =
1
2

.

The heart of the proof is the following upper bound on discrepancy
over rectangles with many disjoint pairs of inputs.

Lemma 5.15. There are constants α, β > 0 such that for any rectangle R
with

Pr[(X, Y) ∈ R] ≥ e−α
√

n,

we have
Pr[X, Y are disjoint|(X, Y) ∈ R] < 1− β.

The lemma implies the theorem:

Proof of Theorem 5.14. We actually prove a stronger, average case
lower bound for the distribution on inputs described above. Let α, β

be as in Lemma 5.15. Without loss of generality, we can assume that
β < 1/8, since if the Lemma is true with a large value of β then it is
true with a smaller value as well. Suppose that there is a protocol of
length c for disjointness with error at most β2/4 over the distribution
defined above.

Since the probability that X, Y are disjoint is 1
2 , the protocol must

output that the sets are disjoint with probability at least 1
2 − β2/4 > β,

since β < 1/8. Theorem 3.6 implies that there is a rectangle of
density (β/2) · 2−c that consists almost entirely of disjoint inputs—the

104 communication complexity

X1
X2

X3

X4

X5

X6

X7

Figure 5.3: The set A′ contains many
sets that do not intersect each other too
much.

Y

X1
X2

X3

X4

X5

X6

X7

Figure 5.4: There will be a set in B that
intersects many of the sets X1, . . . , Xk .

probability that the inputs intersect is at most β/2. By Lemma 5.15,
any such rectangle must have density at most e−α

√
n. So, c ≥ Ω(n).

To prove Lemma 5.15, we use the Chernoff-Hoeffding bound to
find a useful subset of the rectangle. The Chernoff-Hoeffding bound
controls the deviation of a sum of independent identically distributed
boolean random variables from its expectation. In the proof, the
bound is used in two different ways. Suppose R = A× B. In the first
step, the bound shows that most choices x1, . . . , xk ∈ A are far away
from each other. In the second step, the bound shows that it is unlikely
for y ∈ B to be disjoint from all of the sets x1, . . . , xk.

Proof of Lemma 5.15. We shall set α, β to be small enough constants
during the proof. Let R = A × B be any rectangle of density at
least e−α

√
n violating the statement of the lemma. So, we must have

β ≥ Pr[X, Y are intersecting|(X, Y) ∈ R]. Define

A′ = {x ∈ A : Pr
Y
[x, Y are intersecting|Y ∈ B] ≤ 2β}.

By Markov’s inequality,

Pr[X ∈ A′] ≥ Pr[X ∈ A′|(X, Y) ∈ R] · Pr[(X, Y) ∈ R]

≥ 1
2
· Pr[(X, Y) ∈ R] ≥ e−α

√
n

2
.

Claim 5.16. Let k = d 1
9γ e. If α is small enough, there are sets

X1, X2, . . . , Xk ∈ A′

such that for all i = 1, 2, . . . , k,

1
2
· γn ≤ |Xi| ≤

3
2
· γn,

and ∣∣∣∣∣∣Xi −
i−1⋃
j=1

Xj

∣∣∣∣∣∣ ≥ γn
4

.

Proof. We find the sequence of sets X1, . . . , Xk inductively. Assume
we have already picked X1, . . . , Xi−1. Pick the next set Xi according to
the distribution where each element is included in Xi independently
with probability γ. Note that this distribution does not depend on A′.
The expected size of Xi is γn. By the Chernoff-Hoeffding bound,

Pr[||Xi| − γn| > γn/2] ≤ 2e−(1/2)2γn/3.

discrepancy 105

The size of the union
⋃i−1

j=1 Xj is at most 1
9γ ·

3γn
2 = n

6 . So the expected

number of elements in Xi that are not in
⋃i−1

j=1 Xj is at least 5γn/6. So,

Pr

∣∣∣Xi −
i−1⋃
j=1

Xj

∣∣∣ < γn/4

 ≤ e−(
5/6−1/4

5/6)25γn/18.

Set α > 0 to be small enough so that

Pr[X ∈ A′] ≥ e−α
√

n

2
> 2e−(1/2)2γn/3 + e−(

5/6−1/4
5/6)25γn/18.

This ensures that there is some Xi ∈ A with the claimed properties.

Let X1, . . . , Xk be as promised by Claim 5.16. For each i, define

Zi = Xi −
i−1⋃
j=1

Xj.

The sets Z1, . . . , Zk are disjoint, and each is of size at least γn/4.
Now, assume towards a contradiction that β < (1 − e−1/8)/8.

Define

B′ = {y ∈ B : y intersects at most 4βk of the sets Z1, . . . , Zk}
⊇ {y ∈ B : y intersects at most 4βk of the sets X1, . . . , Xk}.

We claim that

Pr[Y ∈ B′] ≤ e−(1/2)2k(1−e−1/8)/3 < e−α
√

n/2,

if we choose α to be a small enough constant.
Indeed, if we pick Y at random by including each element in Y

with probability γ, then the probability that Y is disjoint from a
specific Zi is at most

(1− γ)γn/4 ≤ e−γ2n/4 ≤ e−1/8.

So, the expected number of the sets Z1, . . . , Zk that Y intersects is at
least k(1− e−1/8). Applying the Chernoff-Hoeffding bound gives

Pr[Y ∈ B′] ≤ e−(1/2)2k(1−e−1/8)/3 < e−α
√

n/2,

if we choose α to be a small enough constant.
On the other hand, by the definition of A′, a random element

Y ∈ B intersects less than 2βk of the sets X1, . . . , Xk in expectation,
and so less than 2βk of the sets Z1, . . . , Zk. By Markov’s inequality,
the probability that Y intersects more than 4βk of the sets is at most
1/2. We finally get a contradiction:

Pr[Y ∈ B′] = Pr[Y ∈ B′|Y ∈ B] · Pr[Y ∈ B]

≥ 1
2
· Pr[(X, Y) ∈ R] ≥ e−α

√
n/2.

106 communication complexity

The Hamming distance between x and
y is ∆(x, y) = |{i ∈ [n] : xi 6= yi}|.

This is a promise problem. The parties
are promised that their inputs satisfy
some property. No correctness guaran-
tees are required when the inputs do
not satisfy the promise. In other words,
the parties are trying to compute a func-
tion that is only partially defined on
its inputs. It does not matter what they
compute on inputs where the function
is not defined.

The fooling set method can be used to
show that the deterministic communi-
cation complexity of approximating the
Hamming distance is Ω(n).See Exercise
1.7.

5 Chakrabarti and Regev, 2012; Vidick,
2012; Sherstov, 2012; and Rao and
Yehudayoff, 2019

One can show that in this rectangle,
the coordinates that are not fixed are
very likely to have Hamming distance
h with |h− n/2| ≤ 4

√
n, so the overall

Hamming distance is very likely to be
at least n/2 +

√
n.

6 Sherstov, 2012

The Gap-Hamming Problem

The lower bound on the randomized communication complexity
of disjointness we just proved is not tight. Nevertheless, a similar
approach gives sharp bounds for the Gap-Hamming problem.

In the Gap-Hamming problem, Alice and Bob get inputs x, y ∈
{±1}n. They are promised that the Hamming distance between x and
y satisfies either

– ∆(x, y) ≥ n
2 +
√

n, or

– ∆(x, y) ≤ n
2 −
√

n.

Their goal is to determine which case holds for x, y.
In Chapter 3, we showed that there is a randomized protocol

that can estimate the Hamming distance up to an additive factor
of
√

n/ε, with communication O(ε2n). Here we prove5 that this
protocol is essentially the best we can hope for, even when the inputs
are promised to exhibit this gap.

Theorem 5.17. Any randomized protocol that solves the Gap-Hamming
problem must have communication complexity Ω(n).

The Gap-Hamming problem does have large nearly monochro-
matic rectangles under the uniform distribution. For example, one
can show that the rectangle

{x : x1 = x2 = . . . = x5
√

n = 1} × {y : y1 = y2 = . . . = y5
√

n = −1}

is nearly monochromatic and has density 2−O(
√

n). Therefore, dis-
crepancy cannot be directly used to prove a linear lower bound on
the communication complexity of Gap-Hamming under the uniform
distribution.

The first step in the proof of the lower bound is to replace the Gap-
Hamming problem with the Gap-Orthogonality problem6. In the
Gap-Orthogonality problem, the parties are promised that | 〈x, y〉 | is
either less than

√
n or at least 2

√
n. Their goal is to determine which

of these is the case.
The two problems are closely related, since we have

∆(x, y) = (n− 〈x, y〉)/2,

and so
|∆(x, y)− n/2| = | 〈x, y〉 |.

This relationship allows us to use any protocol solving the Gap-
Hamming problem to solve Gap-Orthogonality as well. Run the
protocol for Gap-Hamming twice on the inputs (xa(1)b, ya(1)b) and
(xa(1)b, ya(−1)b) for suitably chosen constants a, b. Here xa(1)b is

discrepancy 107

Since | 〈x, y〉 | ≥ 2
√

n ⇒ |∆(xa, ya)−
na/2| ≥ 2a

√
n, and | 〈x, y〉 | ≤ √n ⇒

|∆(xa, ya)− na/2| ≤ a
√

n, the idea is
to choose a, b so that the outcome of
Gap-Hamming is the same on both
pairs of inputs in the first case, and
different on both pairs of inputs in the
second case. Set b = 3a

√
n and set a to

be a large enough constant so that

√
na + b =

√
na + 3a

√
n ≤ a

√
n/2.

When |∆(xa, ya) − na/2| ≥ 2a
√

n,
the outcome of Gap-Hamming must
be the same on both pairs of inputs,
since 2a

√
n − b/2 = a

√
n/2. When

|∆(xa, ya)− na/2| ≤ a
√

n, the outcome
of Gap-Hamming will be different on
both pairs of inputs, since b/2− a

√
n ≥

a
√

n/2.

The lemma shows that inner product is
anti-concentrated when the inputs come
from a large enough rectangle. Namely,
the value of the inner product is not
concentrated in any interval of length
≈ √n.

a vector of length na + b obtained by concatenating x with itself
a times followed by the all 1’s string of length b. If a, b are chosen
carefully, the outcomes on these two inputs determines the outcome
for Gap-Orthogonality. For the rest of this section we study the
Gap-Orthogonality problem.

Let X, Y ∈ {±1}n be independent and uniformly random. As in
the lower bound for disjointness, the key step in the argument is to
prove that there are no large rectangles where the magnitude of the
inner product is small.

Lemma 5.18. There are constants α, β > 0 and an integer t such that if R is
a rectangle with

Pr[(X, Y) ∈ R] > 2−αn,

then
Pr
[
| 〈X, Y〉 | ≤

√
n/t|(X, Y) ∈ R

]
≤ 1− β.

The proof strategy of Lemma 5.18 is similar to that of Lemma 5.15

from the lower bound for disjointness. Instead of the Chernoff-
Hoeffding bound, the main tool used in this proof is a beautiful
result from convex geometry called Talagrand’s inequality. The proof
also relies on the singular value decomposition of matrices. Before
proving the lemma, let us see how to use it to prove the lower bound.

Proof of Theorem 5.17. We prove a stronger, average case lower bound.
Let α, β, t be as given in Lemma 5.18. Choose X, Y ∈ {±1}n indepen-
dently and uniformly at random. Let X′ = X2t and Y′ = Y2t—namely,
X′, Y′ are obtained from X, Y by repeating each coordinate 2t times.
Let ε > 0 be a small enough constant to be determined. Assume
that there is a protocol of length c that solves Gap-Orthogonality for
inputs in {±1}2tn with error ε over (X′, Y′). We may assume that the
protocol is deterministic.

There is a significant probability that | 〈X, Y〉 | ≤ √n/2t. To see
this, let Z1, . . . , Zn be bits defined by

Zi =

1 if Xi 6= Yi,

0 otherwise.

Then Z = ∑n
i=1 Zi =

n−〈X,Y〉
2 . The expected value of Z is n/2. So, by

the Chernoff-Hoeffding bound,

Pr[| 〈X, Y〉 | >
√

n/2t] = Pr
[∣∣∣Z− n

2

∣∣∣ > √n/4t
]
≤ 1− p,

for some p that depends only on t. Since 〈X′, Y′〉 = 2t · 〈X, Y〉,

Pr[|
〈

X′, Y′
〉
| ≤
√

n] ≥ p.

108 communication complexity

This means that the protocol must conclude that | 〈X′, Y′〉 | ≤ √n
with probability at least p − ε. Choose ε so that p − ε > 2

√
ε. By

Theorem 3.6, there is a rectangle R so that

Pr[(X, Y) ∈ R] ≥
√

ε · 2−c

and
Pr[| 〈X, Y〉 | >

√
n/t|(X, Y) ∈ R] ≤

√
ε.

For ε < β2, Lemma 5.18 implies that c ≥ αn.

It only remains to prove Lemma 5.18. We start with a preliminary
description of two ingredients in the proof: Talagrand’s inequality
and the singular value decomposition (SVD) of matrices.

Talagrand’s inequality Talagrand’s inequality allows us to control the
length of the projection of a uniformly random vector X ∈ {±1}n

to a given vector space V. Let projV(x) denote the projection of a
vector x ∈ Rn to a d-dimensional vector space V ⊆ Rn. It is the
vector in V that is closest to x. It is also the unique vector in V
such that that two vectors projV(x) and x− projV(x) are orthogonal.
Figure 5.5, shows various ways of projecting the cube {±1}15 to
different 2-dimensional subspaces.

The expected value of ‖projV(X)‖2 is d: if e1, e2, . . . , ed is an or-
thonormal basis for V, then

E

[
‖projV(x)‖2

]
= E

[
d

∑
i=1
〈x, ei〉2

]
=

d

∑
i=1

E

[
〈x, ei〉2

]
,

and for each ei,

E

[
〈x, ei〉2

]
= E

(n

∑
j=1

ei,jxj

)2

= ∑
j

E

[
(ei,jxj)

2
]
+ ∑

j 6=j′
E

[
(ei,jxj)(ei,j′xj′)

]
the expected value of XjXj′ is 0 for j 6=
j′.

=
n

∑
j=1

E

[
e2

i,j

]
= ‖ei‖2 = 1.

This might lead us to guess that length of the projection should
typically be about

√
d. Talagrand’s inequality shows that this

intuition is correct.

Theorem 5.19. There is a constant γ > 0 such that for any d-
dimensional vector space V ⊆ Rn,

Pr
[
|‖projV(X)‖ −

√
d| ≥ s

]
< 4e−γs2

,

where X is uniformly distributed in {±1}n.

discrepancy 109

Figure 5.5: Four examples showing
projections of the set {±1}15 onto
different 2-dimensional vector spaces.
The circles are centered at the origin
and have radius

√
2.

To prove Lemma 5.18, we apply Talagrand’s inequality in two
different ways. This is analogous to how the Chernoff-Hoeffding
bound was used in the proof of Lemma 5.15. Suppose R = A× B.
In the first step, we use Talagrand’s inequality to find vectors
k = Ω(n) vectors x1, . . . , xk ∈ A that are essentially orthogonal to
each other. We choose x1, . . . , xk iteratively. A uniformly random
vector xi ∈ {±1}n has a small projection onto the span of the
previous vectors x1, . . . , xi−1, except with exponentially small
probability. Since A is not so small, we will always be able to find
an xi that works.

In the second step, we use the inequality with B. Let us assume
for now that x1, . . . , xk are perfectly orthogonal. Consider the
experiment of picking a uniformly random Y ∈ {±1}n. The
inequality promises that the projection of Y to the space spanned
by x1, . . . , xk must be of length at least Ω(

√
k) = Ω(

√
n) with

significant probability. So | 〈Y, xi〉 | > Ω(
√

n) for most i’s, except
with exponentially small probability. Since B is not so small, the
probability that Y is in B and still has the above properties is
significant.

Of course, x1, . . . , xk need not be perfectly orthogonal, so to turn
these intuitions into a proof, we need one more idea.

Singular value decomposition (SVD) Let M be an arbitrary m× n matrix

110 communication complexity

If m > n, one can apply the decompo-
sition to the transpose of M to get a
similar statement.

The vectors u1, . . . , um are the eigenval-
ues of the symmetric matrix MMT , the
vectors v1, . . . , vm are the eigenvectors
of MT M, and the singular values are
square roots of the eigenvalues of both
MMT and MT M.

To find the singular value decomposi-
tion, one can compute v1 by identifying
the unit vector that maximizes ‖Mv1‖,
and repeat this process.

For simplicity of notation, and without
loss of generality, we assume that
several expressions of the form δn for
some δ are integers.

In the proof, (X, Y) are sometimes
uniform in {±1}n and sometimes
uniform in R. The meaning will be clear
from context.

with real valued entries and m ≤ n. One can always express M as

M =
m

∑
i=1

σi · uiv
ᵀ
i ,

where u1, . . . , um are orthogonal m× 1 column vectors with ‖ui‖ =
1, v1, . . . , vm are orthogonal n× 1 column vectors with ‖vi‖ = 1,
and σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are real numbers called the singular
values of M. This decomposition gives a nice way to interpret the
action of M on an n× 1 column vector y:

My =
m

∑
i=1

σiuiv
ᵀ
i y =

m

∑
i=1

σi 〈vi, y〉 · ui.

The singular values thus characterize how much the matrix M can
stretch an n× 1 column vector y:

‖My‖2 = yᵀMᵀMy

= yᵀ
(

m

∑
i=1

σi · viu
ᵀ
i

)(
m

∑
j=1

σj · ujv
ᵀ
j

)
y

= yᵀ
(

m

∑
i=1

σ2
i · viv

ᵀ
i

)
y =

m

∑
i=1

σ2
i · (yᵀvi)

2. (5.3)

Moreover, this implies that ‖My‖ ≤ σ1 · ‖y‖. Thus, for a given value
of ‖y‖, the length ‖My‖ is maximized when y is proportional to v1.

Proof of Lemma 5.18. Let R = A× B be the given rectangle. We shall
set α, β, t as needed in the proof. We assume towards a contradic-
tion that R has density at least 2−αn, and yet a uniformly random
(X, Y) in R satisfy | 〈X, Y〉 | ≤ √n/t with probability at least 1− β.
In the first step of the proof, we isolate the part of A where anti-

concentration fails to hold. Define:

A′ =
{

x ∈ A : Pr
Y∈B

[| 〈x, Y〉 | >
√

n/t] ≤ 2β

}
.

By Markov’s inequality, we must have that

Pr[X ∈ A′] ≥ 1
2
· Pr[(X, Y) ∈ R] ≥ 2−αn−1.

We use Talagrand’s inequality to find a set of nearly orthogonal
vectors in A′:

Claim 5.20. If k = n
16 , there are strings x1, x2, . . . , xk ∈ A′ such that for all

i, if Vi denotes the span of x1, . . . , xi, then

‖projVi
(xi+1)‖ ≤

√
n

2
.

discrepancy 111

Proof. We find the sequence x1, . . . , xk ∈ {±1}n inductively. In
the i’th step, consider the experiment of picking xi according to
the uniform distribution. The dimension of Vi−1 is at most k, so
by Theorem 5.19, the probability that the length of the projection
exceeds

√
n/2 is at most 4e−γ(

√
n/4)2

. We set α to be a small enough
constant such that Pr[X ∈ A′] ≥ 2−αn−1 > 4e−γ(

√
n/4)2

to guarantee
that there must be some xi ∈ A′ satisfying the requirement.

Let x1, . . . , xk be as in the claim above. The second part of the
proof focuses on B. The idea is to use Talagrand’s inequality again to
show that the inner product with the xi’s is typically large.

For each subset S ⊆ [k] of size |S| = m with m = k− 4βk, we define
the set

BS =
{

y ∈ B : | 〈xi, y〉 | ≤
√

n/t for all i ∈ S
}

.

By definition of A′ and Markov’s inequality, at least half the y’s in
B must satisfy the property that the number of i ∈ [k] for which
| 〈xi, y〉 | > √n/t is at most 4βk. So, by averaging, there must be a set
S for which

Pr[Y ∈ BS] ≥
2−αn−1

(k
m)

=
2−αn−1

(k
βk)

. (5.4)

Without loss of generality, we may assume that {1, 2, . . . , m} is such a
set.

Now, we use the singular value decomposition. Define the m× n
matrix M whose rows are x1, . . . , xm. Express it as

M =
m

∑
i=1

σi · uᵀi vi.

We claim that the largest singular values of M cannot be too different
from each other, by establishing two bounds:

m

∑
i=1

σi ≥ m
√

n/2, (5.5)

and

m

∑
i=1

σ2
i = mn. (5.6)

Let us first see how to use these bounds to complete the proof of
the lemma. We claim that there must be at least m/16 singular values

112 communication complexity

These are the vectors obtained in the
Gram-Schmidt process.

The trace of a square matrix is the sum
of the entries on its diagonal. It has
many useful properties.

of magnitude at least
√

n/4. Indeed,

∑
i>m/16

σi =
m

∑
i=1

σi −
m/16

∑
i=1

σi

≥ m
√

n
2
−

√√√√m/16

∑
i=1

σ2
i ·
√

m/16 by Cauchy-Schwartz and (5.5).

≥ m
√

n
2
−
√

mn ·
√

m/4 = m
√

n/4. by (5.6).

So, σm/16 >
√

n/4.
Now, let V denote the span of v1, . . . , vm/16. Theorem 5.19 implies

that if Y ∈ {±1}n is uniformly random, then

Pr[|‖projV(y)‖ −
√

m/4| ≥
√

m/8] < 4e−γm/64 <
2−αn−1

(k
βk)

. if α, β are small enough.

Thus, by (5.4) there must be y ∈ BS with ‖projV(y)‖ ≥
√

m/8. But, on
the other hand, by (5.3) and the definition of BS,

mn
t2 ≥

m

∑
i=1
〈xi, y〉2 = ‖My‖2 ≥

m/16

∑
i=1

σ2
i · (yᵀvi)

2

≥ n
16
·

m/16

∑
i=1

(yᵀvi)
2

=
n
16
· ‖projV(y)‖2,

which is a contradiction if t ≥ 32.
It only remains to prove (5.5) and (5.6). To prove (5.5), let z1, . . . , zm

be the orthogonal vectors obtained by setting z1 = x1, and for i > 1,

zi = xi − projVi−1
(xi).

Now, let Z be the matrix with rows z1, . . . , zm. On the one hand,

trace(MZᵀ) =
m

∑
i=1
〈xi, zi〉

=
m

∑
i=1
〈xi, xi〉 −

m

∑
i=1

〈
xi, projVi−1

(xi)
〉

≥ mn−
m

∑
i=1
‖xi‖ · ‖projVi−1

(xi)‖ by Cauchy-Schwartz.

≥ mn−m ·
√

n ·
√

n
2

= mn/2.

discrepancy 113

On the other hand,

trace(MZᵀ) = trace((
m

∑
i=1

σi · uiv
ᵀ
i)Zᵀ)

=
m

∑
i=1

σi · tr(uiv
ᵀ
i Zᵀ)

=
m

∑
i=1

σi · 〈ui, Zvi〉 ≤
m

∑
i=1

σi · ‖Zvi‖. by Cauchy-Schwartz.

The rows of Z are orthogonal, and of length at most
√

n, so we get:

‖Zvi‖2 = viZZᵀvᵀi =
n

∑
j=1

v2
i,j‖zi‖2 ≤

n

∑
j=1

v2
i,jn ≤ n.

Thus, we have

trace(MZᵀ) ≤
√

n ·
m

∑
i=1

σi,

which proves (5.5).
To prove (5.6), on the one hand,

trace(MMᵀ) =
m

∑
i=1

xᵀi xi = mn.

On the other hand, it is the same as the trace

trace

(
m

∑
i=1

σ2
i uiu

ᵀ
i

)
=

m

∑
i=1

σ2
i · trace

(
uiu
ᵀ
i
)
=

m

∑
i=1

σ2
i .

Exercises

Ex 5.1 — Let D be an arbitrary domain, and µ be a distribution on
the points of D such that for every x ∈ D, the probability that x is
sampled under µ is at most ε. Let S ⊆ D be an arbitrary set. Prove
that if g : D → {0, 1} is sampled uniformly at random, the probability
that the discrepancy of g with respect to µ and S exceeds ε`

√
|D| is

at most exp(−Ω(`2)).

Ex 5.2 — Let M be a uniformly random {0, 1}n × {0, 1}n matrix with
entries in {0, 1}, and let R be a rectangle in the entries of M. Prove
that for any constant δ > 0, the probability that the discrepancy of
M exceeds 2−(1/2−δ)n with respect to the uniform distribution and
R is at most exp(−Ω(δn)). Compare this to the discrepancy of the
inner-product function.

114 communication complexity

In fact, there is an x whose discrepancy
is at most 6

√
n. This is Spencer’s result

that six standard deviations suffice.

Ex 5.3 — Here we show how to construct a function f : {0, 1}2n →
{0, 1} such that Alice and Bob must communicate Ω(n) bits to com-
pute f (x), no matter how the bits of x are partitioned between them.
For a constant d, let G = (V, E) be a graph on 2n vertices that is
d-regular and an expander graph. d-regular means that every vertex
in the graph has exactly d neighbors. The fact that the graph is an
expander means that for every A ⊆ V of size |A| ≤ n, the number of
edges of the form {{a, b} : a ∈ A, b 6∈ A} is at least |A|/10.There are
explicit constructions of such graphs, even with d = 3.
Define a version of the inner product function over G as follows. For
an assignment to the vertices x : V → {0, 1} set

f (x) = ∑
{v,u}∈E

xuxv mod 2.

Prove that if the vertices of the graph are partitioned into sets A, B,
each of size n, and Alice knows the values of x in A, and Bob knows
the values of x in B, the discrepancy of f with respect to any rect-
angle R and the uniform distribution is at most 2−Ω(n). Hint: Use
the expansion of the graph and the fact that it is d-regular to show that
there is an induced matching in the graph of size Ω(n)—there are subsets
A′ ⊂ A, B′ ⊂ B such that every vertex of A′ has a unique neighbor in B′.
Bound the discrepancy for every fixing of the assignment to x outside A′, B′.

Ex 5.4 — Let S1, S2, . . . , Sn ⊆ [n]. Show that there is an element
x ∈ {±1}n such that the maximum discrepancy

max
i∈[n]

∣∣∣∣∣∑j∈Si

xj

∣∣∣∣∣ ≤ O(
√

n log n).

Let n = 2m, and let 2n sets be defined by the identity j ∈ Si,a if and
only if 〈i, j〉 = a mod 2, for i, j ∈ {0, 1}m and a ∈ {0, 1}. Then show
that for every x ∈ {±1}n,

max
i∈{0,1}m ,a∈{0,1}

∣∣∣∣∣∣ ∑
j∈Si,a

xj

∣∣∣∣∣∣ ≥ √n.

Hint: Consider the Hadamard matrix H defined by Hi,j = (−1)〈i,j〉, and
show that HᵀH = n · I. Use this to compute xᵀHᵀHx for every x. Conclude
that some set must have large discrepancy.

Ex 5.5 — Given a prime number p, and an integer a with 0 ≤ a ≤
p − 1, the Legendre symbol

(
a
p

)
is defined to be the value a

p−1
2

mod p. It has the following properties:

–
(

a
p

)
∈ {−1, 0, 1}.

discrepancy 115

7 Babai et al., 1989

–
(

ab
p

)
=
(

a
p

) (
b
p

)
.

–
(

a
p

)
is 0 only if a = 0. When a 6= 0 mod p,

(
a
p

)
= 1 only if there

is some z such that a = z2 mod p.

We also have the Weil bound: If f (x) is any degree d polynomial with
coefficients from Fp, such that f is not of the form c · g(x)2 for some
polynomial g, then

∑
x∈Fp

(
f (x)

p

)
≤
√

d− 1/p.

Use these properties to show7 that if k parties are given numbers
x1, . . . , xk ∈ {0, 1, 2, . . . , p − 1} in the number-on-forehead model,

and wish to compute the Legendre symbol
(

∑k
i=1 xi

p

)
, then they must

communicate at least Ω(((log p)− k)/2k) bits.

The term entropy was first coined by
the physicist Rudolph Clausius in the
context of thermodynamics, to measure
the amount of disorder in a physical
system. In his words, “. . . I propose
to call the magnitude S the entropy of
the body, from the Greek word τρoπὴ,
transformation. I have intentionally
formed the word entropy so as to be as
similar as possible to the word energy;
for the two magnitudes to be denoted
by these words are so nearly allied in
their physical meanings, that a certain
similarity in design appears to be
desirable.” The physicists Boltzmann
and Gibbs gave formulas involving
entropy that look nearly identical to the
formula given by Shannon.

1 Shannon, 1948

The entropy of the message is 0.

The entropy of the message is log |S|.

The entropy of the message is ≈ εn.

6
Information

Some conversations are more informative than others. A
short conversation can be very enlightening, and a long conversation
can be completely predictable. What is the best way to quantify how
much information is conveyed?

In Shannon’s seminal work1, he defined the notion of entropy
as a measure of information content. The definition quantifies the
amount of information contained in a single message. This concept
leads to a theory that is both elegant and widely useful. It has many
applications in communication complexity.

We begin this chapter with some simple examples that help to
demonstrate the utility of this theory. Later, we show how these
concepts can be used to understand communication complexity.

Entropy

The amount of information contained in a message is not always
the same as the length of the message. For example:

– Suppose Alice sends Bob an n-bit string that is always 0n, no mat-
ter what her input is. This message is long but not informative.
Alice and Bob might as well imagine that this first message has
already been sent, and reduce the length of the communication to
0.

– Suppose Alice sends Bob a uniformly random n-bit string sampled
from a set S ⊆ {0, 1}n known to Bob. The parties could instead
use dlog |S|e bits to index the elements of the set. This potentially
reduces the communication from n to dlog |S|e.

– Suppose Alice sends Bob the string 0n with probability 1− ε, and a
uniformly random n bit string with the probability ε. One cannot

118 communication complexity

0 0.5 1
0

1

p(1)

H
(B

)

Figure 6.1: The entropy of a bit B with
distribution p.

Most of the properties of entropy follow
from convexity.

2 Shannon, 1948

encode every potential message using fewer than n bits. However,
Alice can send the bit 0 to encode the string 0n, and the string 1x
to encode the n bit string x. The message is still long in the worst
case, but its expected length is 1− ε + ε(n + 1) = 1 + εn� n.

Shannon entropy provides a good estimate for the optimal encod-
ing length required for any message. Given a random variable X
with probability distribution p(x), the entropy of X is defined to be

H(X) = ∑
x

p(x) · log
1

p(x)
= E

p(x)

[
log

1
p(x)

]
, (6.1)

where by convention 0 log(1/0) = 0. This definition may seem
technical at first sight, but, as we shall see, it enjoys some intuitive
and useful properties.

The entropy is always non-negative, since every term in the sum is
non-negative. If X is uniformly distributed in [n], then its entropy is

H(X) = ∑
x∈[n]

1
n

log n = log n.

The uniform distribution has the largest possible entropy—if X ∈ [n]
then

H(X) = E
p(x)

[
log

1
p(x)

]
≤ log E

p(x)

[
1

p(x)

]
= log n, (6.2)

where the inequality follows by concavity of log(·). This property of
entropy makes it particularly useful as a tool for counting. It relates
entropy to the size of sets.

An Axiomatic Definition

Shannon’s notion of entropy can be axiomatically defined2—it is
essentially the only quantity satisfying some natural axioms that one

information 119

3 Gromov, 2012

4 Shannon, 1948

It is possible to encode the integers so
that that i has length log i + O(log log i).

Here encoding X means that Alice
gets X as input and needs to deter-
ministically send X to Bob using a
1-round protocol. Such an encoding is
sometimes called a prefix-free encoding.

Can you think of an example where the
expected length of the encoding needs
to be at least H(X) + 0.9?

might expect from a measure of information. Suppose we want to
find a notion of entropy that assigns a real number to each distribu-
tion, and satisfies:

Symmetry H(π(X)) = H(X) for all permutations π of the domain of
X. Intuitively, an invertible transformation should not change the
amount of information in X.

Continuity H() should be continuous in the distribution of X. Intu-
itively, an infinitesimally small change to the distribution of X
should result in an infinitesimally small change in the information
contained in X.

Monotonicity If X is uniform over a set of size n, then H(X) increases
as n increases. This axiom ensures that larger strings have higher
entropy.

Chain-Rule If X = (Y, Z) then

H(X) = H(Y) + ∑
y

p(Y = y) ·H(Z|Y = y).

This axiom asserts that the entropy of a random variable X that
consists of Y and Z equals the entropy of Y plus the expected en-
tropy of Z given that we know Y. Intuitively X can be described by
describing Y and then describing Z after Y has been determined.

Shannon proved that any notion satisfying these axioms must be
proportional to the entropy function defined in (6.1) above. So, up to
normalization, there is a unique notion of entropy that satisfies these
axioms. Several other axiomatic definitions of the entropy are known.
For example, Gromov3 gives an axiomatic definition that extends to a
quantum notion of entropy.

Coding

Shannon4 showed that the entropy of X characterizes the expected
number of bits needed to encode X. Intuitively, we should encode the
value x using roughly log(1/p(x)) bits. Then the expected length of
the encoding will be the entropy of X. Shannon showed that such an
encoding is possible, and any shorter encoding is impossible.

We want to associate shorter strings with the most likely elements
in the support of X. One idea is to associate the elements with the
integers [n], so that p(1) ≥ p(2) ≥ · · · ≥ p(n). Then 1 ≥ p(1) + p(2) +
· · ·+ p(i) ≥ ip(i), so 1/p(i) ≥ i. If the integer i can be encoded with
roughly log i bits, then the length for encoding i is log i ≤ log(1/p(i)).

120 communication complexity

Theorem 6.1. Every random variable X can be encoded using a message
whose expected length is at most H(X) + 1. Conversely, every encoding of X
has expected length at least H(X).

Proof. Let X be a random variable taking values in [n]. Without loss
of generality, assume p(x) ≥ p(x + 1) for all x ∈ [n]. For x with
p(x) > 0, let `x = dlog(1/p(x))e. To prove that X can be encoded
using messages of length H(X) + 1, we shall describe a protocol tree.
The message length for input x is going to be `x. The expected length
of the message is therefore

∑
x

p(x) · `x ≤∑
i

p(x)(1 + log(1/p(x))) = H(X) + 1.

The encoding is done greedily. Start with the complete binary tree
of depth n. In the first step, pick a vertex v1 at depth `1. The vertex
v1 represents the encoding of 1. Delete all of v1’s descendants in the
tree, so that v1 becomes a leaf. Next, find an arbitrary vertex v2 at
depth `2 that has not been deleted, and use it to encode 2. Delete all
of v2’s descendants as well. Continue in this way, until every element
of [n] has been encoded. Since `i ≤ `j for i ≤ j, the above process
always gives a valid encoding—the vertex encoding j cannot be a
parent of the vertex encoding i.

This process can fail only if for some j there are no available
vertices at depth `j. We show that this never happens. For i < j, we
have `i ≤ `j and so the number of vertices at depth `j that are deleted
in the i’th step is exactly 2`j−`i . So, the number of vertices at depth j
that are deleted before the j’th step is

j−1

∑
i=1

2`j−`i = 2`j

(
j−1

∑
i=1

2−`i

)
≤ 2`j

j−1

∑
i=1

p(i) < 2`j .

This proves that some vertex is always available at the j’th step.
It remains to show that no encoding can have expected length

less than H(X). Suppose X can be encoded in such a way that x is
encoded using `x bits. The expected length of the encoding is

E
p(x)

[`x] = E
p(x)

[log(1/p(x))]− E
p(x)

[
log(2−`x /p(x))

]
≥ H(X)− log

(
E

p(x)

[
2−`i /p(x)

])
by concavity of the log function.

= H(X)− log

(
∑
x

2−`x

)
.

We claim that ∑x 2−`x ≤ 1. Imagine sampling a random path by
starting from the root of the protocol tree, and picking one of the two
children uniformly at random, until we reach a leaf. This random

information 121

In information theory, it is common
to write AB to denote the tuple (A, B).
This makes many complicated expres-
sions easier to read. So, for example, on
the left AB is the concatenation of the
random variables A, B rather than their
product.

path hits the leaf encoding x with probability 2−`x . Thus, the sum
∑x 2−`x is the probability of hitting a leaf encoding some x.

Chain Rule and Conditional Entropy

The entropy function has several properties that make it particularly
useful. To illustrate some of the properties, we use an example from
geometry. Let S be a set of n3 points in R3, and let Sx, Sy, Sz denote
the projections of S onto the x, y, z axes.

Claim 6.2. One of Sx, Sy, Sz must have size at least n.

This claim has an easy proof:

n3 = |S| ≤ |Sx| · |Sy| · |Sz|,

and so one of the three projections must be of size n. However, to
introduce some properties of entropy, we present a second proof.

The property of the entropy function we need is called subadditiv-
ity. For any random variables A, B, we have:

H(AB) ≤ H(A) +H(B).

This follows from the concavity of the log function:

H(A) +H(B)−H(AB)

= E
p(ab)

[
log

1
p(a)

]
+ E

p(ab)

[
log

1
p(b)

]
− E

p(ab)

[
log

1
p(ab)

]
= − E

p(ab)

[
log

p(a) · p(b)
p(ab)

]
≥ − log E

p(ab)

[
p(a) · p(b)

p(ab)

]
= − log ∑

a,b
p(a) · p(b) = − log 1 = 0.

Induction implies that subadditivity holds even when many variables
are involved:

H(A1 A2 . . . Ak) ≤ H(A1) +H(A2 . . . Ak)

≤ H(A1) +H(A2) +H(A3 . . . Ak)

≤ . . . ≤
k

∑
i=1

H(Ai).

Proof of Claim 6.2. Let (X, Y, Z) be a uniformly random element of S.
Then

3 log n = log |S| = H(XYZ) ≤ H(X) +H(Y) +H(Z). by subadditivity.

So, one of the three terms H(X),H(Y),H(Z) must be at least log n.
By (6.2), the projection onto the corresponding coordinate must be
supported on at least n points.

122 communication complexity

Figure 6.2: A finite set in R3 projected
onto the 3 planes.

This claim is a special case of the
Loomis-Whitney inequality.

Things become more interesting when we study more complicated
projections. Let Sxy, Syz, Szx denote the projections of S to the xy, yz
and zx planes. Now, the claim is

Claim 6.3. One of Sxy, Syz, Szx must have size at least n2.

To proceed, we use the notion of conditional entropy. For two
random variables A and B, the entropy of B conditioned on A is the
number

H(B|A) = E
p(ab)

[
log

1
p(b|a)

]
= E

p(a)
[H(B|A = a)] . If A is a random variable and E is an

event, then the notation H(B|A, E)
denotes the entropy of B conditioned
on A, where the distributions of both B
and A are conditioned on the event E.

This is the expected entropy of B, conditioned on the event A = a,
where the expectation is over a. The chain rule for entropy states that:

H(AB) = H(A) +H(B|A).

In words, the entropy of (A, B) is the entropy of A plus the entropy
of B given that we know A. Its proof follows from Bayes’ rule and
linearity of expectation:

H(AB) = E
p(ab)

[
log

1
p(ab)

]
= E

p(ab)

[
log

1
p(a) · p(b|a)

]
= E

p(ab)

[
log

1
p(a)

+ log
1

p(b|a)

]
= H(A) +H(B|A).

information 123

Suppose A, B, C are three uniformly
random bits conditioned on A + B + C
being even. Then H(ABC) = 2, H(A) =
H(B) = H(C) = 1 and H(ABC) =
H(A) +H(B|A) +H(C|AB) = 1 + 1 + 0.

The chain rule is an extremely useful property of entropy. It allows
us to express the entropy of a collection of random variables in terms
of the entropy of individual variables.

To better understand this notion, consider the following example.
Suppose A, B are two uniformly random bits conditioned on being
equal. Then H(AB) = H(A) = H(B) = 1 and H(B|A) = 0. So,

H(AB) = H(A) +H(B|A) < H(A) +H(B).

Conditional entropy satisfies another intuitive property—conditioning
can only decrease entropy:

H(B|A) ≤ H(B). (6.3)

The entropy of B when we know A cannot be any larger than the
entropy of B when we do not know A. This follows from the chain
rule and subadditivity:

H(A) +H(B|A) = H(AB) ≤ H(A) +H(B).

We now have enough tools to prove the geometric claim.

Proof of Claim 6.3. As before, let (X, Y, Z) be a uniformly random
element of S. Then H(XYZ) = log |S| = 3 log n. Repeatedly using the
fact that conditioning cannot increase entropy (6.3):

H(X) +H(Y|X) ≤ H(X) +H(Y|X)

H(X) +H(Z|XY) ≤ H(X) +H(Z|X)

H(Y|X) +H(Z|XY) ≤ H(Y) +H(Z|Y)

Adding these inequalities together and applying the chain rule gives

6 log n = 2 ·H(XYZ) ≤ H(XY) +H(XZ) +H(YZ).

Thus, one of three terms on the right hand side must be at least
2 log n. The projection onto the corresponding plane must be of size
at least n2.

Combinatorial Applications

The entropy function has found many applications in com-
binatorics. Here are a few examples that illustrate its power and
versatility.

Paths and cycles in graphs. How many paths or cycles can a graph
with n vertices and m edges have? Here we use entropy to prove
lower bounds on these numbers5.

124 communication complexity

Claim 6.4 can be strengthened to match
the count for d-regular graphs. See
Exercise 6.1.

Since the sum of the degrees of the vertices is 2m, the average
degree in the graph is d = 2m/n. Now if the graph is d-regular,
meaning that every vertex has exactly d neighbors, then the num-
ber of paths in the graph is exactly m(d− 1). This is because each
edge can be extended to a path in 2(d− 1) ways, and this counts
every path twice.

We use entropy to prove a lower bound that applies to general
graphs:

Claim 6.4. The number of paths of length 2 in the graph is at least
m
(

d
2 − 1

)
.

Proof. Sample a random path X, Y, Z of length 2 as follows. The
pair X, Y is a uniformly random edge, and Z is a uniform random
neighbor of Y. Conditioned on the value of Y, the vertex Z is
independent of the choice of X. Thus, we can use the chain rule to
write:

H(XYZ) = H(XY) +H(Z|XY) = log m +H(Z|Y). If A, B are independent then H(A|B) =
H(A).

To bound H(Z|Y), we use convexity. If dv denotes the degree the
vertex v, we have:

H(Z|Y) = ∑
v

dv

2m
· log dv

=
n

2m
·∑

v

1
n
· dv log dv

≥ n
2m
· d · log d = log

2m
n

. the function x log x is convex.

Thus,

H(XYZ) ≥ log
2m2

n
,

proving that the support of XYZ must contain at least 2m2

n ele-
ments.

Some of the elements in the support of XYZ do not correspond to
paths of length 2, since we could have x = z. However, there are
at most 2m sequences x, y, z that correspond to such a redundant
choice. After correcting for this, we are left with at least(

2m2

n
− 2m

)
/2 = m

(m
n
− 1
)
= m

(
d
2
− 1
)

paths of length 2.

Next, we turn to proving a lower bound on the number of cycles of
length four.

information 125

There are at most n3 choices for XYZW
with X = Z, and at most n3 with
Y = W.

6 Babu and Radhakrishnan, 2010; and
Alon et al., 2002

Can you think of a graph with d = 2
that has large girth?

Claim 6.5. The number of 4-cycles in the graph is at least d4

16 − n3

2 .

Proof. Sample X, Y, Z as before, and then independently sample
W using the distribution of Y conditioned on the values of X, Z.
Then,

H(XYZW) = H(XYZ) +H(W|XZ) since W, Y are independent given XZ.

= H(XYZ) +H(XWZ)−H(XZ) by the chain rule.

≥ 2 ·H(XYZ)− 2 log n. since XYZ and XWZ are identically
distributed and H(XZ) ≤ 2 log n.

Combining this with our bound for H(XYZ) from Claim 6.4, we
get

H(XYZW) ≥ log
4m4

n4 .

This does not quite count the number of 4-cycles, because there
could be some settings of XYZW where two of the vertices are the
same. We could have X = Z or Y = W. However, there are at most
2n3 possible elements in the support of XYZW where that can
happen. Each cycle can be expressed in at most 4 different ways as
XYZW. After accounting for these facts, we are left with at least(

4m4

n4 − 2n3
)

/4 =
m4

n4 −
n3

2

distinct cycles.

Bounding the girth. The girth of a graph is the length of its smallest
cycle. Graphs with large girth are locally like trees—you have
to look at a large ball around a vertex to observe a cycle. This
property makes these graphs useful in applications. How large can
the girth of a graph with a given number of edges be?

We prove that the girth g cannot be too large. This is fairly easy
to do when the graph is d-regular. Suppose we have a graph with
n vertices and m edges. If every vertex in the graph has the same
degree d, then the vertices at distance g−1

2 from some fixed vertex
must form a rooted tree, or else the graph would have a cycle of
length less than g. The number of vertices in this tree is at least

(d− 1)
g−1

2 but at most n. So,

g ≤ 2 log n
log(d− 1)

+ 1.

Now let us see how to use information theory to prove a similar
bound when the graph is not necessarily regular6.

Claim 6.6. Let d = 2m/n denote the average degree in a graph with n
vertices. Then the girth g of the graph satisfies g ≤ 2 log n

log(d−1) + 1.

126 communication complexity

Figure 6.3: If the vertices near a fixed
vertex do not form a tree, then the
graph contains a short cycle.

2 4 6

0

z

z
lo

g(
z
−

1)

Proof. Start by observing that we may assume that dv ≥ 2 for each
vertex v. Indeed, if the degree of some vertex v is less than 2, then
by deleting v and its neighbor from the graph, we obtain a graph
with fewer vertices, larger average degree and yet the same girth.

To give a lower bound on the number of paths, we used a random
walk in the graph. To get tight bounds here, we need to use a non-
backtracking random walk. The walk never returns along an edge
that it took in the last step. Let

X = (X0, X1, . . . , X g−1
2
)

be a random walk in the graph, sampled as follows. Let X0, X1 be
a random edge, and for i > 1, let Xi be a random neighbor of Xi−1

that is not the same as Xi−2.

Given X1, we see that X2 and X0 are identically distributed. Hence,
the first two edges are identically distributed and similarly every
edge of the walk is identically distributed. The chain rule gives

H(X|X0) =

g−1
2

∑
i=1

H(Xi|Xi−1).

Bound each term as follows:

H(Xi|Xi−1) = ∑
v

dv

2m
· log(dv − 1)

=
1
d
·∑

v

1
n
· dv log(dv − 1)

≥ 1
d
· d log(d− 1) = log(d− 1). since the function z log(z − 1) is convex

for z ≥ 2.

Putting these bounds together, we get:

H(X|X0) ≥
g− 1

2
· log(d− 1).

Since the girth of the graph is g, there can be at most n distinct
paths of length g−1

2 that begin at X0. Thus,

log n ≥ H(X|X0) ≥
g− 1

2
· log(d− 1).

An isoperimetric inequality for the hypercube. Isoperimetric inequalities
bound the surface area of a shape given its volume. It is usually
interesting to find shapes with the smallest surface area. For
example, in three dimensional Euclidean space, the shape with
smallest surface area is a ball. This is the reason soap bubbles tend
to be round.

information 127

7 Harper, 1966; and Samorodnitsky,
2017

Here X−i denotes
(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn).

Here we prove a similar fact in a discrete geometric space. The
n-dimensional hypercube is the graph whose vertex set is {0, 1}n,
and whose edge set consists of pairs of vertices that disagree in
exactly one coordinate. The hypercube contains 2n vertices and
n
2 · 2n edges.

The volume of a set S ⊆ {0, 1}n of vertices is defined to be |S|. The
boundary of S is defined to be the set of edges that go from inside
S to outside S. We write δ(S) to denote the size of the boundary of
S. An isoperimetric inequality bounds δ(S) for a given value of |S|.
A k-dimensional subcube of the hypercube is a subset of the
vertices given by fixing n− k coordinates of the vertices to some
fixed value and allowing k of the coordinates to take any value.
The volume of such a subcube is exactly 2k. Each vertex of the
subcube has n− k edges that leave the subcube. The boundary of
the subcube is of size (n− k)2k.

Subcubes minimize boundary size per volume7:

Theorem 6.7. For any subset S of the vertices, δ(S) ≥ |S|(n− log |S|).

Proof. Let e(S) be the number of edges contained in S. Thus,

δ(S) = n|S| − 2e(S). the degree of each vertex is n.

Instead of minimizing δ(S) we maximize e(S).

Let X be a uniformly random element of S. For a vertex x ∈
{0, 1}n and i ∈ [n], denote by x ⊕ ei ∈ {0, 1}n the vertex that
disagrees with x only in the i’th entry. For every x ∈ S and i ∈ [n],

H(Xi|X−i = x−i) =

1 if {x, x⊕ ei} ⊂ S,

0 otherwise.

So,
n

∑
i=1

H(Xi|X−i) =
n

∑
i=1

∑
x∈S

1
|S|H(Xi|X−i)

=
1
|S| ∑

x∈S
|{i ∈ [n] : {x, x⊕ ei} ⊂ S}|

=
2e(S)
|S| .

Since conditioning does not increase entropy,

log |S| = H(X) =
n

∑
i=1

H(Xi|X<i) ≥
n

∑
i=1

H(Xi|X−i) =
2e(S)
|S| .

Finally,

δ(S) = n|S| − 2e(S) ≥ |S|(n− log |S|).

128 communication complexity

Figure 6.4: Two intersecting families of
sets on a universe of size 3.

Can you think of an example of F
satisfying the bound in the claim?

8 Ellis et al., 2012

9 Chung et al., 1986

Shearer’s Inequality

Shearer’s inequality is a generalization of the subadditivity of en-
tropy. Suppose X = X1, . . . , Xk is a collection of k jointly distributed
random variables, and S ⊆ [k] is a set of coordinates sampled in-
dependently of X. Denote by XS the collection of variables that
correspond to S. One way to interpret subadditivity is that when S is
uniformly random subset of size 1,

H(XS|S) ≥ 1
nH(X).

Shearer’s inequality allows to handle general sets S:

Lemma 6.8. If p(i ∈ S) ≥ ε for every i ∈ [n], then H(XS|S) ≥ ε ·H(X).

Proof. For i ∈ [k], denote by Si the set of j ∈ S so that j < i. Thus,

H(XS|S) = E
S

[
∑
i∈S

H(Xi|XSi)

]
chain rule.

≥ E
S

[
∑
i∈S

H(Xi|X<i)

]
conditioning does not increase entropy.

=
n

∑
i=1

p(i ∈ S) ·H(Xi|X<i) ≥ ε ·H(X).

Shearer’s inequality is a useful tool. Here is a simple example
from graph theory. We start with an easy question. Suppose F is a
family of subsets of [n] such that any two sets in F intersect. How
large can such a family be?

Claim 6.9. |F | ≤ 2n−1.

Proof. The complement of any set in F cannot be in F . So, only half
of all the sets can be in F .

Here is an analogous question for families of graphs. Let G be a
family of graphs on n vertices. The size of G is at most 2(

n
2). We are

interested in families G of graphs such that every two graphs in G
intersect in a triangle, namely a cycle of length 3. There is a family
of 2(

n
2)/8 graphs with this property—take all graphs including a

fixed triangle. This bound is known to be tight8. Shearer’s inequality
allows us to prove a weaker statement9:

Theorem 6.10. |G| ≤ 2(
n
2)/4.

Proof. Let G be a uniformly random graph from the family G. The
graph G can be described by a binary vector of length (n

2), where
each bit indicates whether a particular edge is present or not. Let S

information 129

Similar ideas can be used to show that
any family of graphs that intersects in
an r-clique is of size at most 2(

n
2)/2r−1.

See Exercise 6.5.

Formally, pt is a random variable.

be a uniformly random subset of the vertices so that each vertex v is
in S with probability 1/2 independently of all other vertices.

Let GS denote the graph obtained from G by deleting all edges
that go from S to the complement of S. The probability that any
particular edge is retained is exactly 1/2. Shearer’s inequality gives

E
S
[H(GS|S)] ≥ H(G)/2.

The key observation is as follows. Every two graphs g and g′ in G
share a triangle. This implies that gS and g′S must share an edge, for
every S. So, for every S, the number of graphs of the form GS is at
most half of all possible options, by Claim 6.9. The total number of
edges possible in the graph GS is

e(S) =
(|S|

2

)
+

(
n− |S|

2

)
.

We see that H(GS|S) ≤ e(S)− 1. The expected value E [e(S)] is exactly
(n

2)/2. Thus, we have

1
2
·
(

n
2

)
= E

S
[e(S)] ≥ H(GS|S) + 1 ≥ 1

2
·H(G) + 1.

So H(G) ≤ (n
2)− 2, which implies that |G| ≤ 2(

n
2)/4.

Divergence and Mutual Information

Entropy is a useful concept when we are working with a single
distribution. Mutual information and divergence allow us to compare
two distributions. They provide tools that help us understand the
flow of information in a variety of situations.

Suppose (X, Y) are random inputs to a communication protocol,
sampled from a distribution p0. Denote by M = M1, . . . , MT the T
bits transmitted during the execution of the protocol. Consider the
sequence of distributions p1, p2, . . . , pT , where pt is the distribution
of (X, Y) conditioned on the value of M1, . . . , Mt. If the protocol is
carrying out a meaningful computation, we would expect pT to be far
from p0.

The flow of information in the protocol can be quantified by the
evolution of the distance of pt from p0, as t grows. Having a good
understanding of this flow of information often enables us to prove
interesting statements about communication protocols. What notion
of distance should we use? At time t = 0, the distance ought to be
0, and eventually the distance should be large. The divergence gives a
natural measure for the distance.

130 communication complexity

p(1)

q(
1)

Figure 6.5: The divergence between two
distributions on bits p, q.

By convention, 0 log 0
0 = 0 and z log z

0 =
∞ for z > 0.

The divergence between two distributions p(x) and q(x) is defined
to be

D(p(x)‖q(x)) = ∑
x

p(x) log
p(x)
q(x)

= E
p(x)

[
log

p(x)
q(x)

]
.

In line with the intuition that divergence is a measure of distance,
we have

Fact 6.11. D(p(x)‖q(x)) ≥ 0, and equality holds if and only if p and q are
identical.

Proof. By convexity of log(·),

D(p(x)‖q(x)) = −∑
x

p(x) log
q(x)
p(x)

≥ − log ∑
x

p(x)
q(x)
p(x)

= log 1 = 0.

Since log(·) is strictly convex, the inequality is a strict inequality
unless p(x)/q(x) is the same for every x. This can happen only when
p(x) and q(x) are the same distribution.

The divergence is, however, not symmetric—sometimes

D(p(x)‖q(x)) 6= D(q(x)‖p(x)).

The divergence can also be infinite, for example if p is supported on a
point that has 0 probability under q.

As with the entropy, the divergence has a nice interpretation in
terms of efficient encodings. Recall that a near optimal encoding
for X encodes each x using roughly dlog(1/p(x))e bits. Such an
encoding has an expected length of at most H(X) + 1 when X is
drawn from p.

information 131

As explained in the conventions chapter,
p(a) denotes the marginal distribution
of A.

by Fact 6.11.

The entropy, mutual information and
divergence are all expectations over the
universe of various log-ratios.

Now, the quantity Hp,q = Ep(x) [log(1/q(x))] is, up to a +1, the
expectation with respect to p of the length of the encoding designed
for q. The divergence

D(p(x)‖q(x)) = E
p(x)

[log(1/q(x))− log(1/p(x))] = Hp,q − Hp,p

can be thought of as the loss incurred when we encode X using the
wrong distribution q. We could get an encoding length close to Hp,p,
but we only get Hp,q.

Entropy corresponds to the divergence from the uniform distribution—
if X is an `-bit string, then

H(X) = E
p(x)

[log(1/p(x))] = `− E
p(x)

[
log

p(x)
2−`

]
= `−D(p(x)‖q(x)),

where q(x) is the uniform distribution on `-bit strings.
The divergence allows us to quantify the dependence between two

random variables. If p(a, b) is the joint distribution of two random
variables A and B, we define the mutual information between A and B
to be

I(A : B) = D(p(a, b)‖p(a)p(b)) = E
p(a,b)

[
log

p(a, b)
p(a)p(b)

]
.

Roughly speaking, the mutual information between A and B is small
if A and B are close to being independent, and it is large when they
far from independent. When A = B, we have I(A : B) = H(B). At the
other extreme, I(A : B) = 0 exactly when A and B are independent.

Here are a few more ways to think about mutual information. By
Baye’s rule,

I(A : B) = E
p(a,b)

[
log

p(b|a)
p(b)

]
= E

p(a)
[D(p(b|a)‖p(b))] = H(B)−H(B|A).

The third expression is the expected divergence between p(b|a) and
p(b)—it measures the distance of p(b|a) from p(b), for an average
a. The fourth expression says that the information measures the
decrease in the entropy of B when conditioning on A. By symmetry,
I(A : B) = H(A)−H(A|B) as well.

In general, the mutual information satisfies

0 ≤ I(A : B) = H(A)−H(A|B) ≤ H(A).

The first inequality follows from the fact that divergence is non-
negative, and the second from the fact that entropy is non-negative.

Lower Bound for Indexing

132 communication complexity

If Bob could tell Alice i in the first
step, that would give a protocol with
communication complexity 1 + dlog ne.

It is easy to prove a deterministic lower
bound for this problem. After Alice’s
message, Bob must know x, so Alice
must send n bits.

We have gathered enough tools to begin discussing our first lower
bound on communication using information theory. We shall prove a
lower bound on the indexing problem.

Suppose Alice has a uniformly random n bit string x, and Bob is
given an independent uniformly random index i ∈ [n]. The goal of
the parties is to compute xi. But they are only allowed to execute a
one-way protocol—the protocol must start with a message from Alice
to Bob, after which Bob must output the answer. We prove that Ω(n)
bits of communication are necessary, even in the average-case setting.

Suppose there is a protocol for this problem where Alice sends a
message M that is ` bits long. Intuitively, M can only give ` bits of
information about x. So, we should be able to argue that M carries
only `/n bits of information about a typical coordinate xi. If this
is the case and `/n � 1, then M should not be useful to help Bob
determine xi. Let us use information theory to make this a formal
proof.

Chain Rules for Divergence and Mutual Information

We have already seen a chain rule for entropy, and used it a few
times. Divergence and mutual information have similar chain rules
that are equally useful. For the indexing problem, the chain rule
implies that M can convey only `/n bits of information about XI .

The chain rule for divergence states that for every two distribu-
tions p(a, b) and q(a, b),

D(p(a, b)‖q(a, b)) = D(p(a)‖q(a)) + E
p(a)

[D(p(b|a)‖q(b|a))] .

The proof is a straightforward calculation:

D(p(a, b)‖q(a, b)) = E
p(a,b)

[
log

p(a) · p(b|a)
q(a) · q(b|a)

]
= E

p(a,b)

[
log

p(a)
q(a)

]
+ E

p(a,b)

[
log

p(b|a)
q(b|a)

]
.

In words, the total divergence is the sum of the divergence from the
first variable, plus the expected divergence from the second variable.

Before we state the chain rule for information, it is worthwhile to
think about a simple example. Suppose A, B, C are three random bits
that are all equal to each other. Then I(AB : C) = 1 < 2 = I(A :
C) + I(B : C). On the other hand, if A, B, C are three random bits
satisfying A + B + C = 0 mod 2, we have I(AB : C) = 1 > 0 = I(A :
C) + I(B : C).

To state the chain rule, we need the right definitions. For three

information 133

random variables A, B and C, define

I(B : C|A) = E
p(a)

[D(p(b, c|a)‖p(b|a) · p(c|a))] .

It is the expectation over A, of the mutual information between B and
C conditioned on the value of A.

The chain rule for mutual information is

I(AB : C) = I(A : C) + I(B : C|A).

This chain rule also has an intuitive meaning: the information AB
give about C is the information A gives about C plus the information
B gives about C when we already know A. The proof is a straightfor-
ward application of the chain rule for divergence.

Subadditivity

Unlike entropy, mutual information can go up under conditioning.
For example, if A, B, C are three random bits subject to A + B + C =

0 mod 2, then 0 = I(A : B) < I(A : B|C) = 1. Nevertheless,
subadditivity holds when the variables are independent.

Theorem 6.12. Let A1, . . . , An be independent random variables, and B be
jointly distributed. Then,

n

∑
i=1

I(Ai : B) ≤
n

∑
i=1

I(Ai : BA<i) = I(A1, . . . , An : B).

Proof. We have

I(A1, . . . , An : B) = H(A1, . . . , An)−H(A1, . . . , An|B).

The first term is exactly equal to ∑n
i=1 H(Ai), since A1, . . . , An are

independent. The chain rule gives that

H(A1, . . . , An|B) =
n

∑
i=1

H(Ai|BA<i).

So, we get

I(A1, . . . , An : B) =
n

∑
i=1

H(Ai)−H(Ai|BA<i) =
n

∑
i=1

I(Ai : BA<i).

Since conditioning does not increase entropy,

n

∑
i=1

H(Ai)−H(Ai|BA<i) ≥
n

∑
i=1

H(Ai)−H(Ai|B) =
n

∑
i=1

I(Ai : B).

134 communication complexity

p(1)

q(
1)

Figure 6.6: Pinsker’s Inequality for
two bits. The difference between the
divergence and its lower bound is
shown.

See the notational remarks in Prob-
ability section of the Conventions
chapter.

Returning to the indexing problem, Theorem 6.12 applied to
X1, . . . , Xn and M yields

I(XI : M|I) ≤ 1
n

n

∑
i=1

I(Xi : MX<i) ≤
H(M)

n
≤ `

n
.

This inequality captures our intuition that Alice’s message does not
contain much information about the bit that Bob cares about, when
` � n. The proof, however, is not yet complete. We need to prove
that if M and Xi have low mutual information then Bob cannot use
M to predict the value of Xi. We need one more technical tool to
prove this—Pinsker’s inequality.

Pinsker’s Inequality

Pinsker’s inequality bounds the statistical distance between two
distributions p and q in terms of the divergence between them. The
inequality is illustrated in Figure ??.

Proof. Let T be the event that maximizes p(T) − q(T). Define the
indicator random variable

y =

1 if x ∈ T,

0 otherwise.

Think of x and y as jointly distributed. By the chain rule, since diver-
gence is non-negative,

D(p(x)‖q(x)) ≥ D(p(y)‖q(y)).

information 135

0 0.67 1
ε

Figure 6.7: The solid line plots the
divergence of an ε-biased bit from a bit
with bias 2/3. The dashed line plots

2
ln 2 (ε− 2/3)2.

Since |p− q| = p(T)− q(T) = p(y = 1)− q(y = 1), it remains to prove
that

D(p(y)‖q(y)) ≥ 2
ln 2
· (p(y = 1)− q(y = 1))2.

Let ε = p(y = 1) and γ = q(y = 1). It is enough to prove that

ε log
ε

γ
+ (1− ε) log

1− ε

1− γ
− 2

ln 2
· (ε− γ)2 (6.4)

is always non-negative. The expression in (6.4) is 0 when ε = γ, and
its derivative with respect to γ is

−ε

γ ln 2
+

1− ε

(1− γ) ln 2
− 4(γ− ε)

ln 2
=

(γ− ε)

ln 2

(
1

γ(1− γ)
− 4
)

.

Since 1
γ(1−γ)

is always at most 4, the derivative is non-positive when
γ ≤ ε, and non-negative when γ ≥ ε. This proves that (6.4) is indeed
always non-negative.

Pinsker’s inequality implies that two variables that have low
mutual information are statistically close to being independent.

Corollary 6.13. If A, B are random variables then on average over b,

p(a|b) ε≈ p(a),

where ε =
√

ln 2·I(A:B)
2 .

Another useful corollary is that conditioning on a low entropy
random variable cannot change the distribution of many other inde-
pendent random variables:

Corollary 6.14. Let A1, . . . , An be independent random variables, and B be
jointly distributed. Let I ∈ [n] be uniformly random and independent of all
other variables. Then on average over i, b, a<i,

p(ai|i, b, a<i)
ε≈ p(ai|i),

where ε ≤
√

H(B) ln 2
2n .

Proof. By Theorem 6.12, H(B) ≥ ∑n
j=1 I(Aj : BA<j). Thus,

I(AI : BA<I |I) ≤
H(B)

n
.

The claim follows from Corollary 6.13.

We are finally ready to prove the lower bound for the indexing
problem. By Corollary 6.14, on average over m and i,

p(xi|m)
ε≈ p(xi),

136 communication complexity

If Alice has a random set from a family
of sets of size 2Ω(n), the lower bound for
indexing still hold. The lower bound
even extends to the case that Bob knows
x1, . . . , xi−1.

10 Yao, 1983; Duris et al., 1987; Halsten-
berg and Reischuk, 1993; and Nisan and
Wigderson, 1993

11 Sen and Venkatesh, 2008

with ε =
√

` ln 2
2n . Since p(xi) is uniform for each i, the probability that

Bob makes an error is at least

E
p(m,i)

[
1
2
− |p(xi|m)− p(xi)|

]
≥ 1

2
−
√

` ln 2
2n

.

It follows that at least Ω(n) bits must be transmitted if the protocol
has error at most 1

3 .

The Power of Interaction

Are interactive protocols shorter than protocols that have less
interaction?10 Yes! For several natural problems, the best protocols
are much longer if the number of rounds is bounded.

Since the information about the number of rounds is lost once we
move to viewing a protocol as a partition into rectangles, it seems
hard to prove a separation between a few rounds and many rounds
using the techniques we have seen before this chapter. None of those
techniques distinguish protocols with few rounds from protocols
with many rounds.

The ideas we used to prove the lower bound on indexing are
quite powerful. We showed that Alice’s message provides no useful
information about the coordinate that Bob cares about. These ideas
can be used to prove lower bounds on multi-round protocols as well.

Greater-Than

The greater-than function GT(x, y) gets inputs x, y ∈ [n] and outputs

GT(x, y) =

1 if x > y,

0 otherwise.

In Chapter 1, we saw that every deterministic protocol for GT

requires log n bits of communication. In Chapter 3, we discussed a
randomized protocol computing GT with O(log log n) bits of commu-
nication.

Here we show11 that randomized protocols require much more
communication if the protocols involve a small number of rounds of
communication.

Theorem 6.15. Any randomized k-round protocol for computing greater-
than requires communication at least

Ω

(
(log n)1/k

k2

)
.

information 137

X1X = X2 Xi Xt

X1Y = X2 Yi 0 0

Proof. We define a sequence µ0, µ1, . . . of hard input distributions.
The distribution µk is meant to be hard for k-round protocols where
the length of each round is at most c.

Define the first distribution µ0 as follows. Let m be an odd integer.
Let X ∈ [m] be a uniformly random even integer, and let Y ∈ [m]

be a uniformly random odd integer. The probability that X > Y
is exactly 1/2. Thus, any protocol that computes GT(X, Y) without
communicating must make an error with probability at least 1/2.

Define µ1 as follows. Set t = dc/ε2e. Sample t independent
variables

(X1, Y1), (X2, Y2), . . . , (Xt, Yt)

from the distribution µ0, and sample I ∈ [t] uniformly at random. Set

X = (X1 − 1) ·mt−1 + (X2 − 1) ·mt−2 + . . . + (Xt − 1).

Intuitively, this is the number whose digits are obtained by concate-
nating the digits of X1, X2, . . . , Xt. Set

Y = (X1 − 1) ·mt−1 + . . . + Xi−1 · nt−i+1 + YI ·mt−i.

This is the number whose digits are obtained by concatenating the
digits of X1, X2, . . . , XI−1, Yi, 0, 0, . . . , 0. Since the most significant
digits of X, Y are the same, and XI 6= YI , we have GT(X, Y) =

GT(XI , YI).
We claim that a deterministic 1-round protocol in which Alice

sends c bits to Bob must make an error with probability at least
1/2− ε, when the inputs are sampled from µ1. Indeed, Corollary 6.14

implies that on average over i, m, x<i,

p(xi|m, x<i)
ε≈ p(xi).

For fixed i, m, x<i, we have

|p(xi, yi|m, x<i)− p(xi, yi)|

=
1
2 ∑

xi ,yi

|p(xi|m, x<i) · p(yi|mx≤i)− p(xi) · p(yi|xi)|

=
1
2 ∑

xi ,yi

p(yi|xi) · |p(xi|m, x<i)− p(xi)| since p(yi |m, x≤i) = p(yi |xi).

= |p(xi|m, x<i)− p(xi)|.

As we saw in the analysis of µ0, the error of the protocol for fixed
i, m, x<i is at least 1/2− |p(xi, yi|m, x<i)− p(xi, yi)|. Taking expecta-
tion over i, m, x<i, we see that the overall error is at least 1/2− ε.

The above argument can be repeated for general k. There is a
distribution µk on inputs so that the error of every k-round protocol
with c bits of communication per round is at least 1/2 − εk. The

138 communication complexity

z(0) z(1)

z(2)

z(3)

z(4)

z(5)

Figure 6.8: An example of an input to
pointer chasing, with n = 8, k = 5.

12 Nisan and Wigderson, 1993

The probability that none of the an-
nounced values help to save a round
of communication is exponentially
small in k, as long as Ω(k) of the values
zi are distinct. If the values are not
distinct, then less than k rounds of
communication are required anyway.

13 Yehudayoff, 2016

construction of µk from µk−1 is similar to the construction of µ1 from
µ0. The size of the inputs increases in each step from m to mdc/ε2e.
In µ0, choose x, y from the set [3]. For the target k, the size of the

universe is 3dc/ε2ek . We set ε = 1/8k and c = b (log n)1/k

128k2 c. The final
inputs are supported on a set of size at most n. The error of any such
protocol is at least 1/2− 1/8 = 1/4.

Pointer-Chasing

Pointer chasing is a natural problem where having many rounds of
communication is useful. Alice is given x ∈ [n]n and Bob is given
y ∈ [n]n. The vectors x, y define a bipartite directed graph with 2n
vertices, in which each vertex has exactly one edge coming out of it.
The edges emanating from the vertices on the left are specified by
x, and the edges from the right are specified by y. There is an edge
from i on the left to j on the right if and only if xi = j, and there is
an edge from i on the right to j on the left if and only if yi = j. An
example is shown in Figure 6.8.

The graph defines a path z(0), z(1), z(2), . . . by setting z(0) = 1,
z(1) = xz(0), z(2) = yz(1), and so on. Namely, z(i) is the vertex
obtained by following i edges in the graph starting at the vertex
z(0) = 1 on the left. Suppose the parties want to compute whether or
not z(k) is even.

There is an obvious deterministic protocol that takes k rounds
and kdlog ne bits of communication. In round i, the relevant party
announces the value of z(i).

There is also a randomized protocol with k − 1 rounds and
O((k + n/k) log n) bits of communication.12 In the first step, Alice and
Bob use shared randomness to pick 10n/k vertices in the graph and
announce the edges that originate at these vertices. Alice and Bob
then continue to use the deterministic protocol, but do not communi-
cate if one of the edges they need has already been announced. This
protocol has < k rounds with high probability.

We shall prove that any randomized or deterministic protocol with
k− 1 rounds must have much more communication than the k-round
protocol. A lower bound of Ω(n

k − k log n) is known13. Here, we prove
a lower bound of Ω(n/k2)− k log n using information.

Actually, we prove that it is hard to compute any information about
z(k) in at most k− 1 rounds of communication. The key idea is quite
similar to the lower bound for the indexing problem. Assume x, y
are chosen uniformly at random and independently. We argue, by
induction on the number of rounds, that the distribution of z(k) is
close to uniform even after conditioning on the messages in the first

information 139

Try to prove this basic fact.

k− 1 rounds of the protocol.

Theorem 6.16. Any randomized (k − 1)-round protocol for the k-step
pointer chasing problem that is correct with probability 1/2 + ε requires
ε2n
k2 − k log n bits of communication.

Proof. Let X, Y be distributed uniformly and independently. Let π be
a deterministic protocol of length `. Let Mt be the message sent at
the t’th round of π. Define the random variable

Rk−1 = (M1, . . . , Mk−1, Z(1), . . . , Z(k− 1)).

We inductively prove that on average over rk−1, the distribution
p(z(k)|rk−1) is (k · δ)-close to uniform with

δ =

√
`+ k log n

n
.

This suffices—it must holds that kδ ≥ ε, which gives the lower
bound.

When k = 1, the statement is trivial. Suppose k ≥ 2 and k is
even. The proof is similar when k is odd. We shall repeatedly use the
following fact about statistical distance: If U, V are independent and

p(u)
γ≈ p(v), then p(g(u))

γ≈ p(g(v)) for any function g.
The variables Rk−2, Mk−1 contains at most ` + k log n bits of in-

formation. Corollary 6.14 implies that if I is uniformly random in
[n] and independent of all other variables, then on average over
i, rk−2, mk−1,

p(yi|i, rk−2)
δ≈ p(yi)

δ≈ p(yi|i, mk−1, rk−2). (6.5)

There are two cases to consider:

Alice sends the message mk−1. In this case,

p(yi|rk−1) = p(yi|z(k− 1), rk−2),

since after fixing rk−2, we know that Yi is independent of Mk−1. By
induction, on average over rk−2,

p(z(k− 1)|rk−2)
(k−1)δ
≈ p(i).

We can deduce:

p(z(k)|rk−1) = p(yz(k−1)|z(k− 1), rk−2)
(k−1)δ
≈ p(yi|i, rk−2).

Combining this with (6.5) gives that p(z(k)|rk−1)
kδ≈ p(yi).

140 communication complexity

14 Nisan and Wigderson, 1993

15 Kalyanasundaram and Schnitger,
1992; Razborov, 1992; Bar-Yossef et al.,
2004; and Braverman and Moitra, 2013

This result is very important because
many other lower bounds in various
models, as we see in Part II, rely on
Theorem 6.18.

We do not know how to prove this
lower bound without information
theory.

Bob sends the message mk−1. In this case, after fixing Rk−2, we know
that Z(k − 1) is independent of Y, and therefore also of Mk−1,
which is a function of Y. So,

p(z(k− 1)|rk−2) = p(z(k− 1)|mk−1, rk−2).

By induction,

p(z(k− 1)|mk−1, rk−2)
(k−1)δ
≈ p(i).

We can deduce:

p(z(k)|rk−1) = p(yz(k−1)|z(k− 1), mk−1, rk−2)

(k−1)δ
≈ p(yi|i, mk−1, rk−2).

Combining this with (6.5) gives that p(z(k)|rk−1)
kδ≈ p(yi).

Similar intuitions can be used to show that the deterministic com-
munication of the pointer-chasing problem is Ω(n) if fewer than k
rounds of communication are used14:

Theorem 6.17. Any k− 1 round deterministic protocol that computes the
k-step pointer-chasing problem requires n

16 − k bits of communication.

Randomized Complexity of Disjointness

One of the triumphs of information theory in communication com-
plexity is optimal lower bounds on the randomized communication
complexity of disjointness15.

Theorem 6.18. Any randomized protocol that computes disjointness
function with error 1/2− ε must have communication Ω(ε2n).

The most natural way to prove lower bounds on randomized
protocols is to find a hard distribution on the inputs. If we adopt this
approach, we need not worry about the protocol being randomized;
we can assume that it is deterministic without loss of generality.
Indeed, by Theorem 3.3, any lower bound implies the existence of a
hard distribution.

This is the approach we took when we proved lower bounds on
the inner-product function, in Theorem 5.6—the hard distribution
was uniform. This is also the approach we used to prove our lower
bounds of Ω(

√
n) on disjointness, where the distribution we used

information 141

See Exercise 6.8.

Here is some intuition for the valid-
ity of (6.6). If M computes disjoint-
ness, then it is not hard to see that it
must have information about the pair
XT , YT—the probability of the inter-
section cannot remain 1/4 after we
condition on M. The subtlety is that we
need to prove that the information is
large after conditioning on D.

was essentially uniform on sets of size ≈ √n. The uniform distribu-
tion on all sets, however, is not hard for disjointness. Two uniformly
random sets X, Y intersect with very high probability, so the protocol
can output 0 without communicating and still have very low error. In
fact, it can be shown that any distribution where X and Y are inde-
pendent cannot be used to prove a linear lower bound. Therefore, the
hard distribution, if one exists, must involve correlations between X
and Y.

Given these constraints, we use a natural distribution on corre-
lated sets. The distribution of X, Y is a convex combination of two
distributions:

1. Two random disjoint sets.

2. Two sets that intersect in exactly one element.

Once we restrict our attention to such a distribution, we have
a second challenge. The pairs of variables Xi, Yi and Xj, Yj are not
independent for i 6= j. This makes arguments involving subadditivity
much harder to carry out, because subadditivity of information
crucially relies on independence. The subtleties in the proof arise
from circumventing these obstacles.

Proving Theorem 6.18

Given a randomized protocol with error 1/2 − ε, one can make
the error an arbitrarily small constant by repeating the protocol
O(1/ε2) times and outputting the majority outcome. This means
that it suffices to show that any protocol with error 1

32 must have
communication Ω(n).

We start by defining the hard distribution on inputs. View the
sets X, Y as n-bit strings, by setting Xi = 1 if and only if i ∈ X. Pick
an index T ∈ [n] uniformly at random. Let XT , YT be uniformly
random and independent bits. For i 6= T, sample (Xi, Yi) to be one
of (0, 0), (0, 1), (1, 0) with equal probability, and independent of all
other pairs (Xj, Yj). The random sets X and Y intersect in at most 1
element, and they intersect with probability 1

4 .
Let M denote the messages of a deterministic protocol of length `

and error at most 1/32. We shall prove that the protocol conveys a
significant amount of information about XT or YT , when the sets are
disjoint. Let D denote the event that X, Y are disjoint. The key claim
is:

I(XT : M|T, X<TY≥T ,D) + I(YT : M|T, X≤T , Y>T ,D) ≥ Ω(1). (6.6)

Before proving (6.6), we use it together with the subadditivity of
mutual information to prove that ` ≥ Ω(n).

142 communication complexity

We start by using the chain rule to prove:

Lemma 6.19. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be random
variables such that the n pairs (X1, Y1), . . . , (Xn, Yn) are independent. Let
M be an arbitrary random variable. Then

n

∑
i=1

I(Xi : M|X<iY≥i) ≤ I(X : M|Y),

and
n

∑
i=1

I(Yi : M|X≤iY>i) ≤ I(Y : M|X).

Proof. Using the chain rule:

n

∑
i=1

I(Xi : M|X<iY≥i) ≤
n

∑
i=1

I(Xi : MY<i|X<iY≥i)

=
n

∑
i=1

I(Xi : Y<i|X<iY≥i) + I(Xi : M|X<iY)

=
n

∑
i=1

I(Xi : M|X<iY) = I(X : M|Y). since I(Xi : Y<i |X<iY≥i) = 0.

The second bound is proved similarly.

We see that X, Y, M|D satisfy the assumptions of Lemma 6.19.
Moreover T is uniform in [n] and independent of X, Y, M, condi-
tioned on D. So Lemma 6.19 gives:

2`
n
≥ I(X : M|YD) + I(Y : M|XD)

n
since M has at most ` bits.

≥ I(XT : M|TX<TY≥TD) + I(YT : M|TX≤TY>TD) by Lemma 6.19.

≥ Ω(1), by (6.6).

which proves that ` ≥ Ω(n).
It only remains to prove (6.6). Let Z = (M, T, X<T , Y>T). The

intuition for the proof is as follows. Suppose towards a contradiction
that the information is small. If we sample Z conditioned on D then
with high probability the resulting value z has the property that
p(xt, yt|z) is close to the distribution of two uniformly random bits.
However, this leads to a high probability of errors for the protocol,
because conditioned on D the protocol must typically output that the
sets are disjoint.

For any z, let αz be the statistical distance of p(xt, yt|z) from uni-
form. Let

I(XT : M|T, X<TY≥T ,D) + I(YT : M|T, X≤T , Y>T ,D) = 2γ4/3.

Let G be the set of z such that αz ≤ 2γ. We shall use Pinsker’s
inequality to prove:

information 143

See Exercise 6.9.

Claim 6.20. p(z ∈ G) ≥ 1−4γ
4 .

Before proving the claim, we use it to complete the proof. Condi-
tioned on Z = z the output of the protocol is determined. In addition,
when z ∈ G, we know that xt, yt are close to uniform. The error for
z ∈ G is at least 1

4 − 2γ. The overall error is at least

1
32
≥ p(error) ≥ p(z ∈ G) · p(error|z ∈ G) ≥ 1− 4γ

4
·
(

1
4
− 2γ

)
.

It follows that γ ≥ Ω(1).

Proof of Claim 6.20. Since XT , YT are independent and since M defines
a rectangle, for all z,

p(xt|z) = p(xt|z, yt = 0) = p(xt|z, yt = 0,D).

Let αz,x be the statistical distance of p(xt|z) from uniform. We have

2
3
· I(XT : M|T, X<TY>T , YT = 0,D)

≤ I(XT : M|T, X<TY≥T ,D)
≤ 2γ4/3.

By convexity and Pinsker’s inequality (Lemma ??),

E
p(z|yt=0)

[αz,x] ≤
√

E
p(z|yt=0)

[
α2

z,x
]
≤
√

γ4 = γ2.

In particular,

γ ≥ p(αz,x > γ|yt = 0)

≥ p(xt = 0|yt = 0) · p(αz,x > γ|yt = 0 = xt)

=
p(αz,x > γ|xt = 0 = yt)

2
.

So p(αz,x > γ|xt = 0 = yt) ≤ 2γ.
Let αz,y be the statistical distance of p(yt|z) from uniform. A sym-

metric argument proves that the probability that αz,y > γ conditioned
on xt = 0 = yt is at most 2γ.

We use the following simple lemma, whose proof is left as an
exercise:

Lemma 6.21. Let a(x, y) = a(x) · a(y) and b(x, y) = b(x) · b(y) be
product distributions. Then,

|a(x, y)− b(x, y)| ≤ |a(x)− b(x)|+ |a(y)− b(y)|.

144 communication complexity

Use the fact that α log α ≥ − log e
e ≥ −1,

for α > 0.

Since p(xt, yt|z) and the uniform distribution are both product
distributions,

Pr[αz > 2γ|xt = 0 = yt]

≤ Pr[αz,x + αz,y > 2γ|xt = 0 = yt] by Lemma 6.21.

≤ Pr[αz,x > γ|xt = 0 = yt] + Pr[αz,x > γ|xt = 0 = yt] by the union bound.

≤ 4γ.

Hence,

p(z ∈ G) ≥ p(xt = 0 = yt)p(z ∈ G|xt = 0 = yt)

≥ 1
4
· (1− 4γ).

Exercises

Ex 6.1 — Use entropy to prove that a graph with m edges and aver-
age degree d must have at least m(d− 1) paths of length 2. Hint: Use a
non-backtracking walk as in the bound for the girth.

Ex 6.2 — Show that for any two distributions p(x, y), q(x, y) with the
same support, we have

E
p(y)

[D(p(x|y)‖p(x))] ≤ E
p(y)

[D(p(x|y)‖q(x))] .

Ex 6.3 — Suppose n is odd, and x ∈ {0, 1}n is sampled uniformly at
random from the set of strings with ∑n

i=1 xi ≥ n/2.

1.Use Pinsker’s inequality to show that the expected number of 1’s
in x is at most n/2 + O(

√
n).

2.Use the fact that (n
bn/2c) ≈ 2n/

√
n to show that

p(xi = 1) ≥ 1/2 + Ω(1/
√

n),

for every i. Conclude that Pinsker’s inequality is tight.

Ex 6.4 — Let X be a random variable supported on [n] and g : [n]→
[n] be a function. Prove that

Pr[X 6= g(X)] ≥ H(X|g(X))− 1
log n

.

Use this bound to show that if Alice has a uniformly random vector
Y ∈ [n]n, Bob has an independent uniformly random input I ∈ [n],
and Alice sends Bob an `-bit message M, then the probability that
Bob guesses YI is at most 1+`/n

log n .

information 145

Ex 6.5 — Let G be a family of graphs on n vertices, such that every
two graphs in the family share a clique on r vertices. Show that the
number of graphs in the family is at most 2(

n
2)/2r−1.

Hint: Partition the graph into r− 1 parts uniformly at random and throw
away all edges that do not stay within a part. Analyze the entropy of the
resulting distribution on graphs.

Ex 6.6 — Prove the data processing inequality: if A − B − C then
I(A : B) ≥ I(A : C).

Ex 6.7 — Suppose Alice is given uniformly random n-bit string X,
and Bob is given a uniformly random index I ∈ [n], as well as the
values X1, X2, . . . , XI−1. Show that if there is a randomized protocol
where Alice sends Bob `-bits and Bob outputs XI with probability
2/3, then ` ≥ Ω(n).

Ex 6.8 — In this exercise, we show that disjointness can be computed
efficiently if the sets X, Y are independent, no matter what distribu-
tion they are sampled from. Suppose X, Y ⊆ [n] are independently
distributed. Consider the following protocol. If there is a coordinate
j ∈ [n] such that H(Xj) are H(Yj) are both at least ε, then Alice and
Bob communicate Xj, Yj. They condition on the values that they
see and repeat this step until no such coordinate can be found. At
this point, Alice and Bob use Shannon’s coding theorem to encode
X, Y. Show how to set ε so that the expected communication can
bounded by n2/3 · log2 n. Hint: Use the fact that H(Xj) ≥ ε implies that
Pr[Xj = 1] ≥ Ω(ε/(log(1/ε))).

Ex 6.9 — Prove Lemma 6.21.

Ex 6.10 — Give an information theory based proof that the commu-
nication complexity of computing the inner product 〈X, Y〉 over F2 is
Ω(n) over the uniform distribution by following these steps:

1.Use the chain rule to argue that if the communication complexity
of the protocol is small, then for typical values of i, H(XiYi|MX<iY>i)

must be close to 1.

2.Argue that this implies that the protocol makes an error with
significant probability.

It remains open to define a similarly
useful notion of information for multi-
party protocols.

In previous chapters, we could always
assume in the distributional setting
that the protocols are deterministic.
As we shall see later on, in terms of
information, randomness is crucial even
in the distributional setting.

The information is 0.

The information is 2n.

The information is 0, but the entropy of
the message is k.

7
Compressing Communication

What is the interactive analog of entropy? Shannon’s entropy
captures the amount of information in a single message. We would
like to measure the information in a conversation in a way that
captures its interactive nature. In this chapter, we explore how to
do this for 2-party protocols. As we shall see, these definitions lead
to several results in communication complexity that do not concern
information at all.

We shall be working in the distributional setting. The inputs X, Y
to Alice and Bob are sampled from some known distribution µ. The
protocols we consider are still randomized. We start with several
examples to illustrate what the information of protocols ought to be.

– Consider a protocol where all the messages of the protocol are 0,
no matter what the inputs are. The messages of the protocol are
known ahead of time, and Alice and Bob might as well not send
them. This protocol does not convey any information.

– Suppose X, Y are independent uniformly random n bit strings.
Alice sends X as her first message and Bob sends Y in response. In
this case, the protocol cannot be simulated with less than 2n bits.

– Suppose X, Y are independent uniformly random n-bit strings.
In the protocol, Alice privately samples k uniformly random bits,
independently of X, and sends them to Bob. This protocol can
be simulated by a randomized communication protocol with no
communication. Alice and Bob can use shared randomness to
sample the k bit string, so that they do not have to send it.

– Suppose X, Y are independent uniformly random n-bit strings.
Alice uses private randomness to sample a uniformly random
subset T ⊆ [n] of size k with k. Alice sends n bits to Bob, where the
i’th bit is Xi if i /∈ T, and 1− Xi otherwise.

148 communication complexity

The information is ≈ n− k. The entropy
of the message is n.

The information is 0, at least from the
perspective of Alice and Bob. The
entropy of the message is n. This is an
example where there is a difference
between the parties’ point of view and
an outsider’s point of view. We explore
this in more detail later on.

There are other definitions of informa-
tion. However, the definitions used here
are the most useful—they allow us to
reason about questions in communica-
tion complexity that have nothing to do
with information.

1 Chakrabarti et al., 2001

By the chain rule, I(XY : M|R) = I(XY :
MR).

2 Barak et al., 2010

By the chain rule, I(X : M|YR) + I(Y :
M|XR) = I(X : MR|Y) + I(Y : MR|X).

One can simulate this protocol with less than n bits of commu-
nication. Alice and Bob can use public randomness to sample a
set S ⊆ [n] of size k, as well a uniformly random n-bit string R.
Alice computes the number of coordinates i ∈ S such that Ri 6= Xi.
If there are t such coordinates, she samples a uniformly random
subset T′ ⊆ [n]− S of size k− t. Alice sends the n− k bits of Mi

that Bob does not already know in

Mi =

Ri i ∈ S,

1− Xi i ∈ T′,

Xi otherwise.

For any fixed value of X, the string M is identically distributed to
how it was in the original protocol. The simulation succeeds with
communication n− k.

– Suppose X, Y are uniformly random n-bit strings that are always
equal. Suppose Alice sends X to Bob in the first message. Then
this message can be simulated with 0 communication, since Bob
already knows X.

We provide two natural ways to define the information of a pro-
tocol. Let R denote the public randomness of the protocol, and let
M denote the messages that result from executing the protocol. The
external information1 of the protocol is defined to be

I(XY : M|R).

It measures the amount of information about the inputs that an exter-
nal observer learns from the messages and the public randomness of
the protocol. The internal information2 of the protocol is defined to be

I(X : M|YR)
info learnt by Bob

+ I(Y : M|XR)
info learnt by Alice

.

It measures the amount of information that Alice and Bob learn
about each other’s inputs from the messages and public randomness
of the protocol.

As the intuition suggests, the external information is always at
least as large as the internal one—the parties know more, so they
must learn less:

Theorem 7.1. The internal information never exceeds the external informa-
tion. The two quantities are equal when X, Y are independent.

Proof. Apply the chain rule to express the internal information as:

I(X : M|YR) + I(Y : M|XR)

= ∑
i
I(X : Mi|YRM<i) + I(Y : Mi|XRM<i),

compressing communication 149

The same argument proves that I(X :
M|YR) is at most the expected number
of bits sent by Alice in the protocol, and
I(Y : M|XR) is at most the expected
number of bits sent by Bob in the
protocol.

There is no input Y and no randomness
R in this case.

We shall see that private randomness
and public randomness play very
different roles in this discussion.

There are several subtleties involved in
deciding whether or not one protocol
simulates another. We discuss these
issues next.

where M1, M2, . . . are the bits of M. The definition of communication
protocols ensures that M<i determines whether Alice or Bob sends
the next bit of the protocol. For each fixed value m<i, if Alice sends
the next bit, then

I(Y : Mi|XRm<i) = 0,

because Mi is determined by the variables XRm<i and the private
randomness of Alice. So, when Alice sends the next bit,

I(X : Mi|YRm<i) + I(Y : Mi|XRm<i)

≤ I(X : Mi|YRm<i) + I(Y : Mi|Rm<i)

= I(XY : Mi|Rm<i).

The inequality is an equality when X, Y are independent, because in
this case Y is independent of Mi after fixing R, m<i. A similar bound
holds when Bob sends the next bit. Putting it together,

I(X : M|YR) + I(Y : M|XR)

= ∑
i
I(X : Mi|YRM<i) + I(Y : Mi|XRM<i)

≤∑
i
I(XY : Mi|RM<i)

= I(XY : M|R).

What we are really after is an analogy of Shannon’s coding the-
orem, Theorem 6.1. The coding theorem is about a particular one-
round deterministic protocol—Alice gets X and needs to send X
to Bob. The expected communication complexity of this problem
is characterized by the entropy of X. In this simple case all three
quantities—internal information, external information and entropy—
are equal:

I(X : M|Y) + I(Y : M|X) = I(XY : M) = H(X).

We are after an interactive generalization of Shannon’s theorem
where the parties also have access to randomness.

Can a protocol with low information be simulated by a protocol
with low communication? Is it true that every protocol with ex-
ternal/internal information I can be simulated by a protocol with
communication close to I? Answering these questions would be im-
mensely useful, because the quantities defining information are much
easier to work with than communication complexity.

Simulations

150 communication complexity

3 Dietzfelbinger and Wunderlich, 2007

We shall later see that private random-
ness completely changes the nature
of the question, and makes it more
interesting and challenging.

A compression of a protocol is a new protocol of smaller
length that simulates the original protocol. Before we describe how
to compress communication protocols, we need to define simulations.
Intuitively, a protocol σ simulates a protocol π if the leaves of the
protocol tree of σ can be translated to the leaves of π in a way that
induces the correct distribution on the leaves of π.

We start by setting some notation. Let π be a two-party protocol.
Suppose (X, Y) ∈ X × Y are jointly distributed random inputs
to Alice and Bob. Let Rπ be the public randomness used in the
protocol π, and let Mπ be the messages of π. LetMπ be the set of
the possible messages in π, and Rπ be the set of possible values of
public randomness in π. Let σ be a protocol with public randomness
Rσ and messages of Mσ. LetMσ be the set of the possible messages
Mσ, and Rσ be the set of possible values of Rσ.

We say that σ simulates π with error ε > 0 if there are two maps

FA : X ×Mσ ×Rσ →Mπ ×Rπ FA maps the private data (X, Mσ , Rσ) of
Alice in σ to the public data (Mπ , Rπ)
in π.

and

FB : Y ×Mσ ×Rσ →Mπ ×Rπ FB maps the private data of Bob in σ to
the public data in π.

so that

p(x, y, FA(x, mσ, rσ), FB(y, mσ, rσ))
ε≈ p(x, y, mπ , rπ , mπ , rπ).

Roughly speaking, this means that (X, Mσ, Rσ) and (Y, Mσ, Rσ),
which are known to Alice and Bob after executing σ, can be trans-
lated to (Mπ , Rπ) with the correct distribution.

This version of simulation is internal—only the parties are guar-
anteed to understand how to translate the transcript of σ to that of
π. An external observer who only has access to Mσ, Rσ may not un-
derstand the outcome of the simulation. We say that σ is an external
simulation if FA does not depend on X and FB does not depend on Y.
In this case, the public data (Mσ, Rσ) can be translated to the public
data (Mπ , Rπ).

Compressing Protocols with No Private Randomness

We start by giving an interactive generalization of Shan-
non’s theorem for protocols with no private randomness3.

Theorem 7.2. Every protocol with no private randomness and external
information I can be simulated by a protocol with expected communication
O(I + 1) and no error.

compressing communication 151

The proofs of the Lemma 1.8 and
Lemma 7.3 are similar.

The ideas that go into proving Theorem 7.2 are very similar to
those we used to balance protocols in Chapter 1. We need the follow-
ing generalization of Lemma 1.8.

Let p be a distribution on the leaves of a protocol tree. For every
node v in the protocol tree, let Ev denote the set of leaves contained
in the subtree of the protocol tree rooted at v. Namely, Ev is the set of
leaves that are descendants of v.

Lemma 7.3. Either there is a leaf w in the tree with p(Ew) ≥ 2/3, or there
is a vertex v with 1/3 ≤ p(Ev) < 2/3.

The lemma suggests a method for compressing protocols. Intu-
itively, a compression needs to transmit 1 bit of information using
O(1) bits of communication. This is exactly what the lemma allows
us to do. The lemma finds a node u so that Eu is worth ≈ 1 bit of in-
formation. This 1 bit of information can be gained by communicating
just 2 bits.

We use the lemma to prove the following theorem. Recall that
π(x, y) denotes the leaf that the protocol reaches on input x, y.

Theorem 7.4. Given any deterministic protocol π and a distribution p
on the leaves of π, there is a deterministic protocol σp such that on input
x, y, the protocol σp computes π(x, y) after communicating at most 2 ·
log3/2(1/p(π(x, y))) + 2 bits.

Before proving Theorem 7.4, let us show how it implies Theo-
rem 7.2.

Proof of Theorem 7.2. Let π be a protocol with no private randomness.
Let X, Y be inputs to the protocol sampled from some known distri-
bution, and let R denote the public randomness of the protocol. Let
M denote the messages of the protocol.

The external information of π is

I(XY : M|R) = H(M|R)−H(M|RXY) = H(M|R),

where the second inequality follows from the fact that M is deter-
mined by X, Y and R.

Our simulating protocol samples R = r, sets p to be the distri-
bution of M conditioned on R = r, and carries out the simulation
promised by Theorem 7.4. For fixed r, the expected number of bits
communicated by the simulation is at most

E
p(xy|r)

[
2 log3/2(1/p(xy|r))

]
+ 2 ≤ 2 log 3

log 2
·H(M|R = r) + 2.

In expectation, the protocol communicates O(H(M|R) + 1) bits.

152 communication complexity

4 Holenstein, 2009

Variants of correlated sampling also
appear in probability theory in the
context of coupling.

Proof of Theorem 7.4. We give a protocol for computing π(x, y). Let
u be the node of the protocol tree promised by Lemma 7.3. As we
proved in Lemma 1.4, this node corresponds to a rectangle Ru in the
set of inputs. Alice and Bob communicate two bits to determine if
(x, y) ∈ Ru. If this is the case, they continue to execute the protocol
after replacing p(xy) = p(xy|Eu). Otherwise, they continue, setting
p(xy) = p(xy|¬Eu). The protocol terminates when p(π(x, y)) is
supported on a single leaf.

Let cx,y denote the number of bits communicated by the protocol
when the inputs are x, y. We prove by induction that the communica-
tion of the protocol is at most

2 · log3/2(1/p(x, y)) + 2.

The base case is when log3/2(1/p(x, y)) < 1 ⇒ p(x, y) > 2/3. In
this case, the protocol terminates after 2 bits of communication, since
the vertex found in the application of Lemma 7.3 is a leaf.

In the general case, the protocol replaces the distribution by the
distribution q so that either

q(x, y) =
p(x, y)
p(Eu)

≥ (3/2) · p(x, y)

or

q(x, y) =
p(x, y)
p(¬Eu)

≥ (3/2) · p(x, y).

In either case, we have log3/2(1/q(x, y)) ≤ log3/2(1/p(x, y))− 1. By
induction, the communication of the protocol is at most

2 + 2 log3/2(1/q(x, y)) + 2 ≤ 2 log3/2(1/p(x, y)) + 2.

Correlated Sampling

When the information of a protocol is much less than 1, we
can use correlated sampling4 to compress communication. Suppose
we are given a protocol with large length but close to zero internal
information. In this case, the protocol teaches Alice and Bob almost
nothing about each others inputs, so they should be able to simulate
its execution without communicating.

Lemma 7.5. There is a protocol using public randomness and no commu-
nication with the following functionality. Suppose Alice is given as input
a distribution p(m) on a set U , and Bob is given a distribution q(m) on U .
After the protocol terminates,

compressing communication 153

5

3
9

2

7
1

8

r

m

p

q 6
4

Figure 7.1: An illustration of the sam-
pling procedure. (M4, ρ4) is selected
in this case and MA = MB. Note that
ρ5 < q(M5) but ρ5 > p(M5).

Although the protocol uses an infinite
number of random bits, one can
approximate its behavior using finitely
many bits.

– Alice holds a value MA which is distributed according to p.

– Bob holds a value MB which is distributed according to q.

– The probability that MA 6= MB is at most 2|p− q|.

In other words, Alice samples MA using the public randomness,
Bob samples MB using the public randomness, and if p, q are close
then they sample the same value most of the time. Hence the term
correlated sampling. This simulation is exact, in the sense that Alice
samples from p exactly and Bob samples from q exactly.

Proof. We interpret the public randomness as a sequence

(M1, ρ1), (M2, ρ2), . . .

of independent identically distributed samples, where Mi is a uni-
formly random element from U , and ρi is uniformly random from
[0, 1]. Alice sets mA = MI where I is the minimum index for which
ρI < p(MI). Similarly, Bob sets MB = MJ where J is the minimum
index such that ρJ < p(MJ).

It remains to prove that the protocol has the desired properties.
First, observe that the probability that Alice and Bob find some
acceptable I, J is 1.

Now, we claim that MA is distributed according to p. A similar
argument proves that MB is distributed according to q. Let E denote
the event that ρ1 < p(M1). Think of (M1, ρ1) as a point in the plane
U × [0, 1] distributed uniformly at random. Imagine the graph of p
drawn in this plane, as in Figure 7.1. The event E happens when the
point (M1, ρ1) is under the graph of p. The total area of the plane is

154 communication complexity

u|U | and the total area under p is 1. Thus,

Pr[E] = 1
u

,

and

Pr[MA = m|E] = Pr[M1 = m, ρ1 < p(m)]

Pr[E] =
(1/u) · p(m)

1/u
= p(m).

On the other hand, by the definition of the process, the distribution
of MA conditioned on ¬E is the same as the distribution of MA.
Thus,

Pr[MA = m] = Pr[E]Pr[MA = m|E] + Pr[¬E]Pr[MA = m|¬E]
= Pr[E]p(m) + Pr[¬E]Pr[MA = m].

This implies that Pr[MA = m] = p(m).
We now bound the probability that MA 6= MB. Let B be the

event that q(MI) < ρI < p(MI) or p(MJ) < ρJ < q(mJ). The
event that MA 6= MB implies the event B. So it suffices to bound
Pr[B] from above. Denote by F the event that I = 1 or J = 1. In
other words, F is the event that ρ1 < max{p(M1), q(M1)}. As above,
Pr[B|¬F] = Pr[B] which implies that Pr[B] = Pr[B|F]. Finally,

Pr[B|F] = Pr[min{p(M1), q(M1)} ≤ ρ1 < max{p(M1), q(M1)}]
Pr[ρ1 < max{p(M1), q(M1)}]

=
∑m |p(m)− q(m)|

∑m max{p(m), q(m)}

=
2|p− q|

1 + |p− q|
≤ 2|p− q|.

Compressing a Single Round

Next, let us consider compression of one-round protocols.
As we shall see, even this seemingly simple task is not trivial. Since
the definition of information of a protocol involves conditioning on
the public randomness, it is no loss of generality to assume that the
protocols we consider do not have public randomness.

External Compression

Suppose we would just like to compress the first message in a pro-
tocol down to its external information. If the message M is sent by

compressing communication 155

5 Harsha et al., 2007; and Braverman
and Garg, 2014

Compare to Shannon’n theorem
(Theorem 6.1).

The factor 2 before the log in the
theorem can be replaced by 1, and 1 is
sharp up to the additive constant. See
Exercise 7.3.

This is a perfect simulation—the parties
sample exactly from p.

Alice who holds X, and Bob holds Y, then the external information is

I(XY : M) = I(X : M) + I(Y : M|X) after fixing X, the variables Y and M
are independent.

= I(X : M).

We prove that there is a way to simulate5 the sending of the mes-
sage M using I(X : M) + O(log I(X : M)) bits of communication in
expectation. This compression is based on the following sampling
procedure.

Theorem 7.6. Suppose Alice knows two distributions p, q over the same
set U , and Bob knows q. There is a protocol for Alice and Bob to sample an
element according to p using

D(p‖q) + 2 log (1 +D(p‖q)) + O(1)

bits of communication in expectation. This is a one-round protocol in which
Alice sends a single message to Bob.

As a corollary, we get the claimed one-round compression.

Corollary 7.7. Alice and Bob can use public randomness to simulate sending
M with expected communication I(X : M) + 2 log(1 + I(X : M)) + O(1).
The simulation is one round, external, and without error.

Proof. Let r(x, m) denote the joint distribution of X, M. Given x, the
parties run the protocol with p(m) = r(m|x) and q(m) = r(m). Recall
that

I(X : M) = E
r(x)

[D(r(m|x)‖r(m))] .

The expected communication of the resulting protocol is as claimed,
since log is concave.

The compression is based on rejection sampling. Rejection sam-
pling is a mechanism for reweighting a distribution q to generate a
distribution p. It is most commonly applied when q is the uniform
distribution, as we did in correlated sampling. Here is an exam-
ple that illustrates the high level idea. Assume p and q are so that
p(m) ≤ 2q(m) for all m. Suppose we are given a sample M from q.
Reject M with probability p(m)

2q(m)
, and resample. Otherwise, use M as

the sample. It is easy to verify that the accepted sample is distributed
according to p, and each sample is accepted with probability at least
1/2.

Proof of Theorem 7.6. As in correlated sampling, the public random
tape consists of a sequence of independent identically distributed
samples (M1, ρ1), (M2, ρ2), . . . , where each Mi is a uniformly random
element from the support of the messages, and ρi is a uniformly ran-
dom number from [0, 1]. Alice finds the minimum index R such that

156 communication complexity

5

3

7
2

9
1 6

4r

m

p

q

ST

8

Figure 7.2: The sampling procedure
of Theorem 7.6. Here T is 3 and the
sampled point is the 3’rd point of ST .

What is the expectation of log R?

ρR < p(mR). As we proved when we analyzed correlated sampling,
the value MR has exactly the correct distribution. Unfortunately,
communicating R can be too expensive. So, needs to properly encode
R.

Alice sends the positive integer

T =

⌈
ρR

q(MR)

⌉
to Bob. Given T, Alice and Bob can both compute the set of integers

ST =

{
j : T =

⌈
ρj

q(Mj)

⌉}
.

Alice also sends Bob the number K for which R is the K’th element of
ST .

Intuitively, log T is bounded by log p(MR)
q(MR)

, which in expectation
is the same as the divergence. Knowing T, the parties focus only on
the part of the universe with the given p-to-q ratio. Now, as we show
below, a constant number of rejection sampling steps is needed, we
shall prove that the expected value of K is at most 2.

To analyze the expected communication of the protocol, we need
two basic claims. The first claim, whose proof we sketch, is used to
encode the integers sent in the protocol.

Claim 7.8. Alice can send Bob any integer using a protocol that communi-
cates log z + 2 log log z + O(1) bits to send the integer z.

Proof. A naive encoding would take 2dlog ze bits. Alice can send
two bits for every bit in the binary representation of z. The first bit
encodes the relevant bit of z, and the second bit specifies whether or

compressing communication 157

Proof of Claim 7.9: Let E denote the
subset of m’s for which p(m) < q(m).
Bound

∑
m∈E

p(m) log
p(m)

q(m)

≥ −p(E) · ∑
m∈E

p(m|E) log
q(m)

p(m)

≥ −p(E) · log ∑
m∈E

p(m|E) q(m)

p(m)

= −p(E) · log
q(E)
p(E)

≥ p(E) · log p(E).
For 0 ≤ x ≤ 1, the map x log x is
minimized when its derivative is zero;
log e + log x = 0. So the minimum
is attained at x = 1/e, proving that
p(E) log p(E) ≥ − log e

e > −1.

E [K] =
Pr[A] + Pr[¬A] ·E [Z|¬A]

1− Pr[¬A]

=
Pr[A] + Pr[¬A] ·E [Z|¬A]

Pr[A]

= 1 +
Pr[¬A] ·E [Z|¬A]

Pr[A] .

not there are more bits to come. To get a better bound, first send the
integer dlog ze using the naive encoding, and then send dlog ze more
bits to encode z.

To argue that the expected encoding length of T is small, we need
the following claim:

Claim 7.9. For any two distribution p(m), q(m), the contribution of the
terms with p(m) < q(m) to the divergence is at least −1:

∑
m:p(m)<q(m)

p(m) log
p(m)

q(m)
> −1.

By Claim 7.8, the expected number of bits required to transmit T is
at most

E [log T + 2 log log T + O(1)] ≤ E [log T] + 2 log E [log T] + O(1),

where the inequality follows from concavity of log. By Claim 7.9, we
can bound

E [log T] ≤∑
m

p(m) log
⌈

p(m)

q(m)

⌉
≤ ∑

m:p(m)>q(m)

p(m)

(
1 + log

p(m)

q(m)

)

≤ 1 +D(p(m)‖q(m))− ∑
m:p(m)<q(m)

p(m) log
p(m)

q(m)

≤ D(p(m)‖q(m)) + 2.

So the expected number of bits used to transmit T is at most

D(p(m)‖q(m)) + 2 log (2 +D(p(m)‖q(m))) + O(1).

It only remains to bound the number of bits required to transmit K.
We shall prove that E [K] ≤ 2. This implies that the expected number
of bits required to transmit K is a constant.

Consider the event A that ρ1 ≤ p(M1). Define the random variable

Z =

1 if 1 ∈ ST ,

0 otherwise.

When A happens, K = 1. When A does not happen, we have
E [K|¬A] = E [K] + E [Z|¬A]. Thus,

E [K] = Pr[A] + Pr[¬A](E [K] + E [Z|¬A])

which implies

E [K] = 1 +
Pr[¬A] ·E [Z|¬A]

Pr[A] = 1 +
Pr[¬A, 1 ∈ ST]

Pr[A] .

158 communication complexity

The additive square-root term in this
theorem is not sharp. The proof can be
altered to yield other bounds.

Now,

Pr[A] = 1
|U |∑m

p(m) =
1
|U |

and

Pr[¬A, 1 ∈ ST] ≤ Pr[1 ∈ ST]

= Pr [(T − 1)q(M1) < ρ1 ≤ Tq(M1)]

= E

[
1
|U |∑m

Tq(m)− (T − 1)q(m)

]
=

1
|U | .

Finally, E [K] ≤ 2.

Internal Compression

Now suppose we wish to compress a single message M sent from
Alice, who knows X, to Bob, who knows Y. We want to bound the
length of the simulation using the internal information

I(X : M|Y) + I(Y : M|X) = I(X : M|Y).

This is strictly harder than the problem for external information, and
when X, Y are independent, the two problems are the same.

Theorem 7.10. Suppose Alice knows a distribution p over the set U , and
Bob knows q. For every ε > 0, there is a protocol for Alice to sample an
element according to the distribution p while communicating at most

D(p‖q) + O
(√

D(p‖q)
)
+ log(1/ε) + O(1)

bits in expectation such that Bob also computes the same sample, except with
probability at most ε.

As a corollary, we get the one-round internal compression.

Corollary 7.11. Alice and Bob can use public randomness to simulate
sending M with expected communication at most

I(X : M|Y) + O(
√

I(X : M|Y)) + log(1/ε) + O(1).

This simulation has several rounds, is internal and has error ε.

Proof. Let r(x, y, m) denote the joint distribution of X, Y, M. Given
x, y, the parties run the protocol from the theorem with p(m) =

r(m|x) = r(m|xy) and q(m) = r(m|y). Recall that

I(X : M|Y) = E
r(x,y)

[D(r(m|xy)‖r(m|y))] .

The expected communication of the resulting protocol is at most
I(X : M|Y) + O(

√
I(X : M|Y)) + log(1/ε) + O(1), since square-root is

concave.

compressing communication 159

5

3

8
2

9

4

6
1r

m

p

q

7

Q2

Q3

Q4

Figure 7.3: Sampling from p when
the sender knows only one distribu-
tion. Here Alice chooses M7, and it
likely takes the parties four rounds to
compute M7.

The choice of 2k2
is not crucial; other

choices will work as well while causing
some change in parameters.

This compression is based on an interactive version of rejection
sampling. It is, however, not perfect—the parties may end up with
inconsistent samples.

Proof of Theorem 7.10. Alice and Bob again use public randomness
to sample a sequence of independent identically distributed points
(M1, ρ1), (M2, ρ2), . . . , where each Mi is a uniformly random element
of the support, and ρi is a uniformly random number in [0, 1]. Alice
picks the smallest index R such that ρR < p(MR). She would like to
send Bob enough data for him to be able to recover MR.

Alice would really like to compute the ratio
⌈

ρR
q(MR)

⌉
as in the case

of external compression. Unfortunately, Alice does not know q, so
she cannot compute it without interacting with Bob. Alice and Bob
try to approximate this ratio. They gradually increase a threshold until
it is larger than this ratio. They are able to locate the correct time
to stop using hashing, which eventually yields some probability of
error.

Before describing the protocol, we set some notation. For each
index i, let H(i) = (H(i)1, H(i)2, . . .) be an infinite sequence of
uniformly random bits, sampled publicly. The sequence H(i) is
thought of as a hash function evaluated at i. For a positive integer k,
let Qk be the set of indices with ρ-to-q ratio at most 2k2

:

Qk =

{
j : 2k2 ≥ ρj

q(Mj)

}
.

For positive integers i, j, let

g(i, j) = min{` ∈ Qi : H(`)≤j = H(R)≤j}.

160 communication complexity

During the protocol, Alice keeps
sending Bob hashes, by revealing H(R)j
for larger and larger values of j. If
Bob’s estimate g(i, j) is incorrect, then
it will soon change as more hashes are
revealed. Bob will stop Alice and accept
the current value of g(i, j) if it does not
change for a while.

Intuitively, this is Bob’s candidate for R in Qi, with respect to the first
j hash values.

As we have shown in the correlated sampling section, MR is
correctly distributed. Alice always outputs MR. Bob’s output is
determined after a few rounds of communication. In round k, Alice
sends Bob all the bits of H(R)≤k2+log(1/ε) that she has not already

sent. Bob computes g(i, j) for each i ≤ 2k2
and j ≤ k2. If there is

any index s ≤ k such that g(s, k2 + log(1/ε)) = g(s, (k − 1)2), then
Bob stops the protocol and outputs Mg(s,(k−1)2) for the smallest such
index s. If there is no such index s, then Bob sends Alice a bit to
indicate that the protocol should continue, and the parties go to the
next round.

Before proving that the protocol achieves its goal, we provide
some intuition. If k is too small so that Qk does not contain R, then
the hashes show that R 6∈ Qk, and g(s, k2 + log(1/ε)) 6= g(s, (k− 1)2)

for all s ≤ k. When k becomes large enough so that Qk contains R
then most likely R = g(s, k2 + log(1/ε)) = g(s, (k− 1)2), and Bob’s
choice is correct.

Now, let us analyze the probability that the protocol makes an
error. The parties output different samples only if

g(s, k2 + log(1/ε)) = g(s, (k− 1)2) 6= R

for some integers k and s ≤ k. The probability of this event, for fixed
k, s, is at most

2−(k
2+log(1/ε)−1−(k−1)2) ≤ 2−2k−log(1/ε).

Thus, by the union bound, the probability of an error is at most

∞

∑
k=1

k

∑
i=1

2−2k−log(1/ε) =
∞

∑
k=1

k · 2−2k−log(1/ε) < ε. since ∑∞
k=1 k2−2k < ∑∞

k=1 2−k = 1.

It remains to analyze the expected communication of the protocol.
Let T be the smallest positive integer such that 2T2 ≥ ρR

q(MR)
. In

particular, R ∈ QT . Let J be the minimum integer such that g(T, J) =
R and J ≥ T2. In other words, for every ` between T2 and J − 1, the
first element in QT with ` correct hashes is not R, and for every ` ≥ J,
the first element in QT with ` correct hashes is R.

Claim 7.12. E [J] ≤ D(p(m)‖q(m)) + 3
√

D(p(m)‖q(m)) + O(1).

Before proving the claim, we show how it completes the proof. For
every k so that (k− 1)2 ≥ J, the protocol certainly terminates by round
k, since

g(T, k2 + log(1/ε)) = R = g(T, (k− 1)2).

compressing communication 161

The smallest value of k satisfying this inequality is at most
√

J +
2. The number of bits communicated up to round k by Alice is at
most k2 + log(1/ε), and by Bob is at most k. Hence, the expected
communication of the protocol is at most

E

[(√
J + 2

)2
+
√

J + 2 + log(1/ε)

]
≤ E [J] + 5

√
E [J] + log(1/ε) + O(1) by convexity.

≤ D(p(m)‖q(m)) + O
(√

D(p(m)‖q(m))

)
+ log(1/ε) + O(1). by Claim 7.12.

Proof of Claim 7.12. The claim is implied by the following inequalities:

E [J|T, R] ≤ 2 + log

(
1 +

2T2
R

u− 1

)
(7.1)

E

[
T2
]
≤ D(p(m)‖q(m)) + 2

√
D(p(m)‖q(m)) + 3 (7.2)

E

[
log

u− 1 + R
u− 1

]
≤ 3 (7.3)

where u > 1 is the size of the universe. Since

E

[
log

u− 1 + 2T2
R

u− 1

]
≤ E

[
log

2T2
(u− 1 + R)

u− 1

]

= E

[
T2
]
+ E

[
log

u− 1 + R
u− 1

]
,

these three inequalities imply the claim. We prove the inequalities in
turn.

We start by proving (7.1). Let L denote the number of elements of
QT that precede R. We prove the stronger statement that

E [J|T, R, L] ≤ 3 + log(1 + L). (7.4)

To see that (7.4) implies (7.1), use convexity and that

E [L|T, R] ≤ R · Pr[ρ1 ≤ 2T2
q(M1)|ρ1 ≥ p(M1)]

= R · (1/u)∑m Pr[p(m) ≤ ρ1 ≤ 2T2
q(m)]

(u− 1)/u

≤ 2T2
R

u− 1
.

We now prove (7.4). For L = 0, we indeed have E [J|T, R, L] = 1 ≤ 3.
So we can assume that L > 0. For every integer j ≥ 1,

Pr[J ≥ j + 1|T, R, L] = 1− Pr[J ≤ j|T, R, L]

= 1−
(

1− 2−j
)L

≤ 1− e−L2−j+1
. since e−2x ≤ 1− x for 0 ≤ x ≤ 1/2.

162 communication complexity

So for j > 1 + log L we have Pr[J ≥ j + 1|T, R, L] ≤ 1− e−2−j
. Hence,

E [J|T, R, L] = 1 +
∞

∑
j=1

Pr[J ≥ j + 1|T, R, L] partition the sum to two parts.

≤ 2 + log L + ∑
j>0

1− e−2−j
since 1− x ≤ e−x for all x.

≤ 2 + log L + ∑
j>0

2−j = 3 + log L.

We now prove (7.2). Let T′ = max
{

log ρR
q(MR)

, 0
}

so that

T2 ≤
(√

T′ + 1
)2

= T′ + 2
√

T′ + 1.

By convexity, we can bound

E

[
T2
]
≤ E

[
T′
]
+ 2
√

E [T′] + 1.

Bound E [T′] as follows. As in previous sections, Pr[R = 1] = 1
u and

the distribution of T′ conditioned on the event R > 1 is the same as
the distribution of T′. Hence,

E
[
T′
]
= Pr[R = 1]E

[
T′|R > 1

]
+ Pr[R > 1]E

[
T′|R > 1

]
= Pr[R = 1]E

[
T′|R = 1

]
+ Pr[R > 1]E

[
T′
]

.

Conditioned on the event that R = 1 and M1 = m, the variable ρ1 is
uniform in the interval (q(m), p(m)]. Therefore,

E
[
T′
]
= E

[
T′|R = 1

]
=

1
Pr[R = 1] ∑

m:p(m)>q(m)

Pr[M1 = m]
∫ p(m)

q(m)
log

ρ

q(m)
dρ since Pr[R = 1] = Pr[M1 = m] and log

is monotone.

≤ ∑
m:p(m)>q(m)

p(m) log
p(m)

q(m)

= D(p(m)‖q(m))− ∑
m:p(m)<q(m)

p(m) log
p(m)

q(m)
by Claim 7.9.

≤ D(p(m)‖q(m)) + 1.

Finally, we prove (7.3). By convexity,

E

[
log

u− 1 + R
u− 1

]
≤ log

u− 1 + E [R]
u− 1

.

Again, Pr[R = 1] = 1
u and the distribution of R conditioned on R > 1

is the same as the distribution of R + 1. So,

E [R] =
1
u
+

(
1− 1

u

)
(E [R] + 1).

compressing communication 163

6 Barak et al., 2010

As usual, it is enough to show how
to compress protocols that only use
private randomness.

An interesting property of the sim-
ulating protocol σ is that an outside
observer can not interpret the messages
of σ as messages of π. In other words,
the simulation is not external.

So E [R] = u and

E

[
log

u− 1 + R
u− 1

]
≤ 3.

Internal Compression of Protocols

Here we describe how to compress general protocols with
low internal information6. The generality comes with a cost—the
simulating protocol is not as efficient as the simulations we saw
earlier, and there is a small probability of making an error.

Suppose we are given inputs X, Y sampled according to some
known distribution. The inputs X, Y are fed into a protocol π of
length C and internal information

I = I(X : M|Y) + I(Y : M|X).

We would like to simulate the distribution of the messages M of π by
an efficient protocol.

Theorem 7.13. For every ε > 0, one can simulate π with a protocol of

length O
(√

IC log(C/ε)
ε

)
. This simulation is internal and has error ε.

In a nutshell, the idea is that Alice and Bob use correlated sam-
pling to repeatedly guess the bits of the messages in the protocol
without communicating. Naturally, not all of their guesses are correct.
They repeatedly communicate a few bits to fix the errors.

Proof. Without loss of generality we assume that the protocol tree
is a full binary tree of depth C. The simulation uses correlated sam-
pling. Since we sample bits and not elements of a large universe, the
sampling procedure is particularly simple. For each prefix m<i of
messages, define the number

γ(m<i) = p(Mi = 1|xym<i).

These numbers define the correct distribution that our simulation
protocol attempts to compute: for all m,

C

∏
i=1

γ(m<i)
mi (1− γ(m<i))

1−mi =
C

∏
i=1

p(mi|xym<i) = p(m|xy).

Here is a useful way to sample from this distribution. Let ρ1, . . . , ρC

be independent identically distributed random variables from the

164 communication complexity

1

2

3

4

m mA mB

Initial paths
Alice knows mA

Bob knows mB

Alice corrects

Bob corrects

Alice corrects

Figure 7.4: Finding the correct path m.
In this case, m is found after 3 mistakes
have been fixed.

interval [0, 1], sampled uniformly at random. Now, for each i, set
Mi = 1 if ρi < γ(M<i), and set Mi = 0 otherwise. It follows
that Pr[M = m] = p(m|xy). Namely, M has exactly the correct
distribution. Thinking of ρ1, . . . , ρC as public randomness, the parties
attempt to compute m = m(ρ1, . . . , ρC).

Although Alice and Bob cannot compute γ(m<i) without commu-
nicating, Alice can compute the number

γA(m<i) = p(Mi = 1|x, M<i = m<i)

and Bob can compute the number

γB(m<i) = p(Mi = 1|y, M<i = m<i).

The key observation is

compressing communication 165

Claim 7.14. Either γ(m<i) = γA(m<i) or γ(m<i) = γB(m<i).

Proof. If it is Alice’s turn to speak to send Mi when M<i = m<i,
then γA(m<i) = γ(m<i). If it is Bob’s turn to speak, then γB(m<i) =

γ(m<i).

Alice and Bob use γA and γB as proxies for γ in order to guess m.
Alice computes mA by setting mA

i = 1 if and only if ρi < γA(m<i).
Bob computes mB by setting mB

i = 1 if and only if ρi < γB(m<i).
Of course, mA and mB are likely to be quite different. However, by
Claim 7.14, if they happen to be the same, then they must both be
equal to m.

To compute m, the parties communicate. They start by finding the
first index i where mA

i 6= mB
i . By Exercise 3.1, this takes O(log(C/δ))

communication, if the probability of making an error is δ > 0. If
mA

<i dictates that Alice was supposed to send the i’th bit, then Bob
sets mB

i = mA
i and recomputes the rest of mB using ρi+1, . . . , ρC.

Otherwise Alice sets mA
i = mB

i and recomputes mA. They repeat this
procedure until mA = mB = m.

The protocol is an internal simulation of π. By the union bound,
the simulation error is at most Cδ = ε/2. The length of the simula-
tion is at most O(log(C/ε)) times the number the number of times
the parties need to correct their guesses. It remains to bound the
number of corrections from above.

We say that the protocol made a mistake at i if during its execution
mA

i was found to be not equal to mB
i . This happens exactly when

ρi lies in between the numbers γA(m<i) and γB(m<i). When this
happens, m<i is distributed exactly as in π. So, the probability that
there is a mistake at i is at most

E
p(xym)

[
|γA(m<i)− γB(m<i)|

]
= E

p(xym)
[|p(mi = 1|xm<i)− p(mi = 1|ym<i)|] .

For each fixing of m<i, if the i’th message is supposed to be sent by
Alice, then

E
p(xy|m<i)

[|p(mi = 1|xm<i)− p(mi = 1|ym<i)|]

= E
p(xy|m<i)

[|p(mi = 1|xym<i)− p(mi = 1|ym<i)|]

≤
√

I(X : Mi|Ym<i). by Corollary 6.13.

166 communication complexity

7 Barak et al., 2010; and Braverman et al.,
2013

Recall that we can reduce the error by
repetition.

If the i’the bit was to be send by Bob, then we have

E
p(xy|m<i)

[|p(mi = 1|xm<i)− p(mi = 1|ym<i)|]

= E
p(xy|m<i)

[|p(mi = 1|xm<i)− p(mi = 1|xym<i)|]

≤
√

I(Y : Mi|Xm<i).

In either case, by convexity, the expected number of mistakes is at
most

C

∑
i=1

√
I(X : Mi|YM<i) + I(Y : Mi|XM<i)

≤
√

C ·

√√√√ C

∑
i=1

I(X : Mi|YM<i) + I(Y : Mi|XM<i) by the Cauchy-Schwartz inequality.

=
√

C ·
√

I(X : M|Y) + I(Y : M|X) =
√

IC. by the chain rule.

The expected length of the protocol is at most O(
√

IC log(C/ε)).
By Markov’s inequality, the probability that the length exceeds 2/ε

times this number is at most ε/2, as claimed.

Direct Sums in Randomized Communication Complexity

Direct sum is about relating the complexity of solving several
problems to the complexity of each individual problem. In Section 1,
we proved a direct sum theorem for deterministic communication
complexity (Theorem 1.39). Compression is deeply connected to
direct sum results for randomized communication complexity. The
results about compression we have seen so far allow us to prove the
following direct sum theorem7.

Theorem 7.15. If the randomized communication complexity of g is c, then
the randomized communication complexity of gk is at least Ω(c

√
k/ log c).

The idea is that a protocol for gk of length ` can be interpreted as
a protocol for g with information I ≤ `/k. The intuition is that the
information contained in the ` bits of the protocol are distributed
over the k copies of g, giving `/k bits of information for an average
copy of g. We can now compress it to a protocol for a single copy of g
of length ≈

√
I` = `/

√
k. This implies that `/

√
k & c.

Proof. Suppose there is a randomized protocol computing gk in the
worst case, with ` bits of communication, and success probability at
least 3/4.

compressing communication 167

By the minimax principle, Theorem 3.3, there is a distribution µ

on inputs to g such that every deterministic protocol that computes g
with less than c bits of communication has error more than 1/3 over
inputs from µ.

By feeding into the protocol inputs from µk and fixing the random-
ness, we get a deterministic protocol π computing gk with error less
than 1/4 on inputs from µk.

Consider the following protocol for computing g on inputs from
the distribution µ. Alice and Bob get inputs (X′, Y′) sampled from µ.
The public randomness R consists of three parts:

1. A uniformly distributed J ∈ [k].

2. A collection of J − 1 independent variables X<J distributed accord-
ing to µJ−1.

3. A collection of n− J independent variables Y>J distributed accord-
ing to µn−J .

Alice privately samples X>J conditioned on Y>J and Bob privately
samples Y<J conditioned on X<J , according to the conditional
marginal distributions of µ. Finally, they set (XJ , YJ) = (X′, Y′).
The parties now run the protocol π on the inputs X = (X1, . . . , Xk)

and Y = (Y1, . . . , Yk) they thus generated.
A crucial observation is that the inputs X, Y the parties generated

in the above protocol are distributed according to µk. Let M denote
the messages of this protocol when the inputs are sampled as above.
By Lemma 6.19, we have

k

∑
i=1

I(Xi : M|X<iY≥i) ≤ I(X : M|Y) ≤ `

and

k

∑
i=1

I(Yi : M|X≤iY>i) ≤ I(Y : M|X) ≤ `.

This means that the internal information cost of the protocol is

I(X′ : M|Y′R) + I(Y′ : M|X′R)
= I(X′ : M|Y′ JX<JY>J) + I(Y′ : M|X′ JX<JY>J)

=
k

∑
j=1

1
k
(
I(Xj : M|X<jY≥j) + I(Yj : M|X≤jY>j)

)
≤ 2`

k
.

The length of this protocol is `. Hence, by Theorem 7.13, the protocol
can be simulated with error 1

20 and communication

L = O(
√
` · `/k log `) = O(`

√
1/k log `).

168 communication complexity

8 Barak et al., 2010

For product distributions, the external
and internal informations are equal.

9 Kol, 2016; and Sherstov, 2016

10 Braverman, 2015

11 Bauer et al., 2015

We get a protocol for computing a single copy of g with error less
than 1

4 + 1
20 < 1

3 and length L. Since L ≥ c, we get that

` ≥ Ω(c
√

k/ log c).

Other Methods to Compress Protocols

Compression of communication protocols is a relatively
new line of research that is still evolving. For this reason and for the
clarity of exposition, we have not included all known compression-
related results in this chapter. We conclude this chapter with a survey
of these results.

The first result we state is an external compression8:

Theorem 7.16. For every ε > 0, one can simulate any protocol with
external information I and length C by a protocol of length O

(
I log C

ε2

)
.

This simulation is external and has error ε.

Later on, this compression was improved to be independent of the
communication length, for the special case of product distributions9:

Theorem 7.17. For every ε > 0, one can simulate any protocol with internal
information I by a protocol of length O

(
I
ε log2 I

ε

)
when the inputs X, Y are

independent. This simulation is external and has error ε.

For general compression, the following result gives a bound that is
independent of the communication of the initial protocol10:

Theorem 7.18. For every ε > 0, one can simulate any protocol with internal
information I by a protocol of length 2O(I/ε). This simulation is internal
and has error ε.

If we measure the information learnt by Alice as IA = I(Y : M|XR),
and by Bob as IB = I(X : M|YR), then one can compress the protocol
to take advantage of a large asymmetry between these quantities:

Theorem 7.19. If Alice learns information IA and Bob learns information IB,
then the protocol can be simulated by a protocol of communication IA · 2O(IB).
If the total communication of the original protocol is C, one can carry out
the simulation using communication proportional to IA + C3/4 I1/4

B log C +√
C1/2 · I1/2

B . These simulations are internal and have error 1
3 .

When the protocols have only public-randomness, we have seen
an optimal external compression. In this case, a different internal
compression is known11:

compressing communication 169

12 Barak et al., 2010; Brody et al., 2016;
and Pankratov, 2012

13 Ganor et al., 2016; and Rao and Sinha,
2015

14 Braverman, 2015; and Ganor et al.,
2016

15 Braverman and Garg, 2014

16 Braverman and Garg, 2014

Theorem 7.20. For every ε > 0, one can simulate any protocol with no
private randomness, internal information I and length C by a protocol of
length O

(
I2

ε2 log log C
ε

)
. This simulation is internal and has error ε.

A simulation of length O
(

I
ε log(C/ε)

)
is also known in this

case12.
In the other direction, we also know some impossibility results

regarding the compressibility of protocols. The following theorem
shows the limitations of internal compression13:

Theorem 7.21. For every k > 0, there is a protocol π and a distribution on
inputs µ such that the internal information of the protocol is O(k), yet every
protocol simulating π on the same distribution of inputs with error at most
1/3 must have communication 2Ω(k).

The following theorem shows limitations of external compres-
sion14:

Theorem 7.22. For every k > 0, there is a protocol π and an input
distribution µ such that the external information of the protocol is O(k), yet
every simulation of the protocol with error 1/3 must have communication at
least 2Ω(k).

Exercises

Ex 7.1 — In the correlated sampling, Lemma 7.5, show that Pr[MA 6=
MB] must be at least |p− q|.

Ex 7.2 — In correlated sampling, Lemma 7.5, show that the expected
values of I and J are proportional to the size of the universe.

Ex 7.3 — Let X, Y be jointly distributed in {0, 1}n as follows. Let I ∈
[n] be uniform, and let (X, Y) be uniform conditioned on X<I = Y<I

and XI 6= YI .

1.Compute I(X : Y).

2.Show that if the parties have shared randomness, Alice gets X as
input, Bob gets Y as input, and Alice sends a message M to Bob in
a way that allows Bob to deduce the value of X from M, Y then the
expected length of M is at least n/2−O(1).

3.Deduce Corollary 7.7 does not hold without the logarithmic
term15.

Ex 7.4 — Let X be a random variable taking values in the positive
integers. Let E = E [log X]. Prove that H(X) ≤ E + log E + O(1).
Deduce that the constant 2 in Corollary 7.7 can be replaced by a 1.16

170 communication complexity

Ex 7.5 — In the sense of Claim 7.8, show that there is no encoding of
the positive integers so that each integer z is encoded with log(z) +
log log(z) + 10 bits.

Ex 7.6 — In Theorem 7.10, suppose the parties are promised that
D(p‖q) ≤ 2. Show that the parties cannot hope to sample from
p without error while communicating a constant number of bits in
expectation. Hint: Consider the problem were Alice and Bob have inputs
X, Y ∈ {0, 1}n that are equal with high probability, and Alice wants to send
X to Bob using a randomized protocol.

Ex 7.7 — Let X, Y be jointly distributed random variables. Show that
there is a random variables Z so that

–Z is independent of (X, Y).

–Conditioned on Z = z, the variables Y becomes a deterministic
function of X.

–H(Y|Z) ≤ I(X : Y) + 2 log I(X : Y) + O(1).

Ex 7.8 — Consider the compression in Theorem 7.13. Show that
if the protocol π is deterministic then the simulating protocol has
length at most O(I log C) for error 1

3 .

1 Raz and McKenzie, 1997

2 Göös et al., 2015; and Ambainis et al.,
2016

3 Raz and McKenzie, 1997; and Chat-
topadhyay et al., 2017

1

1

1

1

1x2

x3

x1

0

0

0

0

0

Figure 8.1: A decision tree computing
x1 ∨ (x2 ∧ x3).

8
Lifting

Lifting is a technique that gives lower bounds on general
models by reduction to lower bounds on restricted models1. This
is counterintuitive—general models can simulate restricted models,
so lower bounds for general models should imply lower bounds
for restricted models, not the other way around. At a high level,
lifting transforms an efficient algorithm in the general model into an
efficient algorithm in the restricted model.

Lifting has led to some lower bounds that we do not know how
to prove in any other way. One of the most prominent examples is
the separation between communication complexity and partition
numbers2 we discussed in Chapter 1.

In this chapter, we describe the most basic lifting theorem3. We
show how to transform a communication protocol into algorithms
in a simpler model—decision trees. This allows us to prove lower
bounds on communication protocols by appealing to lower bounds
on decision trees.

Decision Trees

A decision tree is an extremely simple model of computation. It
captures the complexity of an algorithm that reads the input bit by
bit. The only cost paid is the number of bits read by the algorithm.

Formally, a decision tree τ is encoded by a rooted binary tree. The
leaves of the tree are labeled by values in {0, 1}. Every non-leaf vertex
v has exactly two children v0, v1, and is labeled by an element of [n].
Given an input z ∈ {0, 1}n, the decision tree is executed by starting at
the root of the tree. At each non-leaf vertex labeled i, the algorithm
probes zi. If zi = 0, the algorithm moves to v0, and otherwise it
moves to v1. The computation halts when the algorithm reaches a
leaf, which is labeled by the output of the computation. Each input

172 communication complexity

Suppose z = (x, y). Can you show that
a decision tree of depth d for f (z) leads
to a two-party communication protocol
of length d computing f ?

The proof of the fact is left as Exer-
cise 8.1.

See the exercises for examples of
functions for which one can easily
prove lower bounds.

Here we used IP as a gadget to obtain
F from f . Many other gadgets can be
used, but for concreteness, we focus on
IP in this chapter.

z ∈ {0, 1}n defines a path from the root to a leaf. The output τ(z) is
the label of that leaf.

The cost of the tree is its depth. The decision tree complexity of a
function f : {0, 1}n → {0, 1} is the minimum depth of a decision tree
computing f .

Fact 8.1. The decision tree complexity of f : {0, 1}n → {0, 1} is at most n.

Proving lower bounds on decision tree complexity is often easy.
Our goal is to be able to deduce communication complexity lower
bounds from decision tree lower bounds. In other words, we want
to transform an efficient communication protocol into an efficient
decision tree. While this cannot be done in general, it does work for
functions that have a certain structure.

The Lifting Theorem

A lifting theorem in our setting uses lower bounds for decision
trees to obtain lower bounds in communication complexity. We shall
show how any function f : {0, 1}n → {0, 1} with large decision tree
complexity can be transformed into a related function F with high
communication complexity.

The transformation uses the inner-product function IP of two
d-bit vectors, as defined in Chapter 1. Let x, y ∈ ({0, 1}d)n. For
i ∈ [n], let xi ∈ {0, 1}d be the i’th part of the input x. For any
f : {0, 1}n → {0, 1}, define

F(x, y) = f (IP(x1, y1), . . . , IP(xn, yn)).

The main result of this chapter is:

Theorem 8.2. Suppose n ≥ 10 and d ≥ 7 log n. Then the deterministic
communication complexity of F is equal, up to constant factors, to d times
the decision tree complexity of f .

The theorem describes an equivalence between the communication
complexity of F and the decision tree complexity of f . There are two
directions to the equivalence. The easy direction is to show that the
communication complexity of F is at most O(d) times the decision
tree complexity of f . This is a simple exercise. The hard direction
is that the decision tree complexity of f is at most O(1

d) times the
communication complexity of F. The rest of this chapter is devoted to
proving the hard direction.

Say we are given a deterministic protocol π computing F of
length `. We need to use π to come up with a decision tree τ com-
puting f whose depth is O(`/d). The computation of F involves a

lifting 173

To see, for example, that R0
M is 0-

monochromatic, observe that for any
(x, y) in R0

M ,

IP(x, y) = aᵀMM−1b = aᵀb = 0,

where a is non-zero only in the first
half of its coordinates, and b is non-zero
only in the second half.

conversation between Alice and Bob, whereas in the computation of
f there is a single party, call him Charlie. Charlie needs to be able to
use the protocol π to compute f . The solution, in a nutshell, is that
on input z, Charlie attempts to simulate a legal conversation for F
that is consistent with z.

We start with an informal description of Charlie’s algorithm.
Initially, Charlie knows nothing about z, and sets R to be the space
of all possible inputs x, y to F. He chooses the first message of the
conversation to be the bit that is more likely to be sent given the
current set of inputs R. This choice restricts his options for x, y to a
new set R. Now, there are two cases to consider. If for each j ∈ [n],
there are enough options for xj, yj, Charlie continues to simulate
the protocol without making a query. Namely, he chooses the next
message in the conversation to be the most likely bit. Otherwise, if
for some j ∈ [n], the number of options for xj, yj has become too
small, he queries zj. Charlie now needs to adjust R so that it remains
consistent with zj; he makes sure that IP(xj, yj) = zj for all potential
inputs.

Eventually, Charlie queries some coordinates of z and computes
a leaf v of the protocol tree with the following property. For every z
that is consistent with the queries that Charlie made, there are inputs
x, y to F that are consistent with both z and v—for every j ∈ [n], we
have zj = IP(xj, yj), and (x, y) belongs to the rectangle defined by
v. If these conditions are met, Charlie can safely output the value
determined by v in the communication protocol.

Charlie moves down the protocol tree in a way that is consistent
with z. To ensure that Charlie has enough freedom to find x, y that
are consistent with v and all the possible values for z, he exploits a
key property of IP—it admits a family of pseudorandom monochro-
matic rectangles. We start by discussing this property.

For ease of the exposition, we assume that d is even, though the
same ideas hold for odd d. Let M be an invertible d× d matrix over F2.
Let AM be the subspace spanned by the first d

2 rows of M, and let BM

be the subspace spanned by the last d
2 columns of M−1. Let R0

M be
the rectangle AM× BM. It is easy to check that R0

M is 0-monochromatic
for IP. Similarly, if we define AM to be the affine subspace obtained
by adding the first row of M to the span of the next d

2 − 1 rows of M,
and BM to be the affine subspace obtained by adding the first column
of M−1 to the span of the last d

2 − 1 columns, then the rectangle
R1

B = AM × BM is 1-monochromatic.
Not only are these rectangles monochromatic, but they are suffi-

ciently pseudorandom that a random rectangle of this form is quite
likely to intersect an arbitrary large rectangle. This is captured by the
following lemma:

174 communication complexity

The function F was defined by compos-
ing f with n copies of the gadget IP. We
could, more generally, use some other
gadget g : {0, 1}d × {0, 1}d → {0, 1} and
consider the function

F(x, y) = f (g(x1, y1), . . . , g(xn, yn)).

What are the properties of g that
make lifting work? The key property
we need is analogous to Lemma 8.3.
Namely, g should admit a set of
monochromatic rectangles that hit
every large rectangle in the space. The
monochromatic rectangles of g should
be both large and well-distributed in
the space. In other words, g must be
simultaneously structured and pseudoran-
dom.

Interestingly, a random sampled
function g would not be structured
enough to allow us to analyze lifting.
In a random function, the sizes of the
monochromatic rectangles are too small
for the hitting property to hold.

Intuitively, |A�S|/|A�S−j| is a measure
of the number of choices available
in the j’th coordinate once all other
coordinates are fixed.

Lemma 8.3. Let b ∈ {0, 1}. For arbitrary sets U, V ⊆ {0, 1}d, each of size
at least 2,

Pr
M
[Rb

M ∩ (U ×V) = ∅] ≤ 2
(2d/2

|U| +
2d/2

|V|
)

,

where M is chosen uniformly at random from the set of invertible matrices.

Intuitively, a random subspace of dimension d/2 behaves like a
random set of size 2d/2. The expected size of AM ∩ U is therefore
≈ |U|2−d/2. So if U has much more than 2d/2 points then we expect
to see many points in the intersection. We defer the proof of this
lemma, and move on to describing Charlie’s algorithm.

The Algorithm

Throughout the algorithm, Charlie maintains three pieces of infor-
mation: (i) a vertex v in the protocol tree, (ii) a set of S ⊆ [n] of the
coordinates in z that have not yet been queried, and (iii) a rectangle
R = A× B ⊆ ({0, 1}d)n × ({0, 1}d)n. Charlie maintains the invariant
that every (x, y) ∈ R is consistent with the bits of z that have been
queried by the algorithm, as well as the vertex v of the protocol tree.
Namely, if zj has been queried, then IP(xj, yj) = zj for all (x, y) ∈ R.

In what follows, the notation A�S is the projection of the elements
in A to the coordinates in S. We write R�S to denote A�S × B�S. For
a vertex uof the protocol tree, recall that Ru is the rectangle that
corresponds to u. For ease of notation, we write S− j to denote the set
S \ {j}.

Initially, v is the root of the tree, S = [n], and A = B = ({0, 1}d)n.
The algorithm terminates as soon as S becomes empty, or v becomes
a leaf of the protocol tree. Charlie repeats the following steps until
the algorithm terminates. For ease of notation, let D = 2d/7.

1. If for every j ∈ S,

|A�S|
|A�S−j|

≥ D6 and
|B�S|
|B�S−j|

≥ D6 (8.1)

then Charlie simulates the protocol.

Simulate: Let u0, u1 be the two children of v in the protocol tree.
Charlie picks b ∈ {0, 1} to maximize |(R ∩ Rub)�S|. He updates
R = R ∩ Rub and v = ub.

2. If (8.1) does not hold, then Charlie checks whether for all j ∈ S, all
a ∈ A�S−j and b ∈ B�S−j,

|{x ∈ A�S : x�S−j = a}| ≥ D4 (8.2)

lifting 175

If the ratios in (8.1) are small, the
intuition is that the protocol has learnt
Ω(d) bits of information about the
coordinate j, so Charlie needs to query
zj before he loses the freedom to set
xj, yj.

Figure 8.2: The evolution of Rv and R
during the algorithm.

and

|{y ∈ B�S : y�S−j = b}| ≥ D4. (8.3)

If one of these two conditions do not hold, then Charlie prunes the
rectangle.

Prune: If (8.2) does not hold because of j, a, then Charlie deletes all
the elements x ∈ A with x�S−j = a. If (8.3) does not hold because
of j, b, then Charlie deletes all the elements y ∈ B with y�S−j = b.
He keeps deleting elements in this way until (8.2) and (8.3) hold.
He updates R to be the resulting rectangle.

3. If (8.1) does not hold because of some coordinate j ∈ S, but (8.2)
and (8.3) hold, then Charlie does a query step.

Query: Charlie queries zj, and updates R as follows. For each
invertible matrix M as in Lemma 8.3, define

RM = {(x, y) ∈ R : (xj, yj) ∈ R
zj
M}.

Charlie picks M to maximize |RM�S−j|, and updates R = RM and
S = S− j.

When the algorithm stops, either every coordinate of z has been
queried, in which case Charlie outputs f (z), or v is a leaf of the
protocol tree, in which case Charlie outputs the label of v.

The Analysis

We start with the following observation:

Observation 8.4. A prune step can only occur immediately after a simulate
step.

If S, P, Q denote simulate, prune and query then a sequence of steps
might look like SSPQQSPQSPSP, but we can never see QP or PP.

Proof. Once Charlie prunes the rectangle, (8.2) and (8.3) hold, so he
does not prune in the next step. Moreover, if his next step is to query,
then (8.2) and (8.3) hold even after the query step, because the query
step only fixes some information in a coordinate that is removed
from S, and after the pruning step both (8.2) and (8.3) hold for all
j ∈ S.

To analyze the algorithm, we place a bound on the size of the
rectangle after each steps.

176 communication complexity

Lemma 8.5. In each of the steps of the algorithm, let R, S denote the
rectangle and set of unqueried variables at the beginning of the step, and
R′, S′ denote the rectangle and set of variables at the end of the step. Then,
|R′�S′ | ≥ |R�S′ |/2.

Proof. Whenever Charlie simulates the protocol, by the choice of b,
we have

|(R ∩ Rub)�S| ≥ |R�S|/2.

Whenever Charlie prunes the rectangle, he must have done a
simulate step just before (in a simulate step, one of A�S, B�S does not
change). So, in this case we must have

|A�S|
|A�S−j|

≥ D6/2 and
|B�S|
|B�S−j|

≥ D6/2,

since the simulate step can decrease these ratios by at most 1/2.
Thus, the number of elements that were pruned from A�S is at most

∑
j∈S
|A�S−j| · D4 ≤ n · |A�S| · 2/D2 ≤ |A�S|/8,

since D ≥ n are large. Similarly, at most 1/8 fraction of B�S is pruned.
Thus, the density of R�S decreases by a factor of at most 2, since
(1− 1/8)2 ≥ 1/2.

When Charlie decides to query, (8.2) and (8.3) must hold. Fix any
(a, b) ∈ R�S−j, and let

U = {x ∈ A�S : x�S−j = a} and V = {y ∈ B�S : y�S−j = b}.

By Lemma 8.3, the probability that R
zj
M intersects U ×V is at least

1− 2
(2d/2

|U| +
2d/2

|V|
)
≥ 1− 2d/2+2/D4 ≥ 1/2. since 2d = D7.

So, by linearity of expectation, there is a choice for M ensuring that
|RM�S−j| ≥ |R�S−j|/2.

Now, let us use Lemma 8.5 to prove that the algorithm makes at
most O(`/d) queries.

Claim 8.6. Charlie makes at most 50`/d queries.

Proof. Consider the following density:

|R�S|
22d|S| .

This is the density of the projection of the rectangle in the underlying
space, so it can never be larger than 1. Whenever Charlie queries j,

lifting 177

we have

|RM�S−j|
22d(|S|−1)

≥
|R�S−j|

22d(|S|−1)+1
by Lemma 8.5.

=
|A�S−j| · |B�S−j|

22d(|S|−1)+1

>
|A�S| · |B�S|

D6 · 2d · 22d(|S|−1)+1
since (8.1) does not hold for j, and since,
for example, |A�S| ≤ 2d|A�S−j|.

=
D
2
· |R�S|

22d|S|

So, the density increases by a factor of at least D/2 in a query step.
There can be at most 2` non-query steps before the algorithm
terminates—there can be at most ` simulate steps and so at most
` prune steps by Observation 8.4. Each of these steps decreases the
density by at most a factor of 2, by Lemma 8.5. So, if there are q
query step then

2q(d/7−1) · 2−2` = (D/2)q · 2−2` ≤ 1.

Next, we argue that the protocol computes the correct value.

Claim 8.7. Charlie’s correctly computes f (z).

Proof. By the choice of R throughout the protocol, all the inputs in R
are always consistent with v. Moreover, whenever Charlie queries zj,
he restricts R to ensure that zj = IP(xj, yj) for all (x, y) ∈ R. So, we
only need to worry about the coordinates j /∈ S when the protocol
terminates.

To reason about these coordinates, let us do a thought experiment.
Let π′ be the communication protocol where Alice and Bob first run
π and then send each other x, y. Imagine that Charlie continues simu-
lating the steps of π′ after π has terminated. By the time this second
simulation ends, he must query all of the coordinates in z, since (8.1)
does not hold when R is of size 1. When Charlie stops simulating π′,
he ends with some rectangle R′ such that zj = IP(xj, yj) for all choices
of j ∈ [n]. This R′ is contained in the R that Charlie ended with when
simulating π. So, the original rectangle contains inputs x, y that are
consistent with both z and v. Since π computes F, Charlie computes
f .

Monochromatic Rectangles for Inner-Product

It only remains to prove the relevant pseudorandom property of IP.

Proof of Lemma 8.3. We focus on the case b = 0—a similar argument
works when b = 1. Let R0

M = AM × BM. We shall prove that the

178 communication complexity

The number of non-zero elements in a
subspace of dimension d/2 is 2d/2 − 1,
while the number of non-zero elements
in {0, 1}d is 2d − 1.

probability that AM is disjoint from U is at most 21+d/2/|U|. The
same argument applies to bound the probability that BM is disjoint
from V. The proof is then completed by the union bound.

We may assume that 0 6∈ U, since otherwise AM ∩U is always non-
empty. When b = 1, this case distinction is not important. Let W be
the number of elements in AM ∩U. The variable W can be expressed
as the sum of |U| indicator random variables, W = ∑u∈U Wu, where
Wu = 1 if and only if AM contains u. Symmetry implies that for
each u in U, we have Pr[Wu = 1] = (2d/2 − 1)/(2d − 1). Similarly,

for u 6= u′ in U, we have Pr[Wu = Wu′ = 1] = (2d/2−1
2)/(2d−1

2). The
covariance of Wu and Wu′ is, therefore,

E [WuWu′]−E [Wu]E [Wu′] ≤ 0.

It follows that the variance of W is at most

E

[
W2
]
−E [W]2 ≤ E

[
∑

u∈U
W2

u −E [Wu]
2

]
≤ E [W] .

By Chebyshev’s inequality,

Pr[AM ∩U = ∅] ≤ Pr[|W −E [W] | ≥ E [W]]

≤ 1
E[W]

= 2d−1
2d/2−1

1
|U| ≤ 2d/2

|U| .

Separating Rank and Communication

Equipped with the lifting theorem, we can prove lower bounds
on the communication complexity of composed functions. As we
mentioned earlier, this is the only way we know how to give tight
separations between the logarithm of the partition number and
communication complexity.

Recall that in Chapter 1, we used the probabilistic method to show
that k-disjointness, with k = O(log n), admits a monochromatic
cover of size 2O(log n), even though its communication complexity is
Ω(log2 n). However, this cover is not a partition. Here we describe
a function with communication complexity c, yet its 1’s admit a
partition into monochromatic rectangles of size ≈ 2

√
c. This means

that the rank of the function is at most ≈ 2
√

c as well. It follows that
Conjecture 2.16 cannot hold with an exponent that is less than 2.

The lower bound on communication complexity is proved by
lifting. Lifting allow us to move from communication complexity to
decision tree complexity. To understand decision tree complexity, we
use the concept of certificates. Certificates are to decision trees what
monochromatic rectangles are to communication protocols.

lifting 179

Here xi , yi ∈ {0, 1}d for all i.

Lemma 8.8 establishes an upper
bound on the size of the cover, and
Theorem 8.2 establishes the lower
bound on communication complexity.

One can think of the sets X as given by
an m× m boolean matrix whose rows
are the indicator vectors of the sets.

The certificates either reveal an all 1’s
column of the matrix, or reveal a 0
entry from each of the columns.

See Exercise 8.5.

Given a boolean function f : {0, 1}n → {0, 1}, a set S ⊆ [n] and
a ∈ {0, 1}S, the pair (S, a) is called a certificate if f (x) = f (y) for all
x, y that are consistent with a; namely, for all x, y with x�S = y�S = a.
The length of the certificate is |S|. A collection of certificates is said
to certify f if every if every element of {0, 1}n is consistent with at
least one certificate in the collection. The collection is said to be
unambiguous if each input is consistent with at most one certificate.

Unambiguous certificates that certify f correspond to a monochro-
matic partition into rectangles, as the following lemma shows. To lift
f , define:

F(x, y) = f (IP(x1, y1), . . . , IP(xn, yn)).

Lemma 8.8. If f can be certified with k certificates of length at most `,
then F has a monochromatic cover with k · 22d` rectangles. Moreover, if the
certificates are unambiguous, then the rectangles are disjoint.

Proof. For each certificate (S, a), and each (x, y) ∈ ({0, 1}d)S ×
({0, 1}d)S satisfying IP(xj, yj) = aj for all j ∈ S, define the rectangle

RS,a,x,y = {(x′, y′) : x′�S = x, y′�S = y}.

By definition, these rectangles are monochromatic, and there are
at most k22d` of them. If the certificates are unambiguous, then the
rectangles are disjoint.

We see that separating the cover numbers and communication
complexity of F boils down to a similar separation between the
certificate complexity and decision tree complexity of f .

Now, let us build a function that exhibits a strong separation
between certificate complexity and decision tree complexity. As usual,
disjointness has something to say here. Let X1, . . . , Xm ⊆ [m] be m
sets, and let X = (X1, . . . , Xm). Define Disj(X) to be 1 if and only if
the intersection X1 ∩ · · · ∩ Xm is empty.

Lemma 8.9. Disj(X) can be certified with mm + m certificates of length m.

Proof. To account for all the inputs that intersect, it is enough to have
a certificate certifying that there is an element i ∈ X1 ∩ · · · ∩ Xm.
This can be done with a certificate of length m, and there are m such
certificates. Inputs that are disjoint can be certified by revealing a bit
to show that each i ∈ [m] does not belong to one of the sets. This
requires a certificate of length m, and there are mm such certificates.

On the other hand, Disj(X) has decision tree depth at least m2 −m.
So, if f (X) = Disj(X), and d = O(log m2), we get that F admits
a monochromatic cover of size 2O(m log m), yet the communication

180 communication complexity

This is the so-called cheat-sheet method.

The proofs of the lemmas are left to
Exercises 8.6 and 8.7.

In fact, the non-negative rank of F
is at most 2O(m log m), proving that
Theorem 2.14 is nearly tight.

complexity of F is at least Ω(m2). This gives another nearly quadratic
separation between the logarithm of the cover numbers, O(m log m),
and communication complexity, Ω(m2).

The certificates in the lemma, however, are not unambiguous. Let
us try to fix that. We present an example that admits unambiguous
certificates just for the inputs evaluating to 1. To this end, it will be
helpful to consider non-boolean functions. Define I : {0, 1}m×m →
[m + 1] by setting I(X) to be the smallest index i ∈ [m] that belongs
to all sets X1, . . . , Xm. If the sets are disjoint, let I(X) = m + 1. So,
Disj(X) = 1 if and only if I(X) = m + 1.

Lemma 8.10. The function I defined above can be certified with at most
mm+1 certificates of length at most 2m.

Proof. To certify that I = i, for each j < i, the certificate reveals a bit
to establish that jdoes not belong to one of the sets, as well as m bits
to establish that i is in all sets.

Next, we define a function that requires that its inputs themselves
specify a certificate! Let y = (y1, y2, . . . , ym) ∈ [m]m, and X =

(X1, . . . , Xm) ∈ {0, 1}m×m. Define a boolean function f (X, y) as
follows. Intuitively, we require that yi encodes a certificate that
I(X) = i. Formally, set f (X, y) = 1 if and only if j /∈ XyI(X),j for all
j < I(X). The following two lemmas summarize the key properties of
f .

Lemma 8.11. The function f can be certified using m2m+1 certificates of
length 2m + m log m. Moreover, all the 1 inputs are certified unambiguously.

Lemma 8.12. The decision tree complexity of f is Ω(m2).

We are ready for the final conclusion:

Theorem 8.13. The rank of the communication matrix of F is at most
2O(m log m), while its communication complexity is at least Ω(m2 log m).

Proof. Setting d = O(log m), Theorem 8.2 and Lemma 8.12 imply
the lower bound on the communication complexity. To prove the
upper bound on rank, use Lemmas 8.8 and 8.11, together with the
observation that the rank is at most the size of the smallest collection
of disjoint 1-rectangles covering the inputs evaluating to 1.

Exercises

Ex 8.1 — Prove Fact 8.1.

Ex 8.2 — Show that the function z1 + z2 + · · · + zn mod 2 has
decision tree complexity n.

lifting 181

Ex 8.3 — Show that there is a decision tree with O(n) vertices that
computes a function f : {0, 1}n → {0, 1}, so that the decision
tree complexity of f is n. Conclude that decision trees can not be
balanced.

Ex 8.4 — This exercise describes the pseudorandom property of the
indexing function that is useful for lifting. Let IND : [d]× {0, 1}d be
the indexing function, defined by IND(i, y) = yi. Show that there
is a constant 1 > ε > 0 such that for every b ∈ {0, 1}, there is
a distribution on b-monochromatic rectangles Rb ⊆ [d] × {0, 1}d,
such that for every U ⊆ [d] and V ⊆ {0, 1}d with |U| ≥ d1−ε and
|V| ≥ 2d/dε,

Pr[Rb ∩ (U ×V) 6= ∅] ≥ 1/2.

Ex 8.5 — Prove that Disj(X1, . . . , Xn) requires decision trees of depth
n2 − n.

Ex 8.6 — Prove Lemma 8.11.

Ex 8.7 — Prove Lemma 8.12.

Part II

Applications

x1 x2 x3

x1 � x2 � x3

_

^ ^
^ ^

_

^
^

^

¬x1 ¬x2 ¬x3

Figure 9.1: A circuit computing the
parity x1 ⊕ x2 ⊕ x3. This circuit has size
15 and depth 4.

One may consider circuits where every
gate has fan-in 2 and computes an
arbitrary function of its inputs. This
only changes the size and depth of the
circuit by a constant factor.

9
Circuits and Proofs

Although communication complexity ostensibly studies the
amount of communication needed between parties that are far apart,
it is deeply involved in our understanding of many other concrete
computational models and discrete systems. In this chapter, we
discuss applications of communication complexity to boolean circuits
and proof systems.

Boolean Circuits

Boolean circuits are the most natural model for computing
boolean functions. A boolean circuit is a directed acyclic graph whose
vertices, often called gates, are associated with either boolean opera-
tors or input variables. Every gate with in-degree 0 corresponds to
an input variable, the negation of an input variable, or a constant
bit. All other gates compute either the logical AND (denoted by the
symbol ∧) or the OR (denoted by the symbol ∨) of the inputs that
feed into them. Usually, the fan-in of the gates is restricted to being 2.
We adopt this convention, unless we explicitly state otherwise.

Every gate v in a circuit naturally computes a boolean function fv

of the inputs to the circuit. We say that a circuit computes a function
f if f = fv for some gate v in it.

Every circuit is associated with two standard complexity measures.
The size of the circuit is the number of gates. It corresponds to the
number of operations the circuit performs. The depth of the circuit is
the length of the longest directed path in the underlying graph. The
depth corresponds to the parallel time it takes the computation to
end, using many processors.

We thus get a measure of computational complexity—circuits
have costs and functions have complexities. Every boolean function
f can be computed by a boolean circuit. The circuit complexity of f

186 communication complexity

For example, a super-polynomial lower
bound on the circuit size of an NP
problem would imply that P 6= NP,
resolving the most important open
problem in computer science.

1 Lupanov, 1958

2 Shannon, 1949

The number of circuits of size s is at
most 2O(s log s). The number of functions
f is 22n

. So, if s � 2n/n, one cannot
hope to compute every function with a
circuit of size s.

Counting arguments imply that there
is a constant ε such that the set of
functions computable by size s log s
circuits is strictly larger than the set
of functions computable by size εs
circuits. Similarly, counting arguments
show that circuits of depth d compute
a bigger set of functions than those
computable in depth εd.

Several restricted classes of circuits are
not discussed in this book. We focus
on methods related to communication
complexity.

3 Karchmer and Wigderson, 1990

In the Karchmer-Wigderson game, Alice
and Bob are computing a relation rather
than a function—there may be many
indices i with the property they seek.

is the size of the smallest circuit that computes it. Understanding the
circuit complexity of interesting functions is a fundamental problem
in computer science.

Boolean circuits can efficiently simulate algorithms. Any function
that can be computed by an algorithm in T(n) steps can also be
computed by circuits of size approximately T(n). So, to prove lower
bounds on time complexity, it suffices to prove that there are no small
circuits that can carry out the computation.

Every boolean function f : {0, 1}n → {0, 1} can be computed by
a circuit1 of depth n and size at most O(2n/n). Counting arguments
imply that almost every function requires circuits of exponential
size2. However, do not know of any emphexplicit function for which
we can prove even a super-linear lower bound.

We do not yet understand in circuit complexity is the power of
depth:

Open Problem 9.1. Can every function that is computable using circuits of
size polynomial in n be computed by circuits of depth O(log n)?

We now describe a general connection between circuit complexity
and communication complexity. We focus on two restricted families
of circuits. A formula is a circuit whose underlying graph is a tree.
Equivalently, the fan-out of every gate is 1. Every circuit of depth d
can always be turned into a formula whose size is at most 2d, and
depth is at most d. A monotone circuit is a circuit that does not use
negated variables. A monotone circuit computes a monotone function;
f (y) ≥ f (x) whenever yi ≥ xi for all i.

Karchmer-Wigderson Games

Every boolean function defines a communication problem via
its Karchmer-Wigderson game3. In the game defined by the function
f : {0, 1}n → {0, 1}, Alice gets x ∈ f−1(0), Bob gets y ∈ f−1(1), and
they seek to find i ∈ [n] such that xi 6= yi. When f is monotone, we
define the monotone Karchmer-Wigderson game as follows: Alice and
Bob want to find an index i such that xi < yi.

The basic observation is that circuit-depth is equivalent to commu-
nication complexity, as the following two lemmas show.

Lemma 9.2. A circuit of depth d computing f yields a length d deterministic
protocol for the associated game. If the circuit is monotone, the protocol
solves the monotone game.

Proof. The construction of the protocol is by induction on the depth
of the circuit. If the top gate in the circuit is an AND gate (f = g ∧ h),

circuits and proofs 187

If the function is constant, the
Karchmer-Wigderson game is not
well defined. The circuit-size is 1 and
the depth is 0.

then either g(x) = 0 or h(x) = 0, while g(y) = h(y) = 1. Alice can
announce whether g(x) or h(x) is 0, and the parties can continue
the protocol using g or h. Similarly if f = g ∨ h, Bob can announce
whether g(y) = 1 or h(y) = 1, and the parties then continue with
either g or h. If f is the negation of g, then the parties can continue
the protocol using g, without communicating at all. If f is the i’th
input variable, the parties identify an index i for which xi 6= yi.

When the circuit is monotone, the same simulation finds an index i
such that xi = 0 and yi = 1, since there are no negated variables.

The topology of the circuit determines the topology of the protocol
tree. Every AND gate corresponds to a node in the protocol tree
where Alice speaks, every OR gate corresponds to a node where Bob
speaks, and every input gate corresponds to a leaf in the protocol
tree. Thus, a circuit of depth d gives a protocol of length at most
d.

Lemma 9.3. If the Karchmer-Wigderson game for a function f can be solved
with d bits of communication, then there is a circuit of depth d computing
f . If f is monotone, and the monotone game can be solved with d bits of
communication, then there is a monotone circuit of depth d computing f .

Proof. We shall prove, by induction on d, that for any non-empty
sets A ⊆ f−1(0) and B ⊆ f−1(1), the following holds. If there is a
protocol such that whenever x ∈ A is given to Alice and y ∈ B is
given to Bob, they can exchange d bits to find i such that xi 6= yi,
then there is a circuit of depth d computing a boolean function g with
g(A) = 0 and g(B) = 1. When A = f−1(0) and B = f−1(1), this
implies the lemma.

When d = 0, the protocol must have a fixed output i, and so we
must have that xi 6= yi for every x ∈ A and y ∈ B. Thus, setting g to
be the i’th variable or its negation works.

Suppose d > 0 and Alice speaks first. Her message partitions
the set A into two disjoint sets A = A0 ∪ A1, where A0 is the set of
inputs that lead her to send 0 as the first message, and A1 is the set
of inputs that lead her to send 1. If one of A0 or A1 is empty, then
we can ignore the first message, and the proof is complete. So, both
A0 and A1 are non-empty. By induction, the two children of the root
correspond to boolean functions g0 and g1, with g0(A0) = g1(A1) = 0
and g0(B) = g1(B) = 1. Consider the circuit that takes the AND of the
two gates obtained inductively, and denote the function it computes
by g. For all y ∈ B, we have g(y) = g0(y) ∧ g1(y) = 1. For all x ∈ A,
either x ∈ A0 or x ∈ A1. In either case g(x) = g0(x) ∧ g1(x) = 0. If the
first bit of the protocol is sent by Bob, the proof is similar, except we
take the OR of the gates obtained by induction.

188 communication complexity

4 Kleinberg and Tardos, 2006

5 Raz and Wigderson, 1992

Match is a monotone function.

If we are working with the monotone game, the resulting circuit is
monotone.

The Karchmer-Wigderson connection between circuit complexity
and communication complexity is a powerful tool for proving lower
bounds on circuit complexity.

Monotone Circuit-Depth Lower Bounds

A matching in a graph is a collection of disjoint edges. One of the
most studied combinatorial problems is finding the largest matching
in a graph. Today, we know of several efficient algorithms for solving
this problem4.

We focus on the following decision problem. Given a graph G on n
vertices, define

Match(G) =

1 if G has a matching of size at least n/3 + 1,

0 otherwise.

Since there are polynomial time algorithms for finding matchings,
one can obtain polynomial sized circuits that compute Match. How-
ever, we do not know of any logarithmic depth circuits that compute
Match. Here we show that there are no monotone circuits of depth
o(n) computing Match5.

Theorem 9.4. Every monotone circuit computing Match has depth Ω(n).

By Lemma 9.3, it is enough to prove a lower bound on the com-
munication complexity of the corresponding monotone Karchmer-
Wigderson game. In the monotone matching game, Alice gets a
graph G with Match(G) = 1 and Bob gets a graph H with Match(H) =

0. Their goal is to find an edge which is in G, but not in H.

Theorem 9.5. Any randomized protocol solving the matching game must
communicate Ω(n) bits.

Proof. The theorem is proved by reduction to the disjointness lower
bound proved in Theorem 6.18. We shall show that if there is a
protocol for the monotone matching game with length c, then there
is a randomized protocol with length O(c) solving the disjointness
problem on a universe of size m = Ω(n). By Theorem 6.18, this
implies that c ≥ Ω(n).

Suppose Alice and Bob get inputs X ⊆ [m] and Y ⊆ [m]. They
encode X and Y as two graphs GX and HY on the vertex set [3m + 2].
They use public randomness to permute the vertices of the graphs,
and feed them into the protocol for the monotone matching game.

circuits and proofs 189

GX all edges touchingHY

X = { 2, 4 }

Y = { 2, 3 }

Figure 9.2: A schematic description of
GX and HY .

Figure 9.2 shows an example for GX and HY. These graphs are
constructed as follows:

Alice builds GX : For each i ∈ [m], the graph GX contains the edge
{3i, 3i − 1} if i ∈ X, and has the edge {3i, 3i − 2} if i /∈ X. In
addition, GX contains the edge {3m + 1, 3m + 2}.

The construction ensures that GX contains a matching of size m + 1.

Bob builds HY: For each i ∈ [m], if i ∈ Y then Bob connects 3i− 2 to
all the other 3m + 1 vertices of the graph, and if i /∈ Y then Bob
connects 3i to all the other vertices.

By construction, there are m vertices so that every edge of HY

touches one of these vertices (the gray vertices in Figure 9.2). So,
HY does not contain a matching of size m + 1.

If X and Y are disjoint, the outcome of the protocol must be the
edge corresponding to {3m + 1, 3m + 2}. On the other hand, if X and
Y intersect in k > 0 elements, then there are exactly k + 1 edges in GX

that are not in HY.
Since the graph is permuted uniformly at random before the

protocol is executed, and the protocol for the game does not know
the permutation, the outcome of the protocol is equally likely to be
one of these k + 1 edges. Indeed, let e and e′ be two of these k + 1
edges, and let σ be a permutation of the vertices such that σ maps
the edge e to the edge e′. For every permutation τ, if the protocol
outputs the edge τ(e) when it samples τ, then it outputs τ(e′) when
it samples τ ◦ σ.

When the sets are disjoint, the protocol outputs the edge corre-
sponding to {3m + 1, 3m + 2}. When the sets are not disjoint, the
output corresponds to {3m + 1, 3m + 2} with probability is at most
1/2. Repeating this experiment a constant number of times, the par-
ties are able to solve disjointness with probability of error at most
1/3.

190 communication complexity

Throughout this section, we work with
circuits of arbitrarily large fan-in.

We do not know how to prove a similar
statement for general circuits.

We think of F both as a formula and as
a function.

Monotone Circuit-Depth Hierarchy

Boolean circuits can be graded by their depth. It is natural to
conjecture that for constant k, circuits of depth k + 1 are strictly more
powerful than circuits of depth k. Communication complexity allows
us to prove this in the monotone setting.

Let F = Fn,k be the full AND-OR formula with fan-in n and depth
k. All non-input gates in F have fan-in exactly n. The gates of odd
depth are OR gates, and the gates of even depth are AND gates. Every
input gate is labeled by a distinct unnegated variable. The size of F is
O(nk).

We prove that any monotone circuit of smaller depth computing F
must have exponential size.

Theorem 9.6. Any monotone circuit of depth k− 1 that computes F must
have size at least 2Ω(n/k).

Proof. Assume that there is a monotone circuit of size s and depth
k − 1 computing F. The circuit yields a protocol for the monotone
Karchmer-Wigderson game with k − 1 rounds and length at most
O(k log s).

It thus suffices to prove that the monotone game requires com-
munication at least n/16 − k. We prove this by reduction to the
pointer-chasing problem, that we studied in Chapter 6. In pointer-
chasing, Alice and Bob are given x, y ∈ [n]n and want to compute
z = z(k), where z(0) = 1, and z(1), z(2), . . . are inductively defined
using the rule

z(i) =

xz(i−1) if i is odd,

yz(i−1) if i is even.

Given inputs x, y to the pointer-chasing problem, the inputs x′, y′

in {0, 1}[n]k to F are constructed as follows. Every variable in the
formula can be described by a string in v ∈ [n]k. We say that v is
consistent with x if

vi =

x1 when i = 1,

xvi−1 when i is odd and not 1.

We say that v is consistent with y if vi = yvi−1 when i is even. Alice
sets all the coordinates of x′ that are consistent with her input to be
0, and all other coordinates to be 1. Bob sets all the coordinates of y′

that are consistent with his input to be 1, and all other coordinates to
be 0.

We now prove that F(x′) = 0 and F(y′) = 1. We focus on F(x′);
a similar argument works for F(y′). Every a gate of depth d in the

circuits and proofs 191

A similar lower bound holds for the
circuit-depth of majority. See Exercise
1.4.

For example, parity has linear-size
formulas using ⊕ gates, but requires
quadratic-size formulas using AND,OR
and NOT gates.

6 Neciporuk, 1966; and Klauck, 2007

formula corresponds to a vector in [n]d. We claim that every gate that
corresponds to a vector that is consistent with x evaluates to 0 on x′.
This is true for the input gates at depth k, since that is how we set the
variables in x′. For gates at depth d < k, if the gate is an AND gate
then one of its children is consistent with x and so evaluate to 0, and
if the gate is an OR gate then all of its children are consistent with x
and so evaluate to 0.

For every x, y, there is a unique input gate v that is consistent with
both x and y. This gate is the output v = z(k) of the pointer-chasing
problem. The only place where x′ is 0 and y′ is 1 is the v’th entry.

Any protocol for the monotone Karchmer-Wigderson game,
therefore, gives a protocol solving the pointer-chasing problem.
By Theorem 6.17, the communication of the game must be at least
n/16− k.

Boolean Formulas

Formulas corresponds to computations that use each sub-
computation exactly once. One immediate consequence of the
Karchmer-Wigderson connection is a sharp lower bound on the
formula-size of parity. In Chapter 1, we proved that solving the
Karchmer-Wigderson games for parity requires at least 2 log n−O(1)
bits of communication. This shows that its circuit-depth is at least
2 log n−O(1). The formula complexity of parity is therefore Θ(n2).

When it comes to formulas, the choice of basis can affect the
formula size by more than a constant factor. Nevertheless, one can
prove super-linear lower bounds even when allowing each gate to
compute an arbitrary function of two bits.

Consider the function Distinct : [2n]n+1 → {0, 1}, defined as

Distinct(x1, . . . , xn+1) =

1 if x1, . . . , xn+1 are distinct,

0 else.

Distinct is a boolean function that depends on O(n log(n)) bits. We
shall prove6:

Theorem 9.7. Any formula computing Distinct must have at least n2 −
O(n log n) input gates.

We start by proving a simple communication complexity lower
bound. Suppose Alice is given n numbers y1, . . . , yn ∈ [2n], and Bob
is given z ∈ [2n]. They want to compute Distinct(y1, . . . , yn, z).

Lemma 9.8. If there is a 1-round protocol where Alice sends Bob t bits and
Bob outputs Distinct(y1, . . . , yn, z), then t ≥ log (2n

n) ≥ 2n−O(log n).

192 communication complexity

Ti

F
Figure 9.3: A formula F and the tree Ti
that corresponds to the input gates of xi .
Shaded input gates correspond to xi .

The middle binomial coefficient is max-
imal, so (2n

n) ≥ 22n

n+1 . A more accurate
bound using Stirling’s approximation
gives (2n

n) = Θ(22n√
n).

Proof. It is enough to consider the case when y1, . . . , yn are dis-
tinct elements. In this case, Alice’s message must determine S =

{y1, . . . , yn}, or else Bob will not be able to compute Distinct. This is
because if S 6= S′ are two sets of size n that are consistent with Alice’s
message, then there must be z ∈ S such that z /∈ S′. The element z is
distinct from S′, but not from S.

The number of bits transmitted by Alice must, therefore, be at least
log (2n

n) ≥ 2n−O(log n).

We are ready to prove the formula lower bound:

Proof of Theorem 9.7. Suppose there is a formula F computing Distinct

using s gates. Each input gate in the formula reads a bit of one of
the numbers xi. For each i ∈ [n + 1] we define the tree Ti as follows
(see Figure 9.3). Every vertex of Ti corresponds to a gate in F. Start by
discarding all the gates in F that do not depend on xi. In the graph
that remains, iteratively replace every gate that has only one input
feeding into it with an edge connecting its input to its output.

Now, suppose Alice knows all of the input numbers except xi, Bob
knows xi, and Alice and Bob want to compute Distinct(x1, . . . , xn+1).
They can use the tree Ti to carry out the computation efficiently. Bob
already knows the values at the leaves of Ti. Every gate v in Ti com-
putes a boolean function fv which depends on gates in Ti and some
number of Alice’s inputs. There are 222

= 24 boolean functions that
depend on two variables, so Alice can send 4 bits to Bob to indicate
which of these functions he should use to compute fv(x1, . . . , xn+1)

using the 2 inputs that correspond to gates of Ti. Using this informa-

circuits and proofs 193

7 Hrubes and Rao, 2015

Counting arguments show that most
functions f require k = Ω(n).

8 To see this, let S1, . . . , Sk ⊂ [n] be
sets of size n/2 so that that for every
i, j ∈ [n], there is some set of the
sequence that contains both i, j. One can
show that a random choice of O(log n)
sets satisfies this property with positive
probability. Use these sets to construct
a formula. For each i, let gi be the
function that reads the numbers x` for
` ∈ Si , and outputs 1 if and only if these
numbers are distinct. Let g be the OR
function.

It remains an open problem to find an
explicit function for which k = Ω(n).

The input to SDistinct can be encoded
using n log(2n) + log2 n bits.

tion, Bob can compute Distinct. The overall communication is at most
4 times the number of vertices in Ti.

Since F has only s gates, there must be some i for which Ti has at
most ` = s/n leaves. If m denotes the number of vertices of Ti, and e
the number of edges in Ti, then we must have e = m− 1, since Ti is a
tree. Counting the number of edges by adding up the degrees of the
vertices, we have

2(m− 1) = 2e ≥ 3(m− `− 1) + `.

So, m ≤ 2`+ 1 ≤ 2s/n + 1.
By Lemma 9.8, we get 2s/n + 1 ≥ 2n − O(log n), proving the

theorem.

Formulas with Arbitrary Gates

Communication complexity allows us to prove non-trivial lower
bounds even when gates are allowed to compute arbitrary functions
of a linear number of variables7. Suppose we want to express a
function f : {0, 1}n → {0, 1} as

f = g(g1, . . . , gk),

where each of the functions g1, . . . , gk depends on at most 2n/3 input
bits. What is the minimum k required?

We can represent Distinct in this form with k = O(log n).8 Never-
theless, the closely related scrambled distinctness function requires
k ≥ nΩ(1). Assume n is a power of 2. For a subset S of [n log(2n)]
of size log(2n), and b ∈ {0, 1}n log(2n), define SDistinct(S, b) as fol-
lows. Use the coordinates of S in b to define a number z ∈ [2n].
Use the remaining bits of b to define y1, . . . , yn−1 ⊆ [2n]. Output
Distinct(y1, . . . , yn−1, z).

Theorem 9.9. SDistinct(S, b) requires k ≥ nΩ(1).

Proof. As in the formula lower bound, we shall appeal to Lemma 9.8.
Suppose we can write SDistinct as g(g1, . . . , gk), where each of the
gates gi depends on at most 2/3’rds of the input variables.

We claim that if k is small, there must be some S for which every
gate gi reads at most 4

5 log(2n) of inputs that correspond to S. Indeed,
suppose we pick the elements of S independently and uniformly at
random. For each i ∈ [k], the expected number of coordinates of S
read by gi is at most 2

3 log(2n). By the Chernoff-Hoeffding bound,
the probability that more than 4

5 log(2n) of the coordinates are read
in gi is at most e−Ω(log(2n)) = n−γ, for some constant γ > 0. The
probability that the log(2n) coordinates sampled are not all distinct is

194 communication complexity

See Exercise 9.3.

9 Karchmer et al., 1995; Håstad and
Wigderson, 1990; Edmonds et al., 2001;
Gavinsky et al., 2014; and Dinur and
Meir, 2016

at most log2(2n)/n. Overall, if k < nγ/2, then k · n−γ + log2(2n)/n <

1, and there is a set S satisfying the properties we want.
Given such a set S, Alice and Bob can use the circuit to obtain a

protocol solving the distinctness problem. Bob sets the coordinates
of b in S according to his input, and Alice sets the remaining coor-
dinates according to her input. Each gate gi depends on at most
4
5 log(2n) of Bob’s bits. There are 2O(n4/5) boolean functions that
depend on 4

5 log(2n) bits, so Alice can send Bob k ·O(n4/5) bits to
describe the function Bob should evaluate to compute each gi.

Finally, by Lemma 9.8, we must have that

k ≥ Ω(min{nγ, n1/5}).

Boolean Depth Conjecture

Can we efficiently balance circuits? Can every polynomial sized
circuit be simulated by a circuit of logarithmic depth? Recall that we
showed how to balance a protocol tree in Chapter 1.

This seemingly simple problem remains open, despite much effort
to resolve it. Here we discuss an approach9 for proving a negative
answer. The approach is based on direct-sum in communication
complexity. Its goal is to prove that there are functions that can be
computed using polynomial sized circuits but cannot be computed by
a circuit of logarithmic depth.

The idea is to start with a function f : {0, 1}t → {0, 1} that requires
circuits of depth Ω(t). A random function requires such depth
with high probability. The function we are interested in is obtained
from f by composition. Given functions h : {0, 1}t → {0, 1} and
g : {0, 1}k → {0, 1}, define their composition h ◦ g : {0, 1}tk → {0, 1}
by

h ◦ g(x1, . . . , xt) = h(g(x1), . . . , g(xt))

where each xi is a k-bit string. Define f ◦t as the t-fold composition of
f with itself. The function f ◦t can be computed naively by a circuit of
size O(n2). Indeed, f can be computed using a circuit of size O(2t).
To compute f ◦t we need to evaluate f at most O(tt) times. We obtain
a circuit computing f ◦t with O(tt · 2t) ≤ O(n2) gates.

It is natural to conjecture that this naive circuit has essentially
smallest possible depth. Namely, that the depth complexity of f ◦t is
at least Ω(t2). This is much larger than O(log n).

If there is a function f as above for which for all k < t, the circuit
depth of f ◦ f ◦k−1 must be at least εt more than the circuit depth of

circuits and proofs 195

10 Gödel, 1931

11 Robinson, 1965

Some terminology: A literal is a vari-
able or its negation. A clause is an
expression of the form C =

∨
j `j where

each `j is a literal. We assume that each
variable occurs at most once in a clause.
A CNF formula is an expression of the
form F = C1 ∧ C2 ∧ . . . ∧ Cm where Ci is
a clause.

f ◦k−1, then the circuit depth of f ◦t is at least εt2 � t log t = log n.
In other words, if there is such an f , then there is a boolean function
depending on n variables that can be computed using O(n2) gates,
but cannot be computed with a circuit of depth O(log n).

In terms of communication complexity, all that is needed is an
example of a function f for which the communication complexity
of the Karchmer-Wigderson game of f ◦k is at least εt larger than the
communication complexity of the game of f ◦(k−1). This looks quite
similar to understanding the direct-sum question in communication
that we studied in Chapters 1 and 7. The ideas we discussed there,
unfortunately, do not seem to apply in this situation.

Proof Systems

Proof systems provide a formal framework for proving
theorems and for studying the complexity of proofs. A proof system
is a specific language for expressing proofs. It consists of a set of
rules that allow one to logically derive theorems from axioms. The
study of proof systems has led to many interesting results, including
Gödel’s famous incompleteness theorem10.

Resolution Refutations

The simplest proof system is resolution.11 It allows us to refute
boolean formulas expressed in conjunctive normal form (CNF). A
proof in resolution shows that a CNF formula cannot possibly be
satisfied.

Let us start with an example. Consider the formula

F =(x2 ∨ x1) ∧ (¬x2 ∨ x1) ∧ (¬x1 ∨ x3 ∨ ¬x4)

∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3).

The formula F cannot be satisfied by any boolean assignment. To
prove that the formula is unsatisfiable, we repeatedly use the reso-
lution rule. The rule derives a clause that must be true if two other
clauses are both true:

a ∨ B

¬a ∨ C

}
⇒ B ∨ C,

where a is a variable, B, C are clauses and B ∨ C is the derived clause
obtained by including all the literals in B and C. This rule is sound.
Namely, if both a ∨ B and ¬a ∨ C are true then at least one of B

196 communication complexity

(x2 _ x1)

(¬x2 _ x1)

(¬x1 _ x3 _ ¬x4)

(¬x1 _ x3 _ x4)

(¬x1 _ ¬x3)

(¬x1 _ x3)

(¬x1)

(x1)

)(

Figure 9.4: A refutation of F. In each
step, two clauses are combined to give a
new clause that must be true. The final
step produces an empty clause, which
represents a contradiction.

12 Wikipedia, 2016b

P = coNP if and only if there is a proof
system in which every unsatisfiable
boolean formula can be refuted in a
polynomial number of steps.

or C must be true. The resolution refutation shown in Figure 9.4
repeatedly applies this rule to prove that F cannot be satisfied.

A resolution refutation is a sequence of clauses. The sequence starts
with the clauses of the CNF formula. Each new clause is derived
from two previously derived clauses using the resolution rule. The
proof ends when the empty clause is derived. The empty clause
represents a contradiction.

One can think of a resolution refutation as a directed acyclic graph,
like a circuit. The initial clauses correspond to input gates, and the
intermediate clauses obtained from the resolution rule correspond to
the non-input gates. A refutation is said to be tree-like if every derived
clause is used only once. Tree-like proofs are the analog of boolean
formulas in proof complexity.

The problem of understanding whether a boolean formula is
satisfiable is a central problem because of its connection12 to the
complexity classes NP and coNP. The best solvers known today try
to find satisfying assignments while simultaneously trying to refute
formulas obtained after partial assignments. It is important, therefore,
to classify the kinds of formulas can be efficiently refuted.

To study the power of a given proof system, like resolution, we
need to a family of formulas of growing complexity. A basic example
of such a sequence is the pigeonhole principle.

The Pigeonhole Principle

The pigeonhole principle states that if n pigeons are placed in n− 1
holes, then some hole must contain at least 2 pigeons. One can
use the principle to construct a sequence of unsatisfiable boolean
formulas. For i ∈ [n] and j ∈ [n− 1], we have the variable xi,j which
indicates that the i’th pigeon is in the j’th hole. Define the following

circuits and proofs 197

13 Haken, 1985; and Beame and Pitassi,
1996

The proof actually shows that an
exponential number of steps are
required in any proof system where
each step derives a clause using any
derivation rule from two clauses!

H is implied by Axiom 9.11.

n + 1 formulas:

Pi =
∨

j∈[n−1]

xi,j for all i ∈ [n] Pigeon i must be in some hole.

H =
∧

i<i′∈[n]
j∈[n−1]

(¬xi,j ∨ ¬xi′ ,j). Each hole contains at most one pigeon.

The pigeonhole principle states that

P = H ∧
∧

i
Pi

is not satisfiable.
How hard is it to prove that P is unsatisfiable? If one uses resolu-

tion, it is very hard13.

Theorem 9.10. Any resolution refutation of the pigeonhole principle must
involve 2Ω(n) derivation steps.

We give the proof of this theorem, even though it is not directly
related to communication complexity. It will help us get a feel for the
basic notions in proof complexity. Later, we discuss connections of
proof complexity to communication complexity.

A key idea in the proof is to give the proof system even more
power. We allow the proof to assume the following axiom for free.

Axiom 9.11. Each hole contains exactly one pigeon, and the n− 1 pigeons
that are in the holes are distinct.

In other words, we only consider assignments to the variables that
satisfy this axiom. Adding an axiom can only make it easier to derive
a contradiction. Axiom 9.11 implies that for each i, j,

¬xi,j ⇔
∨
i′ 6=i

xi′ ,j.

This allows us to replace every negated variable in the proof with a
disjunction of unnegated variables.

It is no loss of generality to assume that 4 divides n. If this is
not the case, replace n with a nearby multiple of 4. Consider any
refutation of P that derives s clauses. Let C be one of the clauses
derived in the proof. We say that C is big if there is a set S ⊂ [n] of
size |S| ≥ n/4 such that for each i ∈ S the number of j’s so that C
contains xi,j is at least n/4.

Let us see how a random assignment affects the refutation. Pick
n/4 of the pigeons uniformly at random, and randomly assign them
to n/4 different holes. If pigeon i is assigned to hole j in this process,
then we set xi,j = 1, we set xi′ ,j = 0 for all i′ 6= i, and xi,j′ = 0 for all

198 communication complexity

Since n is a multiple of 4.

We remove the pigeon i0 from hole j
and put i into hole j.

j′ 6= j. This makes sure that the relevant pigeons and holes are not
involved with any of the remaining holes and pigeons.

After this assignment to the variables, n/4 of the pigeon clauses
become true. Moreover, several variables disappear, and the formula
becomes equivalent to the corresponding formula for 3n/4 pigeons
and 3n/4 − 1 holes. The resolution refutation must still derive a
contradiction.

Claim 9.12. One of the big clauses must survive the assignment.

Proof. Consider the refutation of P after the random assignment. Say
that a clause has pigeon complexity w if there is a set S ⊂ [n] of size
w such that ∧

i∈S
Pi ⇒ C, The implication is allowed to use

Axiom 9.11.

yet no smaller set S has this property.
The contradiction can only be derived from all 3n/4 pigeon

clauses that remain, since one can satisfy any strict subset of those
clauses with some assignment to the variables. So, the empty clause
in the proof has pigeon complexity at least 3n/4. Since the empty
clause is derived from two clauses, one of the clauses used to derive
the contradiction must have pigeon complexity at least 3n/8. Contin-
uing in this way, we obtain a sequence of clauses in the proof, where
each clause requires at least half as many pigeon clauses as the pre-
vious one. Since the clauses of P have pigeon complexity at most 1,
there must be a clause C in this sequence that has pigeon complexity
at least n/4 and at most n/2− 1.

Let S ⊂ [n] be the minimal set of pigeon clauses that imply C, and
let i ∈ S. Since S is minimal, there must be an assignment x′ to all the
variables where

∧
i′∈S−{i} Pi′ is true, yet C is false. This assignment

places all of the pigeons of S into holes, except for the i’th pigeon.
Suppose j is a hole that did not receive a pigeon during the random
assignment, and does not receive a pigeon from S in x′. We claim
that C contains the variable xi,j. By Axiom 9.11, every hole gets a
pigeon in all the assignments under consideration. So, there is a
pigeon i0 /∈ S that gets mapped to hole j in this assignment—x′i0,j = 1.
Consider what happens when we change the assignment by setting
x′i0,j = 0 and x′i,j = 1, and leave the rest of the variables as they are.
Doing so must make C true, since

∧
i′∈S Pi′ = 1 in the assignment.

Since C is a disjunction of unnegated variables, this can only happen
if C contains xi,j.

Thus, for each i ∈ S, there must be at least

n− 1− n/4− (n/2− 1) = n/4

circuits and proofs 199

The clause a ∨ ¬b ∨ c can be viewed
as asserting that the boolean variables
a, b, c satisfy the linear inequality

−a + b− c ≤ 0.

values of j for which xi,j is in the clause C. So, not only is C big, it is
big even after the random assignment.

Claim 9.13. If a clause C is big, then the probability that C survives the
random assignment is at most

(63
64
)n/8.

Proof. Consider what happens when the first pigeon is assigned to
a hole. The probability that the pigeon is one of the n/4 pigeons
relevant to C is at least 1/4. The probability that it is assigned to one
of the n/4 holes that would imply C is at least 1/4. So the probability
that C becomes true after the first pigeon is assigned to a hole is at
least 1/16. Continuing in this way, we see that for each of the first
n/8 pigeons that we assign to a hole in the random assignment,
there are at least n/4 − n/8 = n/8 pigeons which if assigned to
n/4− n/8 = n/8 holes would lead to the clause becoming true. Thus,
the probability that C survives the first n/8 assignments of pigeons to
holes is at most (

1− (n/8) · (n/8)
n2

)n/8

=

(
63
64

)n/8
.

We are ready to prove the theorem:

Proof of Theorem 9.10. Suppose towards a contradiction that the refu-
tation of P has less than (64/63)n/8 clauses. By Claim 9.13, there is a
partial assignment of the pigeons to holes such that every big clause
does not survive. On the other hand, by Claim 9.12, at least one big
clause must survive.

Cutting Planes

A stronger proof system than resolution can be obtained by
reasoning about linear inequalities. Clauses are converted into linear
inequalities, and the rules allow to combine two linear inequalities to
get a new one.

The proof system operates on linear inequalities of the form

〈c, x〉 ≤ t

where x is an n-bit vector, c is an n-dimensional vector with inte-
ger coefficients, and t is a rational number. Since the variables are
boolean, we allow the proof to use the inequalities xi ≤ 1 and
−xi ≤ 0 for free. There are two type of rules in the proof system. For

200 communication complexity

Cutting planes is complete in the sense
that every collection of inequalities that
has a solution over Rn but does not
have a solution over Zn can be refuted
in it.

14 Cook et al., 1987; and Jukna, 2012

any non-negative rationals α, α′, we can take a linear combination of
two inequalities to derive

〈c, x〉 ≤ t

〈c′, x〉 ≤ t′

}
⇒
〈
αc + α′c′, x

〉
≤ αt + α′t′,

as long as αc + α′c′ is a vector of integers. We also allow the rounding
rule:

〈c, x〉 ≤ t⇒ 〈c, x〉 ≤ btc.

Namely, we can replace t with the largest integer that is at most t.
This rule is sound since the left hand side is always an integer.

The proof system allows us to refute a collection of linear in-
equalities by deducing the contradiction 1 ≤ 0. Cutting planes can
efficiently simulate resolution, line-by-line:

Lemma 9.14. If a formula can be refuted in s steps using resolution, then it
can be refuted in O(ns) steps using cutting planes.

We do not prove the lemma here, but provide an illustrative
example. Consider the resolution derivation

¬x ∨ y ∨ z

x ∨ y ∨ ¬w

}
⇒ y ∨ z ∨ ¬w.

Viewing the clauses as inequalities, this corresponds to

x− y− z ≤ 0

−x− y + w ≤ 0

}
⇒ −y− z + w ≤ 0.

This derivation does not directly follow by taking linear combina-
tions. If we add the first two inequalities, we get −2y− z + w ≤ 0,
which is not quite what we want. However, we can derive the in-
equality we seek using the rounding rule:

x− y− z ≤ 0

w ≤ 1

}
⇒ x− y− z + w ≤ 1,

−x− y + w ≤ 0

−z ≤ 0

}
⇒ −x− y− z + w ≤ 0,

1
2 · (x− y− z + w− 1 ≤ 1)
1
2 · (−x− y− z + w ≤ 0)

}
⇒ −y− z + w ≤ b1/2c = 0.

In fact, cutting planes is strictly stronger than resolution. For
example, cutting planes allows us to refute the pigeonhole principle
using just O(n2) steps14. Rewriting the clauses of the pigeonhole

circuits and proofs 201

Every edge in the matching must be
covered by one vertex from any vertex
cover, and the edges are disjoint.

principle as linear inequalities, we get

Pi ≡ −
n−1

∑
j=1

xi,j ≤ −1, Pigeon i must be in some hole.

Hi,i′ ,j ≡ xi,j + xi′ ,j ≤ 1. Hole j cannot contain both i, i′.

We claim that for each j, we can derive the inequality

Lk,j ≡
k

∑
i=1

xi,j ≤ 1

in O(k) steps. The inequality L2,j is H1,2,j. To derive Lk,j from pre-
viously derived inequalities, use the derivation rules O(k) times to
get

(k− 1) · Lk−1,j +
k−1

∑
i=1

Hi,k,j

≡ k(x1,j + x2,j + . . . + xk,j) ≤ 2k− 1.

Now, divide by k and round to get Lk,j. To complete the proof, ob-
serve

n−1

∑
j=1

Ln,j ≡
n−1

∑
j=1

n

∑
i=1

xi,j ≤ n− 1,

while

n

∑
i=1

Pi ≡ −
n

∑
i=1

n−1

∑
j=1

xi,j ≤ −n.

Adding these last two inequalities gives 1 ≤ 0.
To summarize, cutting planes can efficiently prove the pigeonhole

principle, although resolution cannot. Can we find a formula that is
difficult to refute using cutting planes? Communication complexity
provides such an example.

Lower Bounds on Cutting Planes

Here we give an example of an unsatisfiable formula that requires
an exponential number of steps to refute in the cutting planes proof
system. The formula is based on properties of graphs.

Given a graph, a vertex cover is a set of vertices U such that every
edge of the graph contains at least one vertex from U. A matching is
a set of disjoint edges. We design the formula to encode the fact that
the size of every vertex cover must be larger than the size of every
matching.

We construct a formula that asserts that the input graph has
a vertex cover of size k − 1, as well as a matching of size k. This

202 communication complexity

15 Krajíček, 1997; Pudlák, 1997; Impagli-
azzo et al., 1994; and Hrubeš, 2013

ensures that the formula is unsatisfiable. For each possible edge
e = {v, u} ⊂ [n], we have the variable xe which is 1 if and only if
the edge e is present in the graph. For i ∈ [k] and e, the variable yi,e

encodes whether e is the i’th edges in the matching. For j ∈ [k− 1] and
a vertex v ∈ [n], the variable zj,v encodes whether v is the j’th vertex
in a cover. Now, define the following formulas:

C =
∧

e∈([n]2)

(
¬xe ∨

∨
v∈e,j∈[k−1]

zj,v

)
, Every edge is covered.

Cj =
(∨

v∈[n]
zj,v

)
∧

∧
v 6=v′∈[n]

(¬zj,v ∨ ¬zj,v′) for all j ∈ [k− 1], The j’th vertex in the cover is unique.

M =
∧

e,e′∈([n]2):|e∩e′ |=1

∧
i 6=i′∈[k]

(¬yi,e ∨ ¬yi′ ,e′), Edges in matching are disjoint.

Mi =
(∨

e∈([n]2)

yi,e

)
∧
(∧

e 6=e′∈([n]2)

(¬yi,e ∨ ¬yi,e′)
)

for all i ∈ [k], The i’th edge of the matching is a
unique edge in the graph.

K =
∧

e∈([n]2),i∈[k]
(xe ∨ ¬yi,e) . Edges in the matching are in the graph.

Finally, define the formula:

F = C ∧
(k−1∧

j=1

Cj

)
∧
(k∧

i=1

Mi

)
∧M ∧ K.

The formula F has at most O(n4) clauses. However, an exponential
number of inequalities are needed to refute it, at least with a tree-like
proof15.

Theorem 9.15. Any tree-like cutting planes refutation of F with n/4 ≤ k ≤
n/2 must derive 2Ω(n/ log n) inequalities.

The proof is by reduction to the communication complexity of
the matching game, for which we already proved a lower bound in
Theorem 9.5. In the matching game, Alice gets a graph G that has a
matching of size k ≈ n/3, and Bob gets a graph H that does not have
a matching of size k. Their goal is to find an edge in G that is not in
H.

Lemma 9.16. If there is a tree-like cutting plane proof of size s refuting F,
then there is a randomized protocol for the matching game with communica-
tion O(log(s)(log(n) + log log(s))).

circuits and proofs 203

By the lemma and Theorem 9.5,

log(s)(log(n) + log log(s)) ≥ Ω(n),

which proves Theorem 9.15.
The proof of the lemma shows how to efficiently convert a cutting

planes refutation to a communication protocol. The proof extends to
many other formulas that have similar structure. For simplicity, we
limit the discussion to this particular formula.

Proof of Lemma 9.16. Alice sets the variables yi,e to be consistent with
her matching, and Bob sets the variables zj,v and xe to be consistent
with the graph H. Under this setting of variables, all of the clauses in
Mi, M, Cj, C are true, but one of the clauses in K must be false. This
false clause specifies an edge that is in Alice’s graph G but not in
Bob’s graph H. Our goal is to find this clause using the refutation of
F.

By Lemma 1.8, the proof must derive an inequality L that depends
on at most 2s/3 of the clauses, and on at least s/3 of the clauses. Our
aim is to check whether L is satisfied under the assignment to the
variables described above. The inequality L can be written as

κ + ∑
i,e

αi,e · yi,e ≤∑
j,v

β j,v · zj,v + ∑
e

γe · xe.

All of the variables on the left hand side are known to Alice, and
all the variables on the right hand side are known to Bob. Since the
variables are boolean, there are at most 2n3

possible values for the
left hand side, and at most 22n3

possible values for the right hand
side. Alice and Bob know L, so they also know all these ≤ 21+2n3

possible values. The parties can use the randomized protocol for
solving the greater-than problem to compute whether or not this
inequality is satisfied by their variables, as in Exercise 3.1. They
expend O(log(n/ε)) bits of communication in order to make sure
that output of their computation is correct with error ε.

If the inequality L is not satisfied, Alice and Bob can safely discard
the clauses that are not used to derive L, and continue to find a
false clause. Otherwise, all of the clauses used to derive L can safely
be discarded, and Alice and Bob can start their search again after
discarding all the inequalities used to derive L. In either case, they
discard at least s/3 clauses.

This process can repeat at most O(log s) times, so the probability
that they make an error is at most O(ε log s) by the union bound.
Setting ε to be small enough so that this number is at most 1/3, we
obtain a protocol whose length is at most O(log(s)(log n + log log s)).

204 communication complexity

16 Karchmer et al., 1995

Exercises

Ex 9.1 — Prove that every circuit of size s can be simulated by a
formula of size 2s.

Ex 9.2 — We know that every function can be computed by a circuit
of depth n, and that most functions require depth Ω(n). Show that
there is a function that can be computed in depth O(

√
n), but cannot

be computed in depth O(n1/4).

Ex 9.3 — Show that any boolean formula can be balanced. Prove that
if a boolean function can be computed by a formula of size s, then
it can be computed using a formula of depth O(log s). Hint: This is
similar to how we balanced protocol trees in Chapter 1.

Ex 9.4 — We showed that any formula that computes whether or not
x ∈ [2n]n corresponds to n distinct numbers requires a formula of
size Ω(n2). This gives a boolean function that depends on m bits but
requires Ω(m2/ log2 m) size formulas. Show how you can improve
the lower bound to get a boolean function depending on m bits that
requires formulas of size Ω(m2/ log m). Hint: Consider the element
distinctness function with x ∈ [n]k for the appropriate n and k.

Ex 9.5 — Suppose φ(x1, . . . , xn, y1, . . . , yn) is a boolean formula in
conjunctive normal form that is unsatisfiable. Suppose Alice and Bob
are given x, y ∈ {0, 1}n respectively and want to find a specific clause
in φ that is not satisfied.

1.Show that if the formula has a resolution refutation of depth d,
then Alice and Bob can find this clause with d bits of communica-
tion using a deterministic protocol.

2.Show that if the formula has a cutting-planes refutation of depth
d, then Alice and Bob can find this clause with d log d bits of
communication using a randomized protocol.

Ex 9.6 — In this exercise we give another lower bound for the cutting
planes proof system. Consider the game where Alice is given a
permutation π : [n]→ [n], and Bob is given a subset Y ⊆ [n], with the
promise that π(1) ∈ Y, π(n) /∈ Y. Their goal is to compute i such that
π(i) ∈ Y, π(i + 1) /∈ Y. One can show that Ω(log2 n) communication
is required16.

1.Give a protocol that solves the game with O(log2 n) communica-
tion.

2.Consider the monotone function that takes a graph G as input,
and outputs whether or not the vertex 1 is connected to 2. Use the

circuits and proofs 205

lower bound described above to prove that any monotone formula
for this function must be of size at least nΩ(log n).

x1

x2

x3

0

1

1

0 0 1

10

0 1

10

Figure 10.1: A branching program
computing x1 ∧ x2 ∧ x3.

In the literature, the programs we
define here are referred to as oblivious
branching programs. General branching
programs are not layered, and every
vertex is associated with some variable.

Carry out the counting argument your-
self. How many branching programs of
width w and length ` are there?

1 Barrington, 1986

We do not prove Barrington’s theorem
here. The reason the width of the
simulation is 5 is that 5 is the least
integer so that the permutation group
over 5 elements is not solvable.

10
Memory Size

Memory is an important resource. In this chapter, we present
two models that measure the amount of memory used by algorithms.
Our focus is on proving lower bounds on memory complexity. As
usual, our main tool is communication complexity.

The standard way to model algorithms with bounded memory is
via branching programs. A branching program of length ` and width
w is a layered directed graph whose set of vertices is a subset of
[`+ 1]× [w]. For u ∈ [`+ 1], layer u consists of all vertices of the form
{(u, i) : i ∈ [w]}. Each layer is associated with a variable in x1, . . . , xn.
Every vertex of the first ` layers has 2 out-going edges, each labeled

by a distinct symbol from [d]. Edges go from layer u to layer u + 1 for
u ≤ `. The vertices in layer `+ 1 are labeled with an output of the
program.

Branching programs compute functions in the natural way. On
input x ∈ [d]n, the program is executed by starting at the vertex (1, 1),
and reading the variables associated with each layer in turn. The
input x defines a path through the program. The program outputs
the label of the last vertex on this path.

Intuitively, if an algorithm uses only s bits of memory, then it can
be modeled as a branching program of width at most 2s. Each point
in time corresponds to a layer, and at any time, the algorithm can be
in one of at most 2s states.

Every function f : [d]n → {0, 1} can be computed by a branching
program of width dn and length n. Counting arguments show that
most functions require exponential width.

Perhaps one of the most surprising results about branching pro-
grams is that programs of width 5 can efficiently simulate boolean
formulas1:

Theorem 10.1. If f can be computed by a boolean circuit of depth D, then it
can be computed by a branching program of width 5 and length 2O(D).

208 communication complexity

Streaming algorithms are sometimes
called oblivious read-once branching
programs in the literature.

One can also study the model where a
small number of passes (not just one)
are allowed.

It uses similar ideas to the protocol
for the gap-Hamming problem we
described in Chapter 3.

Barrington’s theorem implies that if a function requires a super-
polynomial length when the width is restricted to being 5, then it
requires circuits of super-logarithmic depth. As we discussed in
Chapter 9, finding an explicit function that requires super-logarithmic
depth is a major open problem.

A streaming algorithm is a specific type of branching program.
The inputs, often called the data stream, are read once in order:
x1, x2, . . . , xn. Streaming algorithms are motivated by applications
where massive amounts of data need to be processed quickly. We can-
not afford to store all the data that is coming in. We need to process
it on the fly, and yet be able to achieve some computational goal.

The parameter log w is called the space of the streaming algorithm.
This is because after reading x1, . . . , xi, the state of the program can
be described with dlog we bits. We start by describing a couple of
clever streaming algorithms.

Maximum Matching. Suppose the data stream consists of a sequence
of edges e1, . . . , em in a graph with vertex set [n]. The goal is to
find a matching of largest size in the graph whose edges are
e1, . . . , em.

There is a simple algorithm for finding a matching that is within
a factor of 2 of the largest one, using space at most n log n. Store
each new edge as long as it does not intersect any of the previ-
ously stored edges. At most n/2 edges are stored at the end, and
these edges must form a matching. The space of the algorithm is
at most n

2 · log n2 ≤ n log n.

This algorithm finds a matching that is at least half as big as the
largest matching in the graph. Indeed, let Mout be the output
of the algorithm and let Mmax be a matching in the graph of
maximum size. Every edge in Mout can intersect at most two
edges of Mmax, since the edges of Mmax are disjoint. Every edge e
in Mmax must intersect at least one of the edge of Mout, or else e
would have been included in Mout. Thus, 2|Mout| ≥ |Mmax|.

Frequency Moments. Suppose the data stream consists of a sequence
of numbers x1, . . . , xm ∈ [n]. For i ∈ [n], let f (i) denote the
number of times that i occurs in the data stream. The t’th moment
is defined to be ∑n

i=1 f (i)t.

We can efficiently compute the 1’st moment ∑n
i=1 f (i). This is just

m, which can be computed using space O(log m).

The 0’th moment is the number of distinct elements in the se-
quence. Although computing the 0’th moment requires space n in
general, one can estimate it with less space using randomness. The
randomized algorithm is based on sampling.

memory size 209

2 Alon et al., 1999

The second moment can be used to
estimate the number of heavy hitters—
elements that occur much more often
than other.

3 Alon et al., 1999

An unbiased estimator is a random
variable whose expectation is the
desired quantity.

Let S ⊂ [n] be a random subset obtained by sampling k uniformly
random independent elements of [n]. In Chapter 3, we showed
that counting the number of distinct elements in S is enough to
approximate the number of distinct elements in the sequence,
up to an additive error of O(n/

√
k), with probability at least

2/3. The number of distinct elements within the set S can be
computed using space O(k). Better algorithms are known2, if we
wish to estimate the number of distinct elements up to a small
multiplicative factor.

Let us see a clever algorithm for computing the 2’nd moment
∑n

i=1 f (i)2 of the stream3 efficiently.

Theorem 10.2. For every ε, δ > 0, we can estimate the 2’nd moment
up to a multiplicative factor of 1− ε, with probability of error δ, using
memory O

(
log m
ε2δ

)
.

The proof is based on the following idea. If we are interested in
estimating some quantity q, it is often useful to find an unbiased
estimator of q. Namely, a random variable with expectation q. If the
random variable has small variance, then taking a few samples of
it provides a good estimate for the value of q.

Proof. To prove the theorem, we find an unbiased estimator Y for the
2’nd moment M2 = ∑n

i=1 f (i)2 that can be computed with small
memory. Let E1, . . . , En be n independent identically distributed
variables, each uniform in {±1}. Let

Y = ∑
i∈[n]

Ei f (i).

First, observe that Y2 is an unbiased estimator:

E

[
Y2
]
= E

(n

∑
i=1

Ei f (i)

)2

= E

[
n

∑
i=1

E2
i · f (i)2

]
+ E

[
∑
i 6=i′

Ei · Ei′ · f (i) f (i′)

]
= M2. since E

[
E2

i
]
= 1 and E [EiEi′] = 0 for

i 6= i′.

Secondly, the variance of Y2 is small:

E

[
Y4
]
= E

(n

∑
i=1

Ei f (i)

)4

= E

[
n

∑
i=1

E4
i · f (i)4

]
+ E

[
∑
i 6=i′

(
4
2

)
· E2

i · E2
i′ · f (i)2 f (j)2

]
as above, the odd degree terms vanish.

=
n

∑
i=1

f (i)4 + 6 ∑
i 6=i′

f (i)2 f (i′)2,

210 communication complexity

In general, the variance of the average
of k independent identically distributed
random variables is always smaller by
a factor of k than the variance of each
one.

4 Alon et al., 1999

The input is a stream of numbers
x1, . . . , xm ∈ [n], and f (i) denotes the
number of times that i ∈ [n] occurs in
the stream.

5 Indyk and Woodruff, 2003; and
Chakrabarti and Regev, 2012

so the variance of Y2 is

E

[
Y4
]
−E

[
Y2
]2

= 4 ∑
i 6=i′

f (i)2 f (i′)2 ≤ 4M2
2.

To estimate M2, we maintain the average Z of k independent
unbiased estimators Y2

1 , . . . , Y2
k for large enough k. The variance of

Z can be bounded:

E

[
Z2
]
−E [Z]2 = E

(1
k
·

k

∑
j=1

Y2
j

)2
−E

[
1
k
·

k

∑
j=1

Y2
j

]2

=
1
k2 ·

j

∑
i=1

E

[
Y4

j

]
−E

[
Y2

j

]2
≤ 4

k
M2

2. since Y1, . . . , Yk are independent.

Finally, Chebyshev’s inequality implies

Pr [|Z−M2| ≥ εM2] ≤
4

ε2k
< δ,

for k = O
(

1
ε2δ

)
. We can compute Z with memory at most k times

O(log m).

Lower Bounds for Streaming Algorithms

The dominant method for proving lower bounds on the memory
required in streaming applications is by appealing to lower bounds in
communication complexity.

One approach is to break the data stream into two parts4. Alice
simulates the execution of the algorithm on the first part of the
stream. She then sends Bob the contents of the memory, allowing him
to continue the simulation over the second half of the data stream.
Perhaps surprisingly, this simple approach often gives tight lower
bounds.

To illustrate this basic idea, let us start with computing the fre-
quency moments.

Lower Bounds for Estimating Moments

First, consider the problem of computing the 0’th moment, which is
the number of distinct elements in the stream. The following lower
bound5 follows by reduction to the lower bound on the communica-
tion complexity of the Gap-Hamming problem.

Theorem 10.3. Any randomized streaming algorithm estimating the number
of distinct elements in a stream of length m = n of integers in [n] up to an
additive error of

√
n requires memory of size at least Ω(n).

memory size 211

6 Alon et al., 1999

The maximum frequency is the ∞-
moment:

lim
t→∞

(
n

∑
i=1

f (i)t

)1/t

.

7 Goel et al., 2012

Proof. Suppose Alice has a string x ∈ {0, 1}n and Bob has a string
y ∈ {0, 1}n. They wish to estimate the Hamming distance between
x, y. Viewing x as the indicator vector for a set S = {i1, i2, . . . , is} ⊆
[n], Alice simulates the execution of the given algorithm on the
stream i1, . . . , is, and computes the contents of the memory after the
algorithm made a pass on this stream. Alice sends Bob the contents
of the memory, as well as |S|. Bob continues executing the algorithm
on the elements of the set T, obtained by viewing y as the indicator
vector of T.

After the algorithm has finished executing, Bob recovers a number
k which is equal to |S ∪ T| with probability 2/3, and outputs 2k −
|S| − |T|. The Hamming distance between x and y is exactly

|S ∪ T| − |S ∩ T| = 2 · |S ∪ T| − |S| − |T|.

The parties just solved the Gap-Hamming problem. By Theorem 5.17,
the memory must take Ω(n) bits to encode.

Next, suppose we are interested in computing the maximum
frequency: maxi f (i). A simple reduction to the communication
complexity of disjointness6 gives the following lower bound.

Theorem 10.4. Any randomized algorithm that can estimate maxi f (i)
within a multiplicative factor of 1.9 must use memory Ω(n).

Proof. Suppose Alice and Bob have sets x, y ⊆ [n] and want to know
whether the sets are disjoint or not. Alice simulates an execution of
the streaming algorithm whose input stream consists of the elements
of x, and then sends the contents of the memory to Bob. Bob contin-
ues the simulation using the elements of y. If x and y are disjoint,
the maximum frequency is at most 1. If they are not disjoint, then
the maximum frequency is 2. So, the output of the algorithm allows
Alice and Bob to distinguish the two cases. By Theorem 6.18, the
memory must contain Ω(n) bits.

Lower Bounds for Maximum Matching

The streaming algorithm described above has nearly linear mem-
ory size, but produces only a 1/2 approximation of the maximum
matching. The following theorem7 shows that a 2/3 approximation
requires much larger memory size.

Theorem 10.5. For any constant γ > 0, there is a constant c > 0 such
that any randomized streaming algorithm that computes a matching whose
size is at least 2/3 + γ fraction of the size of the maximum matching, with
probability 2/3, must have memory ` ≥ Ω(γ2n2−c/ log log n).

212 communication complexity

8 Kapralov, 2013

Many interesting upper bounds are
also known for algorithms that make
multiple passes on the data stream.

9 Ruzsa and Szemerédi, 1978

10 Goel et al., 2012

We do not describe the graph proving
Theorem 10.6 here.

Memory size O(n2) easily suffices for exactly solving the maxi-
mum matching problem. The theorem implies that any randomized
streaming algorithm with a 0.67 approximation ratio for the maxi-
mum matching problem must have memory size at least Ω(n1.99). A
similar lower bound is known to hold8 even when the approximation
factor is 1− 1/e. We prove the easier result here.

A key combinatorial construction that is useful to prove the lower
bound is a dense graph that can be covered by a few induced match-
ings. A matching is induced if no two edges in the matching are
connected by an edge of the graph.

Let us see how one can construct such a graph. Theorem 4.2

asserts that there is a subset T ⊆ [n] of size at least n/2−Ω(
√

log n)

that does not contain any non-trivial arithmetic progressions of
length 3. One can use the set T to construct9 a graph. Let A, B be
two disjoint sets of vertices, each of size 3n. Identify each of these
sets with [3n]. Put an edge between two vertices x ∈ A and y ∈ B,
if x = v + t and y = v− t for some n ≤ v < 2n and t ∈ T. We get
n matchings, one for every choice of v. Moreover, these matchings
are induced. Indeed, consider two edges of the form (v + t, v − t)
and (v + t′, v − t′) for t 6= t′ in T. We need to show that the edge
(v + t′, v− t) is not present in the graph. If the edge is present, then
t + t′ = (v + t) − (v − t′) = 2t′′ for some t′ ∈ T, so t, t′′, t′ is an
arithmetic progression of length 3. This is impossible.

The graph described above does not have the parameters we need
to prove the strongest lower bound. A better construction is known10.

Theorem 10.6. For every δ > 0, there is a constant c > 0 such that for
every n there is a bipartite graph with n vertices on each side that is the
disjoint union of n1−c/ log log n induced matchings, and each matching has at
least (1/2− δ)n edges.

Given Theorem 10.6, and ideas from the communication com-
plexity lower bound for indexing, we can prove the lower bound on
streaming algorithms.

Proof of Theorem 10.5. Consider the following communication game.
Alice gets a set of edges H, and Bob gets a set of edges J. Their goal
is to output a large matching that is contained in the union of their
edges. In the game, Alice must send a message to Bob, and Bob must
output the final matching.

Alice and Bob can always use the streaming algorithm to get a
protocol for the game. Alice simulates the execution of the algorithm
on her edges, and then sends the contents of the memory to Bob,
who completes the execution on his edges and outputs the edges
found by the algorithm.

memory size 213

S

G

J

H

1. Alice gets a random subgraph of G

A graph used to generate inputs

2. Bob gets the dashed edges

Inputs

Figure 10.2: An example of the hard
inputs H, J for the matching problem.
The graph G has many large induced
matchings. Alice gets a random sub-
graph H of G. Bob gets a graph J which
matches all the vertices not included
in some matching of G. The maximum
matching includes the edges touching S
and all the edges contained in a random
induced matching.

We shall choose δ = Ω(γ).

We assume t and (1− δ)t are integers.

To prove the lower bound, we find a hard distribution on the
inputs H, J. As usual, it is no loss of generality to assume that the
protocol of the parties is deterministic, since we can always fix their
randomness in the best possible way.

Let γ > 0 be as in the theorem statement. Choose δ > 0 to be a
small enough constant that we shall set later. Let G be the graph on
2n vertices promised by Theorem 10.6, which consists of

k ≥ n1−c/ log log n

induced matchings G1, . . . , Gk, each of size t = (1/2− δ)n. Let S be
a new set of 2n vertices. For each i ∈ [k], let Hi be the random graph
obtained by picking exactly (1− δ)t of the edges in Gi uniformly and
independently. The graph H is defined to be the union of H1, . . . , Hk.
Let I ∈ [k] be uniformly random. The graph J is a random matching
of all the edges that do not touch the vertices in GI to vertices in S.
For an example, see Figure 10.2.

The largest matching in the graph H ∪ J is HI ∪ J. Indeed, if any
matching in H ∪ J includes an edge of G that is not in GI , then we can

214 communication complexity

remove that edge and replace it with two edges touching S to obtain
a larger matching. The size of this matching is

σ = 2(n− t) + (1− δ)t

= 2(n− (1/2− δ)n) + (1− δ)(1/2− δ)n

= 3n/2 + (δ/2)n + δ2/n ≥ 3n/2.

When the algorithm does not make an error, the number of edges
from HI that Bob outputs must be at least

r = (2/3 + γ) σ− 2(n− t)

≥ 3γn/2 + n− 2t ≥ γn, (10.1)

if δ is small enough.
The intuition is that a short message from Alice can not describe

so many edges from HI . Let M denote the `-bit message that Alice
sends to Bob. By Theorem 6.12, since H1, . . . , Hk are independent,

k

∑
i=1

I(Hi : M) ≤ I(H1, . . . , Hk : M) ≤ `.

By applying Markov’s inequality twice, there must be an i ∈ [k] for
which I(Hi : M) ≤ 2`/k and the probability of making an error
conditioned on I = i is at most 2/3. Fix such an index i.

Let E be the indicator random variable for the event that the
algorithm makes an error. Namely, E = 1 if the algorithm outputs a
matching of size at most (2/3 + γ) σ, and E = 0 otherwise. Thus,

I(Hi : ME) ≤ 2`
k + 1.

It remains to give a lower bound on

I(Hi : ME) = H(Hi)−H(Hi|ME).

Since Hi is a uniformly random set of (1− δ)t edges chosen from t
edges, we have

H(Hi) = log
(

t
(1− δ)t

)
.

The conditional entropy

H(Hi|M, E = 1) ≤ H(Hi),

since Hi is always a set of (1− δ)t edges, and the uniform distribution
has the maximum entropy of all such distributions. However, when
E = 0, the entropy must be significantly lower:

H(Hi|M, E = 0) ≤ log
(

t− r
(1− δ)t− r

)
. see (10.1).

memory size 215

Since Pr[E = 0] ≥ 1/3, we get

H(Hi|ME) ≤ 1
3

log
(

t− r
(1− δ)t− r

)
+

2
3
H(Hi).

Overall,

I(Hi : ME)

≥ log
(

t
(1− δ)t

)
− 1

3
· log

(
t− r

(1− δ)t− r

)
− 2

3
· log

(
t

(1− δ)t

)
=

1
3

log
(t
(1−δ)t)

(t−r
(1−δ)t−r)

.

Since

(a
b)

(a−r
b−r)

=
r−1

∏
j=0

a− j
b− j

≥
(a

b

)r
,

we get

I(Hi : ME) ≥ r
3

log
1

1− δ
≥ Ω(γ2n). since r ≥ γn and log 1

1−δ ≥ δ ≥ Ω(γ).

Finally,

` ≥ Ω
(

γ2kn
)
≥ Ω(γ2n2−c/ log log n).

Lower Bounds for Branching Programs

Branching programs are more powerful than streaming
algorithms. A branching program may read the variables multiple
times and in arbitrary order. Communication complexity can be used
to prove lower bounds on branching programs as well. We present
explicit functions that cannot be computed by branching programs
that are simultaneously short and narrow.

To prove the lower bound, we first show that any branching pro-
gram can be efficiently simulated, at least in some sense, by a com-
munication protocol in the number-on-forehead model, discussed in
Chapter 4.

Let g : ({0, 1}r)k → {0, 1} be a function that k-parties wish to
compute in the number-on-forehead model. Define the function g′ by

g′(x, S1, . . . , Sk) = g(x|S1 , . . . , x|Sk),

where x ∈ {0, 1}n, S1, . . . , Sk are subsets of [n] of size r, and x|Si ∈
{0, 1}r is the projection of x to the coordinates in Si. The input to g′

can be described using at most n + O(kr log n) bits.

216 communication complexity

11 Babai et al., 1989; and Hrubes and
Rao, 2015

We set γ0 to be small enough so that√
γ ≤ 1/(16 log(4e)).

The simulation in Theorem10.7 gives a
deterministic communication protocol.
The lower bound from Theorem 5.8 is
for randomized protocols.

The scrambling is similar to the ap-
proach used in Theorem 9.9, and in
many other proofs.

The key claim11 is that any branching program computing g′ can
be used to obtain an efficient protocol computing g in the number-on-
forehead model.

Theorem 10.7. There is a constant γ0 > 0 such that for every 0 < γ < γ0

and for every g, g′ as above with k > 10
√

γ log n and r ≤ √n the following
holds. If g′ can be computed by a branching program of length γn log2 n
and width w, then g can be computed by k parties with communication at
most O(γ log(w) log2(n)) in the number-on-forehead model.

Setting g to be the generalized inner-product function, Theo-
rem 10.7 and the lower bound from Theorem 5.8 imply that any
branching program with length at most γn log2 n that computes g′

must have width at least 2nΩ(1)
. No better tradeoff between the length

and width of branching programs is known.
Let us first sketch the proof of a weaker lower bound—either the

width of the program is 2nΩ(1)
, or the length of the program is at

least Ω(n log n). Given inputs y1, . . . , yk to generalized inner-product
g(y1, . . . , yk), we show that the parties can use a program for g′ to
compute g. There are a couple of challenges to overcome. Firstly,
generalized inner-product can easily be computed by a branching
program of width 3 and length n. This can be circumvented by
scrambling the input using the sets S1, . . . , Sk. The key idea is to have
each party in the communication protocol simulate many steps of the
execution of the branching program by herself.

The challenge is that the variables in the program can appear mul-
tiple times and in arbitrary order, while the parties in the number-
on-forehead model are only allowed to see a certain structured part
of the input. How can we ensure that each party sees enough of the
input to be able to simulate the execution of the program?

Suppose for the sake of finding a contradiction that the program
computing g′ has length (n log n)/20, and width w = 2n0.01

. Par-
tition the program into disjoint intervals of time, each of length
n/2. In order to decide where to place the inputs of the parties,
namely S1, . . . , Sk, define the following bipartite graph. The graph
has k = (log n)/10 vertices on the left and n vertices on the right.
Every vertex on the left corresponds to one of the k parts of the pro-
gram. Every vertex on the right corresponds to one of the n variables
x1, . . . , xn. Connect a part to a variable by an edge if that part does
not contain the variable in the program. By the choice of parameters,
each vertex on the left is connected to at least n/2 vertices on the
right. This property is enough to ensure that one can find k disjoint
sets S1, . . . , Sk on the right, each of size r =

√
n, such that the i’th ver-

tex on the left is connected to every vertex of Si. One can find these
sets greedily—let S1 be r neighbors of 1, then delete these neighbors

memory size 217

We assume
√

n is an integer.

Q1

Q2

Q3

Q4

R1

R2

R3

R4

Figure 10.3: The bipartite graph defined
by the branching program can be
partitioned into cliques. The Qi’s and
Ri’s in the claim are not necessarily
consecutive blocks, and some of the
Qi’s may be of size 1.

and repeat to find S2, . . . , Sk. Fixing the choice of S1, . . . , Sk, the par-
ties let x|S1 = y1, . . . , x|Sk = yk. Any variable not determined by
this step is fixed to 0. We have g′(x, S1, . . . , Sk) = g(y1, . . . , yk), and
the parties can simulate the execution of the program to compute g′.
The i’th party sees enough information to simulate the execution of
the i’th part of the program which is of length n/2. In each step of
the simulation, one of the parties sends log w = n0.01 bits to tell the
next party how to continue the simulation. Overall, we get a protocol
computing g with communication at most n0.01 log n. However, the
lower bound for generalized inner-product says that the communi-
cation must be at least Ω(r/4k) = Ω(

√
n/n0.2) ≥ Ω(n0.33). This is a

contradiction.
To give tighter parameters, we need to give a more efficient simula-

tion of the branching program by communication protocols.

Proof of Theorem 10.7. Consider a branching program of length
γn log2 n and width w computing g′. Partition the layers of the pro-
gram into consecutive parts in such a way that each part reads at
most n/3 variables, and there at most 3γ log2 n parts.

Consider the bipartite graph where every vertex on the left cor-
responds to a part of the partition, and every vertex on the right
corresponds to one of the n variables x1, . . . , xn of g′. Connect two
vertices if the variable does not occur in the corresponding part in the
partition.

The following claim describes a useful partition of this graph. See
Figure 10.

Claim 10.8. One can partition the vertices on the left to k sets Q1, . . . , Qk,
and find k pairwise disjoint sets of vertices on the right R1, . . . , Rk, each of
size r =

√
n, such that for each i ∈ [k], every vertex of Qi is connected to

every vertex of Ri by an edge.

Before proving the claim, let us see how to use it. Given an in-
put (x1, . . . , xk) to g, use the branching program for g′ with inputs
(x, R1, . . . , Rk) where x|Ri = xi and x is zero outside

⋃
i Ri. Thus,

g(x1, . . . , xk) = g′(x, R1, . . . , Rk).
The protocol for computing g proceeds as follows. The first ver-

tex on the left corresponds to at least n/3 steps of the branching
program. This vertex belongs to some Qi. Party i runs the steps of
the program corresponding to the first part by herself, since she
knows all the relevant variables in x. She then uses dlog we bits
to announce the result of this simulation. Now the party that cor-
responds to the steps in the next part simulates the program and
announces the outcome, and so on. The overall communication is
at most 3γ log2 n · dlog we. The protocol indeed computes g. It only

218 communication complexity

remains to prove the claim.

Proof of Claim 10.8. We prove the claim by repeatedly using Lemma 5.4.
Initially, the degree of each vertex on the left is at least 2n/3, so the
edge density is at least 2/3. Since the initial edge density of the
graph is more than 1/2 ≥ 2 · 2

√
γ log n

8
√

γ log n , we can apply Lemma 5.4 to find
a set Q1 on the left and R1 on the right of sizes |Q1| ≥ 2

√
γ log n and

|R1| =
√

n such that every vertex of Q1 is connected to every vertex
of R1.

Removing Q1, R1 from the graph, we can repeat the process to find
pairs of disjoint sets

(Q2, R2), (Q3, R3), . . . , (Qt, Rt)

with the same property, as long as the edge density remains at least
1/2 and the number of vertices on the left remains at least 8

√
γ log n.

The number of times t we can apply this process is

t ≤ t0 =
3γ log2(n)
2
√

γ log n
≤ 2
√

γ log n.

The number of vertices on the right that are removed is at most
t0 · r ≤ n/6, for large n. This means that the edge density always
remains at least 1/2, so the process ends when we reach a state
where the number of vertices on the left is k′ < 8

√
γ log n.

At this point, we set Qt+1 to be a singleton set {qt+1} and Rt+1 to
be a set of r ≤ n/2 of the neighbors of qt+1. We remove Qt+1, Rt+1

and similarly keep building (Qt+2, Rt+2) as long as there are vertices
on the left. During this process, the total number of vertices that are
removed from the right side is at most (t0 + k′) · r ≤ n/6. So the edge
density always remains at least 1/2.

Exercises

Ex 10.1 — Show that any randomized algorithm that estimates the
∞-moment maxi f (i) within an additive factor of 1 must use memory
Ω(n).

Ex 10.2 — Consider the connectivity problem for streaming algo-
rithms. The input stream consists of edges in a graph with vertex set
[n]. The algorithm should decide if the vertices 1 and n are connected
by a path.

1.Show that this problem can be solved with O(n log n) memory.

2.Show that the memory size of such an algorithm is at least Ω(n).
Hint: Use such an algorithm to solve disjointness.

memory size 219

For any fixed input, an interval in a
width 5 program can be thought of as
computing a map from [5] to [5].

Ex 10.3 — In this exercise, we prove Barrington’s theorem.

1.Show that there are two permutations π, σ : [5] → [5] with the
property that πσ 6= σπ. Here πσ denotes the map obtained by
composing π and σ.

2.Prove by induction on d that if there is a boolean circuit com-
puting f (x1, . . . , xn) with depth d, then there are three width 5
programs, each of length O(4d), computing each of the maps
π f (x1,...,xn), π− f (x1,...,xn), σ f (x1,...,xn). Here π1 = π, and π0 is the
identity.

3.Given a boolean circuit of depth d, show that there is a branching
program of width 5 and length O(4d) that computes the same
function.

Ex 10.4 — Consider the perfect matching problem for streaming algo-
rithm. The input stream consists of edges in a graph with 2n vertices,
and the algorithm needs to decide if the graph contains a matching
of size n. Using a reduction similar to the one for approximating
matchings, show that Ω(n) space is required.

11
Data Structures

Data structures provide efficient access to data. Many
fundamental algorithms rely on data structures. For example, data
structures play a crucial role in Dijkstra’s algorithm for finding
the shortest path in directed graphs, and in Kruskal’s algorithm
for computing minimum spanning trees. Lower bounds on the
performance of data structures are often obtained by appealing to
communication complexity.

There are several ways to measure the cost of data structures. We
focus on the space of the data structure, and on the time that it takes
to perform operations. Space is defined to be the total number of
memory cells used, and time is defined to be the number of memory
cells that are accessed during an operation. There is, typically, a
tradeoff between these costs.

We begin with several examples of useful and clever data struc-
tures. Later, we explain how to prove complexity tradeoffs for data
structures using ideas from communication complexity.

Dictionaries

A dictionary is a data structure that maintains a set S ⊆ [n]. It
supports the operations of adding and deleting elements from the set.
It also supports membership queries of the form is i ∈ S?

The most straightforward implementation of a dictionary is to
maintain a string x ∈ {0, 1}n that is the indicator vector of S. This
allows us to add and delete elements, as well as answer membership
queries in time 1. The space, however, is n.

A more efficient randomized alternative is to use hashing. Sup-
pose we only perform m operations, and we permit the data structure
to make an error with small probability. Then, for a parameter ε > 0,
we can pick a random function h : [n]→ [n′] with n′ = dm2/εe. Now,

222 communication complexity

4 7

7 5 9 8

8 9 6 6 9 10 10

10

4 7

7 5 9 8

8 9 6 6 9 10

4

10 7

7 5 9 8

8 9 6 6 9 10

4

5 7

7 10 9 8

8 9 6 6 9 10

4

5 7

7 6 9 8

8 9 10 6 9 10 2

4

5 7

7 6 9 2

8 9 10 6 9 10 8

4

5 2

7 6 9 7

8 9 10 6 9 10 8

2

5 4

7 6 9 7

8 9 10 6 9 10 8

3

4 7

7 5 9 8

8 9 6 6 9 10 10

Figure 11.1: A heap. Here the mini-
mum (3) is deleted from the heap, and a
new number (2) is added.

These operations are useful, for exam-
ple, for computing the shortest path in
weighted graphs.

we encode S using a string x ∈ {0, 1}n′ , by setting xj = 1 if and only
if there is an i ∈ S such that h(i) = j. To add i, set xh(i) = 1, and to
delete i, set xh(i) = 0. This data structure uses only n′ cells of memory.
If at most m operations are involved, the probability that this data
structure makes an error is at most ε.

It is a tantalizing open problem to prove that there is no deter-
ministic data structure using space that is linear in the size of the set
stored:

Open Problem 11.1. Find a deterministic dictionary for S ⊂ [n] where
each memory cell has O(log n) bits, all operations can be carried out in time
O(1), and the total space used is O(s) for sets of size s. Alternatively, show
that there is no such data structure.

Ordered Sets

Efficient algorithms for accessing sorted lists are key
primitives in algorithm design, with countless applications. In many
cases, we do not need to completely sort the inputs. It is enough to
be able to recover some information about the sorted list, such as its
minimum element.

Sort Statistics

Suppose we want to maintain a set S ⊆ [n] of k numbers. As before,
we want to quickly add and delete elements from the set. Now, we
also want to compute the minimum of the set.

A trivial solution is to store the k numbers in a list. Adding a

data structures 223

2 2 3

5 9 164 2 8
9 2 16

2 7 8 4 9 12 1 16 16

0 0 0 1 16 162 11 122 9 102 7 80 0 01 3 31 2 2

0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1

Figure 11.2: Maintaining numbers
in a binary search tree with S =
{2, 3, 7, 8, 9, 10, 11, 12, 16}.

If the subtree is empty, the minimum
and maximum are set to 0.

The update time can be improved at the
expense of increasing the query time by
changing the arity of the tree.

The maximum of the empty set is zero.

To compute P(x) in a binary search
tree, let a0, a1, . . . , ad be the nodes on
the path from the root to x. A binary
search over a0, a1, . . . , ad can be used to
compute P(x) with O(log d) accesses.

For simplicity of the description,
assume

√
n is an integer.

1 van Emde Boas, 1975

number is fast, but finding the minimum might take k steps. A better
solution is to maintain a heap, as in Figure 11.1. The numbers are
stored on the nodes of a balanced binary tree, with the property that
every node is at most the value of its children. Heaps allow us to
add a number, and to query or delete the minimum element. One
can add a number by adding it at a new leaf, and bubbling it up the
tree. One can delete the minimum by deleting the number at the root,
inserting the number at the last leaf into the root, and bubbling down
that number. Each operations takes only O(log k) time steps.

Another solution is to maintain the numbers in a binary search tree,
as in Figure 11.2. Each memory location corresponds to a node in
a binary tree with n leaves. Each leaf corresponds to an element of
x ∈ [n] and stores a boolean value indicating if x ∈ S or not. Each
inner node maintains three numbers: (i) the number of elements of S
in the corresponding subtree, (ii) the minimum of S in that subtree,
and (3) the maximum of S in that subtree. An element can be added
or deleted in O(log n) time steps, by updating all the memory cells
that correspond to the ancestors of the element in the tree. One can
also compute the i’th smallest element of S in O(log n) steps, by
starting at the root and moving to the appropriate subtree.

Predecessor Search

Suppose we want to maintain a set of numbers S ⊆ [n]. We wish to
support addition and deletion of elements from the set. We also want
to quickly determine the predecessor of x ∈ [n] defined as

P(x) = PS(x) = max{y ∈ S : y ≤ x}.

If we maintain the numbers using a binary search tree, as in
Figure 11.2, we can handle updates in O(log n) time. Queries can be
answered even faster, in time O(log log n).

The update time can be improved using van Emde Boas trees1. We
sketch the solution. Let I1, I2, . . . , I√n be

√
n consecutive intervals of

integers, each of size
√

n. We store the maximum and the minimum
elements of the set S in two memory cells. We recursively store the

224 communication complexity

S

store

min max

S \ I1 S \ I2 S \ I3 S \ I4 TS

store store store store store

Figure 11.3: An example of a van
Emde Boas tree.

2 Brodal et al., 1996; and Ramamoorthy
and Rao, 2017

3 Galler and Fisher, 1964

set TS = {i : S ∩ Ii 6= ∅} using a van Emde Boas tree on a universe of
size
√

n. Finally, for each i, we recursively store the set S ∩ Ii using a
van Emde Boas tree on a universe of size

√
n. See Figure 11.3 for an

illustration.
To compute P(x) from the van Emde Boas tree, let i be such that

x ∈ Ii. If x is less than the minimum of S ∩ Ii, then P(x) is the
maximum of S ∩ Ij, where j < i is the largest index for which S ∩ Ij is
non-empty. To find P(x), find the predecessor of the relevant interval
in TS, and output its maximum element. Otherwise, P(x) is in S ∩ Ii,
and we can compute it recursively using the recursive structure that
stores S ∩ Ii.

We made just one recursive call. Since the universe shrinks from
n to
√

n, there can be at most O(log log n) recursive calls before
P(x) is found. Similarly, one can add and delete numbers in time
O(log log n).

Later in this chapter, we shall prove that van Emde Boas trees
are essentially optimal when it comes to the predecessor search
problem. The tree can also be used to query the minimum, median
and maximum of a set in time O(log log n). Surprisingly, we still do
not know whether this is the optimal data structure. Some lower
bounds for restricted types of data structures are known2.

Open Problem 11.2. Find a data structure that can maintain a set S ⊆ [n],
support the addition and deletion of elements, and support querying the
minimum or median of the set in time� log log n

log log log n . Alternatively, prove
that there is no data structure that can carry out all operations in time
O(1).

Union-find

The union-find data structure
3 allows us to efficiently keep

track of a partition S1, . . . , Sk of [n]. The initial partition is the par-
tition to n sets of size 1. The data structure supports the union op-
eration, which forms a new partition by replacing two sets Si, Sj in

data structures 225

01

112

03 04

22

18 010

07

09

15

011 06

S1 S2 S3

01

112

03 04

22

18 010

07 09

15

011 06

S1 S2⋃S3

Figure 11.4: Maintaining a partition
of the universe into sets using the
union-find data structure. Each cell
is associated with an element of the
universe, and stores a pointer to the cell
corresponding to its parent, as well as
the height of the subtree rooted at the
element. The result of merging two sets
is shown.

Prove that any tree of depth d that
occurs in the data structure always has
at least 2d elements in it. Conclude that
depth of every tree has depth at most
O(log n).

the partition by their union Si ∪ Sj. It also supports queries that find
x ∈ [n], which return an identifier for the unique set Si containing x.

This data structure has numerous applications. For example, it
plays a key role in the fastest algorithms for computing the minimum
spanning tree of a graph.

Here is the high-level scheme for an implementation of a union-
find data structure, with operations that take time O(log n). See
Figure 11.4 for an illustration. The data structure associates each
element of [n] with a memory cell storing O(log n) bits. The idea is
to represent each set Si in the partition by a rooted tree Ti with |Si|
nodes. The nodes of Ti are labeled by the elements of Si. The edges
of the tree Ti are directed towards the root. The cell corresponding
to x ∈ [n] stores the name of its parent, as well as the depth of the
subtree rooted at x. This takes O(log n) bits. If x is the root of the
whole tree, then x points to itself. The find operation with input
x ∈ [n] follows the pointers from x to the root of the tree it belongs
to, and outputs the name of the root. The union operation for Si, Sj

merges the corresponding trees Ti, Tj by ensuring that the root of the
more shallow tree becomes a child of the root of taller tree Tj, and
adjusting the depths of the two roots appropriately. This ensures that
no tree ever has depth more than O(log n), and so all operations take
at most O(log n) time.

Later, we shall show that this union-find solution is essentially
optimal.

Approximate Nearest Neighbor Search

In the nearest neighbor search problem, we wish to store a
set S ⊆ {0, 1}d of size n so that one can quickly compute a nearest

226 communication complexity

Typically n� d.

4 Kushilevitz et al., 2000

We use the notation

∆(x, S) = min{∆(x, w) : w ∈ S}.

The query time can be improved if
the data structure is allowed to be
randomized.

For a binary vector w, let |w| denote the
number ones in w. For an integer vector
x, denote by x mod 2 the binary vector
obtained by reducing each coordinate
modulo 2.

Think of w as a column vector.

neighbor N(x) of a query x ∈ {0, 1}d. A nearest neighbor of x is an
element y ∈ S minimizing the Hamming distance

∆(x, y) = |{i ∈ [d] : xi 6= yi}|.

We can always store the set using nd bits, and answer queries in
time nd. We could also store a table with 2d cells, each with d bits,
recording the response for every possible query. This implementation
yields a constant query time, but exponential space.

Here we sketch a 1 + ε approximation for nearest neighbor4.
Namely, we can use the data structure to find some y ∈ S so that

∆(x, y) ≤ (1 + ε) · ∆(x, S).

Theorem 11.3. For every ε > 0, there is a data structure that allows us to
find the 1 + ε-approximate nearest neighbor such that

• The number of cells is at most d log(d)(n log(log(d/ε)))O(1/ε2).

• Each cell contains d + 1 bits.

• The query time is O(d log(log(d)/ε)).

The key idea is to use locality sensitive hashing—hashing that helps
to determine the Hamming weight of a string. For a parameter
1 > δ > 0, let Z be a random r× d matrix with independent identically
distributed entries distributed as

Zi,j =

1 with probability δ,

0 with probability 1− δ.

Lemma 11.4. For every γ, ε > 0, there is r = O(log(1/γ)/ε2) so that for
all k ∈ [d] there is a bias δ > 0 for the entries of Z, and an interval T ⊂ R,
so that for every d× 1 binary vector w:

• If |w| ≤ k then Pr [|Zw mod 2| ∈ T] ≥ 1− γ.

• If |w| ≥ k(1 + ε) then Pr [|Zw mod 2| ∈ T] ≤ γ.

Before proving the lemma, let us see how to use it. We describe a
random construction that yields the required data structure with high
probability. Let S ⊂ {0, 1}d be the given set of n vectors. Let ε > 0 be
the approximation parameter. Set γ to be 1

n log(log(d)/ε))
times a small

constant to be determined.
Apply Lemma 11.4 several times with

k = 1, (1 + ε), (1 + ε)2, . . .

data structures 227

The number of cells is

O(m log(d)2r/ε)

= d log(d)(n log(log(d/ε)))O(1/ε2).

as long as k ≤ d. The total number of times we apply the lemma is
O(log(d)/ε). For each value of k, independently sample m matrices
Z(k,1), . . . , Z(k,m) and choose the interval T(k) as in the lemma, for
some m = O(d) to be determined below.

For each r× 1 binary vector q, and j ∈ [m], the data structure stores
a cell with d + 1 bits that contains y ∈ S if

|q− Z(k,j)y mod 2| ∈ T(k).

If there are several such y’s, the cell stores just one of them. If there
are no such y’s, the cell is left empty. The total number of cells and
the number of bits in each cell is as promised.

We now sketch how the data structure answers queries. Fix a
query x ∈ {0, 1}d. For each j ∈ [m], choose yj ∈ S using binary search
as follows. For k0 ≈ d/2 check if there is y ∈ S so that

|Z(k0,j)(x− y) mod 2| ∈ T(k0),

by looking at the cell corresponding to q = Z(k0,j)(x) mod 2. If the
answer is yes, continue the search among the k’s that are smaller
than k0. If the answer is no, search among the k’s that are larger. The
element yj ∈ S is the last element obtained in this binary search.

Claim 11.5. For fixed x and j,

Pr[yj ∈ S, ∆(yj, x) ≤ (1 + ε)∆(x, S)] ≥ 2/3.

Proof sketch. There are n elements in S and O(log(log(d)/ε)) values
of k in the binary search. By the union bound and Lemma 11.4, the
probability in question is at least 1−O(γn log(log(d)/ε)) ≥ 2/3 by
the choice of γ.

The claim and the Chernoff-Hoeffding bound imply that for fixed
x, the probability that for at least m/2 of the j’s we have yj ∈ S and
∆(yj, x) ≤ (1 + ε)∆(x, S) is at least 1− 1/2d+1. The union bound over
all x now implies that there is a choice of matrices and intervals so
that at least half of the yj’s are proper solutions to the problem. For
this choice, the data structure can properly answer all queries. The
query time is m times the length of the binary search, as claimed.

It only remains to prove the hashing lemma.

Proof of Lemma 11.4. We first claim that for a single row z of Z,

Pr
z
[〈z, w〉 = 0 mod 2] =

1 + (1− 2δ)|w|

2
.

228 communication complexity

In the next section, we consider dy-
namic data structures, that permit
updates to the data as well.

Indeed, if we set p = Prz [〈z, w〉 = 0 mod 2], then

2p− 1 = E
z

[
(−1)〈w,z〉

]
= E

z

[
d

∏
i=1

(−1)wizi

]

=
d

∏
i=1

E
zi
[(−1)wizi]

= (1− 2δ)|w|.

Now set δ so we have

b(δ, k) =
1 + (1− 2δ)k

2
= 2/3.

Observe that

b(δ, k)− b(δ, k(1 + ε)) = 1/3− (1/3)1+ε

= (1/3) · (1− 2−ε·log 3)

≥ (1/3) · (1− (1− ε · (log 3)/2)) since 2−2x ≤ 1− x for 0 ≤ x ≤ 1/2.

≥ Ω(ε).

Let T be the interval

T =

[(
2
3
− b(δ, k)− b(δ, k(1 + ε))

2

)
r , 1

]
.

By the Chernoff-Hoeffding bound, if |w| ≤ k then

Pr [|Zw mod 2| ∈ T] ≥ 1− e−Ω(ε2r).

Similarly, if |w| ≥ k(1 + ε)

Pr [|Zw mod 2| ∈ T] ≤ e−Ω(ε2r).

Choosing r = O(log(1/γ)/ε2) completes the proof.

Lower Bounds on Static Data Structures

A static data structure specifies a way to store data in memory,
and to answer queries about the data, without the ability to update
the data. There are three main parameters that we seek to optimize:

Space s: The space is the total number of memory cells used to store
the data.

Word size w: The number of bits in each memory cell.

Query time t: The number of cells that need to be accessed to answer
a query.

data structures 229

There are also randomized and distribu-
tional versions of this lemma.

5 Miltersen et al., 1998

Ideally, we would like to minimize all three parameters.
The primary method for proving lower bounds on the parame-

ters of static data structures is via communication complexity. In a
nutshell, efficient data structures lead to efficient communication
protocols. Say we are given a data structure for a particular problem.
We define the corresponding data structure game as follows: Alice
is given a query to the data structure, and Bob is given the data that
is stored in the data structure. The goal is for Alice to compute the
result of evaluating her query on the data.

Lemma 11.6. If there is a data structure of size s, word size w, and query
time t for solving a particular problem, then there is a deterministic protocol
solving the related communication game with 2t rounds. In each pair of
subsequent rounds, Alice sends log s bits and Bob responds with w bits.

Proof. Alice and Bob simulate the execution of the data structure
algorithm. Alice sends log s bits to indicate the name of the memory
cell she wishes to read, and Bob responds with w bits encoding the
contents of the appropriate cell. After t such steps, Alice and Bob
know the result of the computation.

Lower bounds in communication complexity therefore give us
lower bounds on the parameters of data structures. Here are some
examples.

Set Intersection

Suppose we wish to store an arbitrary subset Y ⊆ [n] so that on input
X ⊆ [n] one can quickly compute whether or not X ∩ Y is empty5.
Here are a few potential solutions:

1. We could store Y as string of n bits broken up into words of size
w. This would give the parameters s = t = dn/we.

2. We could store whether or not Y intersects every potential set X.
This would give s = 2n and w = t = 1.

3. For every subset V ⊆ [n] of size at most p, we could store whether
or not Y intersects V. Since X is always the union of at most
dn/pe sets of size at most p, this gives s = ∑

p
i=0 (

n
i), w = 1, and

t = dn/pe.

The communication game that corresponds to this data structure is
exactly the same as computing disjointness. So, every data structure
leads to a communication protocol for computing set disjointness.
Since the communication complexity of set disjointness is n + 1, we get
the following lower bound on data structures.

230 communication complexity

See Exercise 11.4.

Here we use the bounds (n/k)k ≤ (n
k) ≤

(en/k)k .

6 Miltersen et al., 1998

Recall that the predecessor of x is the
largest element of S that is at most x.

Theorem 11.7. Any data structure that solves the set intersection problem
must have t · (dlog se+ w) ≥ n + 1.

Lopsided Set Intersection

In practice, the bit complexity of the queries is often much smaller
than the amount of data being stored.

In the k-lopsided set intersection problem, the data structure is
required to store a set Y ⊆ [n]. A query to the problem is a set
X ⊆ [n] of size k � n. The data structure must compute whether or
not X intersects Y.

When k = 1, we can get s = dn/we and t = 1. No better parame-
ters are possible. The problem becomes more interesting when k > 1.
We can get a solution with s = d(n

k)/we ≤ (1/w)(en/k)k and t = 1 by
storing whether or not Y intersects each set of size k.

Theorem 1.29 yields the following lower bound:

Theorem 11.8. For any data structure solving the k-lopsided set intersection
problem, t(log s + w) ≥ n/(st/k + 1).

For example, the theorem proves that if w = 1 and n1/3 > k > t,
then for large n, we have s ≥ (n

k)
1/(2t). This is because if s is smaller,

then we have

k log(n/k) + t ≥ t(log s + w) ≥ n
st/k + 1

≥ n√
en/k + 1

≥
√

nk
2
√

e
,

which cannot hold for large n.

The Span Problem

In the span problem6, the goal is to store n/2 vectors y1, . . . , yn/2 ∈
Fn

2 , with n even. A query is a vector x ∈ Fn
2 . The data structure

must quickly compute whether or not x is a linear combination of
y1, . . . , yn/2.

Theorem 1.32 yields the lower bound:

Theorem 11.9. In any static data structure solving the span problem,

tw ≥ n2/4− t log s · (n + 1)− n log n.

For example, if s < 2n/8t, then tw = Ω(n2).

Predecessor Search

In the predecessor search problem, the data structure is required to
encode a subset S ⊆ [n] of size at most k. The data structure should
compute the predecessor PS(x) of any element x ∈ [n].

data structures 231

7 Ajtai, 1988; Beame and Fich, 2002;
Pǎtraşcu and Thorup, 2006; and Sen
and Venkatesh, 2008

8 Beame and Fich, 2002

The size of the universe increases from
µk to µk+1. Initially, the size of the
universe is 4.

This corresponds to writing X in base
m with the digits X0, X1, X2, . . . , Xr−1,
and setting the y’th element of S to be
X0, X1, . . . , Xi−1, y, 0, . . . , 0 for y ∈ SI .

There is a simple static data structure with space s = n, and time
t = 1 for this problem. The data structure stores the value of PS(x)
for every x. To compute PS(x), we simply needs to read the relevant
cell where this value has been stored. When s � n, we prove lower
bounds7.

Theorem 11.10. Suppose that there is a static data structure for predecessor
search for sets of size ` in a universe of size n with word size w = dlog ne
that solves the predecessor search problem in time t and space s. Then,

t ≥ Ω
(

min{ log log n
log log(s log n) , log `

log log(`n)}
)

. (11.1)

The theorem is essentially tight. We have seen that there is a data
structure that can allow for additions, deletions and predecessor
queries, all in time t ≤ O(log log n). This dynamic data structure
leads to an efficient static data structure.8 Here is a sketch of the
construction. Suppose the set S is promised to be of size at most
`. One can use the dynamic data structure to add each element of
the set S, which takes total time t`. Every predecessor query can
be handled in time t using the dynamic data structure. To make
this intuition formal, hashing is used to reduce the space of the
data structure. This gives a static data structure with space at most

polynomial in ` and time at most O
(

log log n
log log log n

)
.

Proof of Theorem 11.10. We prove the lower bound using the round-
elimination method introduced in Chapter 6. The data structure
yields a communication protocol for the following problem. Alice
gets x ∈ [n], and Bob gets the set S ⊆ [n] of size at most `. Their goal
is to compute P(x).

We iteratively construct hard distributions on inputs as follows.
Let us start with the base case. Suppose the communication protocol
has 0 rounds. Define the distribution µ0 on x, S by choosing x ∈
{2, 4} uniformly at random, and setting S = {1, 3}. The predecessor
P(x) is a uniformly random element of S. So, any 0-round protocol
makes an error with probability at least 1/2 under this distribution.

Now, suppose we have already constructed the hard distribution
µk for k-round protocols over a universe of size n = nk. The con-
struction of µk+1 depends on who sends the first message in the
protocol.

When Alice sends the first message, define µk+1 as follows. Set
r = d((8t)2 log s)e. Sample (X1, S1), . . . , (Xr, Sr) independently
according to the distribution µk. Let I ∈ [r] be uniformly random. Set

X =
r−1

∑
j=0

Xj · nr−j−1,

232 communication complexity

This corresponds to partitioning the
universe into r blocks, and having X
come from just one of the blocks. The
set S is the disjoint union of S1, . . . , Sr .

and

S =

{
I−1

∑
j=0

Xj · nr−j−1 + y · nr−I−1 : y ∈ SI

}
.

The crucial point is that every element of S has exactly the same most
significant bits as X, so PS(X) determines PSI (XI).

When Bob sends the first message, the construction is different.
Set r = d(8t)2we. Again, choose (X1, S1), (X2, S2), . . . , (Xr, Sr) inde-
pendently from µk, and I ∈ [r] uniformly at random. Set

X = (I − 1) · n + XI ,

and

S =
r−1⋃
j=0

{j · n + y : y ∈ Sj}.

The predecessor of X in S determines the predecessor of XI in SI .
As in the lower bound for the greater-than function, we apply

round elimination. A protocol with k + 1 rounds and error ε over
µk+1 yields a protocol with k rounds and error ε + 1/(8t) over µk.
For example, when Alice sends the first message, her message M has
entropy at most dlog se. By Corollary 6.14, on average over i, m, x<i,

p(xi|i, m, x<i)

1
8t≈ p(xi).

Fix some value of i, m, x<i for which this error is achieved. We argue
that

p(xi, si|i, m, x<i)

1
8t≈ p(xi, si).

Indeed,

|p(xi, si|i, m, x<i)− p(xi, si)|
= ∑

xi ,si

|p(xi|i, m, x<i) · p(si|i, m, x≤i)− p(xi) · p(si|xi)|

= ∑
xi ,si

p(si|xi) · |p(xi|i, m, x<i)− p(xi)| since p(si |i, m, x≤i) = p(si |xi)

= ∑
xi

|p(xi|i, m, x<i)− p(xi)|.

We get a k-round protocol for computing the predecessor over a
smaller universe. The parties run the k + 1-round protocol but with the
first message fixed and with the input inserted in the i’th position.

Suppose, for the sake of finding a contradiction, that t does not
satisfy (11.1), and that there is a 2t-round protocol for the predecessor
with error 1/4 in which Alice sends messages of length dlog se and
Bob sends messages of length w.

The initial set is of size 2. The size of the set does not increase
when Alice speaks, and is increased by a factor of (8t)2w when Bob

data structures 233

This is because t� log log n
log log(s log(n)) .

9 Andoni et al., 2006

The constants in the Ω notation depend
on β and γ, and on the constant in the
O notation.

We do not prove Theorem 11.12 here.
The proof uses a randomized analog of
richness, analogous to Definition 1.25.

We assume for simplicity that 1/ε is an
integer.

speaks. The size of the eventual set is thus at most 2 · ((8t)2w)t ≤ `.
The initial universe is of size 4. The size of the universe is raised

to the power d(8t)2 log se when Alice speaks, and is multiplied by a
factor of (8t)2w when Bob speaks. The size of the eventual universe is
at most (4 · (8t)2w)d(8t)2 log se2t ≤ n.

Finally, performing 2t round eliminations, we get a protocol with
no communication that finds the predecessor over µ0 with error less
than 1/2. This is impossible.

Approximate Nearest Neighbor Search

We now prove a lower bound for the nearest neighbor search prob-
lem9. The lower bound nearly matches the upper that we discussed
earlier in Theorem 11.3.

Theorem 11.11. For every β > 0 and 0 < γ < 1, the following holds.
If there is a static data structure that allows to 1 + ε approximate nearest
neighbor on n points in dimension at most O(log(n)/ε2) with ε > n−γ,
then either

s ≥ nΩ
(1

tε
)

or t ≥ Ω(n1−β/w).

The lower bound is proved by appealing to the lower bound on the
communication complexity of lopsided disjointness. In this problem,
Alice is given a set X ⊆ [d] of size `, and Bob is given a set Y ⊆ [d] of
size n with ` � n. Their goal is to decide if X and Y are disjoint or
not.

In Chapter 1, we proved a lower bound for the deterministic
communication complexity of lopsided disjointness, stated in Theo-
rem 1.29. Here we need to use a randomized lower bound.

Theorem 11.12. For every β > 0 and 0 < γ < 1, if there is a randomized
protocol solving lopsided disjointness as above for the case ` < nγ and
d ≥ 2`n, then either Alice must send at least Ω(` log n) bits or Bob must
send at least Ω(n1−β) bits.

There is a straightforward reduction from the communication
problem to the data structure problem. Suppose Alice and Bob
have sets x, y ⊆ [d] with |x| = ` = 1 + 2

ε and |y| = n, and they
want to know if x and y are disjoint or not. Alice thinks of x as its
indicator vector in {0, 1}d. Bob encodes y by the set S = {ei : i ∈ y},
where ei ∈ {0, 1}d is the vector that has 1 in the i’th entry and 0
elsewhere. Now, if the sets x, y are disjoint then ∆(x, S) = `+ 1, and
otherwise ∆(x, S) ≤ `− 1. Since (1 + ε)(`− 1) = 2

ε + 2 = `+ 1, a
1 + ε approximation for nearest neighbor allows to solve lopsided
disjointness.

234 communication complexity

Either ∆(x, S) ≤ k or ∆(x, S) = (1 + ε)k.

(1/3)+2ε′
(1/3)+ε′ ≥ 1 + ε′.

This approach, however, does not suffice to prove the strong
lower bound in the theorem. To get the stronger bound, we store S
using locality sensitive hashing, as in the proof of the upper bound for
nearest neighbor search.

Proof of Theorem 11.11. Alice and Bob wish to solve lopsided disjoint-
ness on inputs x and y. Alice thinks of x as an element of {0, 1}d. Bob
encodes y as S = {ei : i ∈ y}. Let k = `− 1.

Use Lemma 11.4 with k = `− 1 and γ = 1
3n . Let the matrix Z, the

interval T and the parameter r = O(log(3n)/ε2) be as in the lemma.
By the proof of Lemma 11.4, there is ε′ = Ω(ε) so that for all e ∈ S
with ∆(x, e) = k we have

Pr
[

r− |Z(x− e) mod 2| >
(

1
3
+ ε′

)
r
]
≤ 1

3n
,

and for all y ∈ S with ∆(x, e) ≥ (1 + ε)k we have

Pr
[

r− |Z(x− e) mod 2| <
(

1
3
+ 2ε′

)
r
]
≤ 1

3n
.

The parties choose Z using public randomness. Alice encodes x as

x′ = (J + Zx) mod 2

where J is the all-ones vector. Bob uses the data structure to store the
random set

S′ = {Ze mod 2 : e ∈ S}.

Note that

∆(x′, S′) = min{|x′ + y′ mod 2| : y′ ∈ S′}
= min{r− |Z(x− e) mod 2| : e ∈ S}.

By the union bound over the n elements of S, with probability at
least 2/3, if ∆(x, S) ≤ k then ∆(x′, S′) ≤ (1

3 + ε′)r, and otherwise
∆(x′, S′) ≥ (1

3 + 2ε′)r.
Suppose, for the sake of finding a contradiction, that that there

is a data structure with parameters s, t, w that computing a 1 + ε′

approximate nearest neighbor. By Lemma 11.6, we obtain a protocol
computing lopsided disjointness where Alice sends at most O(t log s)
bits and Bob sends at most O(tw) bits, with success probability at
least 2/3. The lower bound in Theorem 11.12 completes the proof.

Lower bounds on Dynamic Data Structures

data structures 235

Unlike for static data structures, not all
of methods for proving lower bounds
on dynamic data structures involve
reductions to communication com-
plexity. Nevertheless, intuitions from
understanding the role of information
play a role here as well.

Some data structures do not provide
good guarantees on the worst case
update and query times, but provide
good amortized update and query times.
For example, a common scheme is
to use hashing to maintain a small
subset S ⊆ [n] of a large universe. After
many operations, the size of the set S
may exceed the capacity of the hash
function to effectively avoid collisions.
In this case the data structure rehashes
the entire space using a less efficient
hash function that avoids collisions for
larger sets. The rehashing operation
can be very expensive, but it needs to
be performed infrequently, and the
time complexity of the data structure
per update/query remains small. The
techniques developed in this section
actually allow to prove lower bounds
even on the amortized time complexity
of data structures. But we do not
discuss this here.

10 Fredman and Saks, 1989; and Patrascu
and Thorup, 2014

11 Fredman and Saks, 1989

This result applies even if the data
structure is only required to compute
q(i) mod 2.

Dynamic data structures allow to query the data as well as
updating it. The union-find data structure, the van Emde Boas tree,
heaps and binary search trees are all examples of dynamic data
structures. In this section, we develop methods for proving lower
bounds on such data structures.

Dynamic data structures have three main parameters:

Word size w: The number of bits in each memory cell.

Query time tq: The number of cells that are accessed to answer a
query.

Update time tu: The number of cells that are accessed to update the
data.

We allow data structures to be randomized, and this may induce
errors. The error of the data structure is ε > 0 if for every sequence of
updates followed by a single query, the probability that the query is
computed correctly is at least 1− ε.

Sorted Lists of Numbers

Suppose we want to maintain a set S ⊆ [n] so that we can add and
delete elements from the set, as well as compute the i’th element of
the set in the sorted order.

We prove the following lower bound10. The proof does not ex-
plicitly involve communication complexity. It does, however, use the
concepts from information theory that we developed in Chapter 6.

Theorem 11.13. Any data structure maintaining a sorted list of numbers
with error at most 1/3 for m ≥ 3n2 operations satisfies tq · log (tuw) ≥
Ω(log n).

For example, if tu, w are polylogarithmic in n, then

tq ≥ Ω(log n/ log log n).

The lower bound is proved by considering a different task called
prefix sum.11 In prefix sum we want to maintain a binary string
x ∈ {0, 1}n. Initially x is 0. We want to allow updating the value
of xi to be 1 − xi for any i ∈ [n]. We also want to allow to query
q(i) = ∑i

j=1 xj.

Theorem 11.14. Any data structure correctly computing prefix sum of
an n bit string with error at most 1/3 for m ≥ n log n operations satisfies
tq · log (tuw) ≥ Ω(log n).

Before proving Theorem 11.14, we show how to use it to prove
a lower bound for maintaining a sorted list of numbers. We show

236 communication complexity

We add or delete from both the data
structure and the indicator vector.

how to solve the prefix sum problem using a data structure for
maintaining a sorted list.

Proof of Theorem 11.13. Initialize the set of numbers to be

T = {j ∈ [n2] : j 6= 1 mod n}.

This takes at most n2 update operations, starting from the empty set.
We also explicitly maintain the indicator vector of the set T using n2

bits. This allows us to add and delete elements, and check whether
j ∈ T in constant time and word size.

Associate every bit xi with the element (i− 1)n + 1 ∈ [n2]. Initially,
x is zero and all elements of [n2] that correspond to entries in x
are not in T. Whenever we wish to flip the value of xi, we check if
(i − 1)n + 1 ∈ T using the indicator vector. If (i − 1)n + 1 ∈ T, we
delete it from T. If (i− 1)n + 1 /∈ T, we add it to T.

Let yj denote the j’th element of T in the sorted order. We claim
that

y(i−1)n+1 = i− q(i) + ((i− 1)n + 1).

To see why this is true, note that the element y(i−1)n+1 is one of
the numbers in the interval in [(i − 1)n + 1, in]. The term i − q(i)
is the size of [(i − 1)n + 1] − T. The set T contains all elements in
[(i− 1)n + 2, in].

In particular, i and y(i−1)n+1 determine q(i). So, we can compute
q(i) by making a single query.

This allows us to simulate n log n operations of the prefix sum data
structure using at most 2n2 + n log n ≤ 3n2 operations of the given
sorted set data structure. Theorem 11.14 completes the proof.

Proof of Theorem 11.14. To prove the lower bound, we use a particular
distribution on operations and query. We can thus assume that the
data structure is deterministic, and makes an error on at most an ε

fraction of the random sequences of updates and query.
We set n = kr with k ≤ O(tuw) a parameter to be determined. For

j = 0, 1, 2, . . . , r, define

Sj = {a · kj + 1 : a ∈ {0, 1, . . . , kr−j − 1}}.

The set Sj consists of kr−j evenly spaced numbers in [n].
Consider the following sequence of random updates. There are

r + 1 rounds. In the j’th round we pick a uniformly random subset
Tj ⊆ Sj, independently of other choices. For each i ∈ Tj, we flip the
value of xi using the data structure. At the end of these r + 1 rounds of
updates, we pick a uniformly random coordinate L ∈ [n] and query
q(L) using the data structure.

data structures 237

Figure 11.5: An example of the sets Sj
when k = 2 and r = 6. The indicator
vector of Sj is the j + 1’st row of the
matrix.

We shall bound from below the expected number of queries the
data structure needs to make to correctly compute q(L). Say that
a cell of the data structure belongs to round j if it was last touched
during the updates of round j. We shall prove that for every round j,
the probability that a cell belonging to round j is queried during the
final query operation is at least Ω(1). By linearity of expectation, this
completes the proof:

E
[
tq
]
≥ Ω(r) ≥ Ω

(
log n

log(tuw)

)
. r = logk n =

log n
log k .

First, some intuition. For fixed j, the algorithm must learn infor-
mation about Tj if it correctly answers the query. All the information
about Tj is encoded by cells belonging to rounds ≥ j. The number
of cells belonging to rounds > j is much smaller than the entropy
of Tj. So, even accounting for the cells belonging to rounds > j, the
algorithm must read a cell belonging to round j if it wishes to learn
information about Tj.

Now, let us make this intuition more formal. For the rest of the
proof, fix a specific round j. Let A ∈ {0, 1}kr−j

be the indicator vector
of Tj inside Sj. Let I be the maximum element in Sj that is at most L.
The integer I is uniformly distributed in Sj, and we interpret it as the
name of a coordinate of A. For ease of notation, let D be a random
variable encoding L, A<I , T1, . . . , Tj−1, Tj+1, . . . , Tr and the contents
and locations of all the cells that belong to rounds > j.

The key claim is that the data structure does not learn much
information about AI even knowing all of D. Since H(AI) = 1, this is
equivalent to the following.

Claim 11.15. H(AI |D) ≥ 1− 2tuw
k .

Before proving Claim 11.15, let us use it to prove that a cell belong-
ing to round j must be accessed with probability Ω(1). Define

Q =

1 if the data structure queries a cell that belongs to round j,

0 otherwise,

and

E =

1 if the data structure makes an error,

0 otherwise.

Denote by γ the probability that Q = 1.

238 communication complexity

Here h(γ) is the binary entropy func-
tion h(γ) = γ · log(1/γ) + (1− γ) ·
log(1/(1− γ)).

The data structure is deterministic.

When Q = 0, the output of the algorithm is determined by D,
since all the cells that are read in order to compute q(L) are deter-
mined by D. In addition, when Q = 0 and D is known, the value of
q(L) is AI plus a known constant. In other words, when Q = 0, the
value of AI is determined by E and D.

Now, by Claim 11.15, we have:

1− 2tuw
k
≤ H(AI |D) ≤ H(QAI |D)

= H(Q|D) +H(AI |DQ) by the chain rule.

≤ H(Q) +H(AI |DQ). by subadditivity.

Thus,

1− 2tuw
k
≤ H(Q) +H(AI |DQ)

≤ h(γ) + γ · 1 + (1− γ) ·H(AI |D, Q = 0)

≤ h(γ) + γ +H(E|D, Q = 0)

≤ h(γ) + γ +H(E|Q = 0)

≤ h(γ) + γ + h(ε/(1− γ)). the probability of error conditioned on
Q = 0 is at most ε/(1− γ) ≤ 1/2.

If k is set to be a large multiple of tuw, the left hand side is close to 1.
If ε, γ are small, the right hand side is close to 0. Thus we must have
γ = Ω(1).

It remains to prove the claim.

Proof of Claim 11.15. Partition D into two parts. Let B be L, A<I ,
T1, T2, . . . , Tj−1, Tj+1, . . . , Tr. Let C denote the locations and contents
of all the cells that belong to rounds > j.

The number of cells that are touched during rounds > j is at most

tu ·
r

∑
j′=j+1

kr−j′ = tu ·
kr−j − 1

k− 1
≤ 2tukr−j−1.

Given B, the variable C can be described by the contents of all cells
that are touched during the updates in round > j. So,

H(C|B) ≤ 2tukr−j−1 · w.

Therefore,

H(A|BC) ≥ H(A|B)−H(C|B)
≥ kr−j − 2kr−j−1tuw

≥ kr−j
(

1− 2tuw
k

)
.

By the chain rule, we get

H(AI |D) =
1

kr−j

kr−j

∑
i=1

H(Ai|A<iBC) ≥ 1− 2tuw
k

.

data structures 239

The adjacency matrix is the n × n
boolean matrix encoding whether u, v
are connected for every pair of vertices
u, v.

A B

Graph Connectivity

Efficient algorithms that maintain and operate on graphs are
widely used in computer science. These provide another source of
basic data structure questions.

Suppose we want to implement a static data structure that stores
the connectivity relations in a graph on n vertices. Namely, we would
like to query if two vertices are connected by a path in the graph or
not.

A trivial solution is to store the adjacency matrix of the graph. To
answer a query, we can perform breadth first search. It takes (n

2) bits to
encode the matrix, but might involve making ≈ n2 probes to answer
a query as well

A better solution is to store, for each vertex, the name of the con-
nected component that the vertex belongs to. This can be stored with
n words, each of size O(log n). Queries can be answered by probing
two locations in the data structure.

If we want to maintain the graph using a dynamic data structure
that supports addition of edges and querying whether or not two
vertices are connected, we can use the union-find data structure, as
in Figure 11.4. At each point in time, the partition of the vertices
represents the current connected components. When a new edge
is added, if the two vertices of the edge are contained in the same
connected component, nothing needs to be done. Otherwise, the two
connected components are merged with the union operation.

Static Connectivity in Sparse Directed Graphs

Connectivity in directed graphs is more complex than in directed
graph. We seek a data structure that allows us to answer whether
or not there is a directed path from a vertex u to a vertex v. A trivial
data structure stores this data for every two vertices u and v. This
gives, for n-vertex graphs, time t = 1, space s = n(n− 1) and word
size w = 1.

It is fairly simple to see that one cannot do much better. Let A
and B be two disjoint sets of vertices, each of size n/2. Consider
the graphs where all edges go from A to B. There are 2n2/4 such
graphs. The data structure must distinguish all of them, since the
queries allow to reconstruct the underlying graph. So, we must have
sw ≥ n2/4.

The problem becomes more interesting when we consider sparse
graphs. What if we are guaranteed that every vertex only has
O(log n) edges coming out of it? Is there a data structure solving

240 communication complexity

111 112 121 122 211 212 222

1

2

3

221

4

Figure 11.6: The butterfly graph with
d = 3 and σ = 2.

12 Pătraşcu, 2011

this version of graph connectivity with s ≤ O(n log n), w ≤ O(log n)
and t ≤ O(1)?

Communication complexity can be used to prove that such data
structures do not exist12:

Theorem 11.16. In any static data structure solving the directed graph
connectivity problem on graphs with at most nw edges and word size w, we
must have

t ≥ Ω

 log n

log sw log n
n log w

 .

In particular, if t = O(1) and w = O(log n) then s = n1+Ω(1).

Proof. The proof relies on a special family of sparse directed graphs:
subgraphs of the butterfly graph. A (d, σ) butterfly graph is a layered
directed graph where each vertex corresponds to a pair (i, u) ∈
[d + 1]× [σ]d. The vertices are partitioned to d + 1 layers, according
to the value of i. Each layer i has exactly one vertex for each string
of length d from the alphabet [σ]. Each vertex in the i’th layer is
connected to exactly w vertices from the i + 1’st layer that agree in all
but the i’th coordinate. See Figure 11.6 for an illustration.

This graph has the following routing property. There is a unique
path connecting each vertex in the first layer to each vertex in the last
layer. To go from (σ1, . . . , σd) to (σ′1, . . . , σ′d), the only path is

(σ1, . . . , σd)→ (σ′1, σ2, . . . , σd)

→ (σ′1, σ′2, σ3, . . . , σd)→ . . .→ (σ′1, σ′2, . . . , σ′d).

The following notation is useful. For u ∈ [σ]d, let u−i ∈ [σ]d−1 de-
note u after deleting the i’th coordinate: u−i = (u1, u2, . . . , ui−1, ui+1, . . . , ud).
There is an edge from (i, u) to (j, v) if and only if j = i + 1 and
u−i = v−i.

The proof also relies on the following lower bound for a version of
lopsided disjointness, see Exercise 1.8.

data structures 241

The map ξ 7→ ξ + x(i,ui)
mod w on

ξ ∈ [w] is one-to-one.

All paths are included in H if and only
if xj 6∈ Yj for all j.

Theorem 11.17. Suppose Alice is given a string x ∈ [σ]k, and Bob is given
a sequence Y of sets Y1, . . . , Yk ⊆ [σ]. If there a protocol that determines
whether or not there is an i such that xi ∈ Yi, with Alice sending a bits and
Bob sending b bits, then a + b ≥ σk

2a/k+1
.

Alice and Bob can use the data structure to solve the lopsided
disjointness problem with inputs x, Y as in Theorem 11.17. They
encode x, Y using subgraphs of the butterfly graph.

Set σ to be the word size w of the data structure. We set k = dwd−1.
The size of the graph is n ≤ 2wk. So,

d = Θ(
log n
log w) and wd−1 ≥ Ω(

n log w
w log n).

Alice uses x ∈ [w]k to construct a subgraph G of the butterfly
graph. Each coordinate of x is associated with a tuple (i, u−i), and so
x(i,u−i)

∈ [w]. The edge from (i, u) to (i + 1, v) is included in G if and
only if vi + ui = x(i,u−i)

mod w. The graph G consists of wd vertex
disjoint paths from the first layer of the graph to the last layer.

Bob uses Y1, . . . , Yk to construct a subgraph H of the butterfly
graph. The edge from (i, u) to (i + 1, v) is included in H if and only if
vi + ui /∈ Y(i,u−i)

mod w.
If xj 6∈ Yj for all j ∈ [k], then G is contained in H. If there is a j

for which xj ∈ Yj, we get w edges that are present in G, but not in
H. Alice and Bob can determine if such a j exists by answering wd−1

connectivity queries; for every vertex u, Alice only needs to know
whether the wd−1 paths that start at vertices of the form (1, (1, u−1))

in G are included in H or not.
Alice and Bob can simulate the execution of these wd−1 queries

on the data structure in parallel. In each round, Alice sends Bob⌈
log (s

wd−1)
⌉

bits to indicate the cells that she needs to look up for
each of her queries. Bob responds with w ·wd−1 = wd bits to describe
the contents of those cells. This simulation gives a protocol where
Alice sends a = t

⌈
log (s

wd−1)
⌉

bits, and Bob sends b = twd bits.
Theorem 11.17 implies that

2t log
(

s
wd−1

)
+ twd ≥ dwd

2t log (
s

wd−1)/(dwd−1) + 1
.

Since (s
wd−1) ≤

(
es

wd−1

)wd−1

, we can simplify the inequality to:

2twd−1 log
(es

wd−1

)
+ twd ≥ dwd

(es
wd−1)

t/d + 1

or

t
(

log
(es

wd−1

)
+ 1
)
≥ d

(es
wd−1)

t/d + 1
.

242 communication complexity

The union-find data structure solves
this problem with parameters s = O(n)
and w = tu = tq = O(log n).

13 Fredman and Saks, 1989

Setting w = O(log n) and
tu = polylog(n), we get that
tq ≥ Ω(log n/ log log n).

Now, if t � d
log es

wd−1
, then (es

wd−1)
t/d ≤ 3, so the right hand side is at

least Ω(d), but on the other hand the left hand side is� d. Thus, we
must have

t = Ω

(
d

log es
wd−1

)
≥ Ω

 log n

log sw log n
n log w

 .

Lower bound for Dynamic Graph Connectivity

In the dynamic graph connectivity problem, the data structure is
required to maintain a graph on the vertex set [n], supporting addi-
tion of edges, as well as connectivity queries. This dynamic problem
requires the following amount of resources13.

Theorem 11.18. Any data structure solving the graph connectivity problem
with error at most 1/3 for m ≥ n + 1 operations satisfies

tq · log tuw ≥ Ω(log n).

The proof shares many ideas with the proof of the lower bound for
the prefix-sum problem given in Theorem 11.14.

Proof. Assume we have a data structure for solving the dynamic
graph connectivity problem. We perform a random sequence of
edge additions, and then ask a single random connectivity query.
We prove that the data structure must probe many locations in
expectation. As usual, we can assume that the data structure is
deterministic.

Let k ≤ O(tuw) be a parameter to be determined. Assume without
loss of generality that n = 2(kr+1 − 1)/(k − 1) for some integer r.
We sample a random graph as follows. The graph consists of two
disconnected k-ary trees T0 and T1, each of depth r. The number of
vertices is indeed n. We uniformly permute the names of the vertices
in the graph.

We add the edges of this graph to the data structure in r rounds,
labelled j = 1, 2, . . . , r. In the first round, we add all 2kr edges that
touch the leaves of the trees. In the j’th round, we add the edges from
depth r − j to r − j + 1. After all the edges of the trees have been
added, we pick two random leaves and query whether or not they
are connected in the graph. The leaves are connected if and only if
they belong to the same tree.

Say that a cell of the data structure belongs to round j if it was last
touched in round j of the updates. We prove that for each j, the
probability that a cell that belongs to round j was accessed to answer

data structures 243

Figure 11.7: The edges of B when
k = 3, r = 5, and j = 2.

The final query to the data structure
yields the same distribution on U, V of
this form.

the query is at least Ω(1). This completes the proof. The expected
number of queries is

E
[
tq
]
≥ Ω(r) ≥ Ω

(
log n

log(tuw)

)
.

For the rest of the proof, fix a particular round j. The number
of vertices v of depth r − j + 1 in the two trees is 2kr−j+1. Let A ∈
{0, 1}2kr−j+1

be the random variable that describes for each vertex v at
depth r− j + 1 the tree v belongs to. Formally,

Av =

1 if v ∈ T1,

0 if v ∈ T0.

Let U, V be two uniformly random and independent vertices at
depth r − j + 1 in the graph. Set R = AU + AV mod 2. The value
of R encodes whether U, V are connected in the graph. Let D be the
random variable that contains the following data: U, V, the edges of
the graph not added in the j’th round, and the locations and contents
of all cells that belong to rounds > j.

Intuitively, D does not provide a lot of information about R. The
following key claim makes this precise.

Claim 11.19. H(R|D) ≥ 1− 7tuw
k .

Claim 11.19 completes the proof, exactly as Claim 11.15 completes
the proof of Theorem 11.14. We leave the details to Exercise 11.5.

Proof of Claim 11.19. Let B be the random variable encoding all the
edges not added to the graph in the j’th round. After fixing the value
of B, the roots of the two trees have been fixed, the identities of the
leaves have also been determined, but the graph still consists of many
disjoint and full k-ary trees, as in Figure 11.7.

244 communication complexity

After fixing B, we know the identity of the 2kr−j+1 vertices at
depth r− j + 1. Exactly half of them get Av = 0 and exactly half get
Av = 1. Thus,

H(A|B) = log
(

2kr−j+1

kr−j+1

)
≥ 2kr−j+1 − 1− log k(r−j+1)/2 since (2m

m) ≥ 22m−1/
√

m.

≥ 2kr−j+1 − 2kr−j. since log k(r−j+1)/2 ≤ k(r−j+1)/2 ≤ kr−j.

Let C denote the locations and contents of all cells that belong to
rounds > j. The number of edges added after the j’th round is

r

∑
i=j+1

2kr−i+1 = 2k · kr−j − 1
k− 1

≤ 4kr−j.

Given B, each of these edges can contribute at most tuw to the en-
tropy of C. This is because C can be described by specifying the
contents of each of the cells accessed when the algorithm adds these
edges. Hence,

H(A|BC) ≥ H(A|B)−H(C|B)
≥ 2kr−j+1 − 2kr−j − 1− 4kr−jtuw

≥ 2kr−j+1 − 6kr−jtuw.

For any fixed vertex q at the same depth as U, V, we have

Pr[q ∈ {U, V}] = 1−
(

1− 1
2kr−j+1

)2
=

1
kr−j+1 −

(
1

2kr−j+1

)2
.

Applying Shearer’s lemma (Lemma 6.8), we conclude that

H(AU , AV |UVBC)

≥
(

1
kr−j+1 −

(
1

2kr−j+1

)2
)
·
(

2kr−j+1 − 6kr−jtuw
)

≥ 2− 1
2kr−j+1 −

6tuw
k

≥ 2− 7tuw
k

.

Now, AU , AV are determined by R, AU . So, we have

H(R|D) ≥ H(AU , AV |D)−H(AU |D)

≥ 2− 7tuw
k
− 1 since H(AU |D) ≤ 1.

= 1− 7tuw
k

.

data structures 245

Exercises

Ex 11.1 — Modify the van Emde Boas tree data structure so that it
can maintain the median of n numbers, with time O(log log n) for
adding, deleting, and querying the median.

Ex 11.2 — We showed that every static data structure problem leads
to a communication game, and used lower bounds on the total
number of bits communicated in the game to prove data structure
lower bounds. Show that if the number of possible queries to the
data structure is Q, then we will never be able to prove that s >

(2Q)1/t/2w using such an approach. Conclude that any lower bound
showing that t� log Q must use a different approach.

Ex 11.3 — For δ > 0, show that n operations of a dynamic data
structure with parameters s, tu, tq, w and error ε > 0 can always be
simulated by another data structure with space n2(tu + tq)/δ, update
time tu, query time tq, word size w and error ε + δ.

Ex 11.4 — For the k-lopsided set intersection data structure problem,
prove that one cannot improve on the trivial solution for k = 1.

Ex 11.5 — Show how Claim 11.19 completes the proof of Theo-
rem 11.18.

Figure 12.1: A cube in R3 can be
defined by the 6 inequalities −1 ≤ x ≤
1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1.

In other texts, polytopes are sometimes
assumed to be bounded—it is assumed
that there is a finite ball that contains
the polytope. Throughout this textbook,
polytopes may have infinite volume.

Indeed, if γ ∈ [0, 1], then

A(γx + (1− γ)y)

≤ γAx + (1− γ)Ay

≤ γb + (1− γ)b = b.

12
Extension Complexity of Polytopes

Polytope are subsets of Euclidean space that can be defined
by a finite number of linear inequalities. They are fundamental
geometric objects that have been studied by mathematicians for
centuries. Any n× d matrix A, and n× 1 vector b defines a polytope
P:

P = {x ∈ Rd : Ax ≤ b}. Here a ≤ b means ai ≤ bi for all i.

In this chapter, we explore some questions about the complexity of
representing polytopes. When can a complex polytope be expressed as
the shadow of a simple polytope? Besides being mathematically inter-
esting, these questions are relevant to understanding the complexity
of algorithms based on linear programming, as we explain in detail
later in this chapter.

Polytopes have many nice properties that makes them easy to
manipulate and understand. A polytope P is always convex—if
x, y ∈ P, the line segment connecting x and y is also in P. The
definition of a polytope seems to involve only inequalities. However,
sets defined using equalities are also polytopes. For example, the set
of points (x, y, z) ∈ R3 so that

x = y + z + 1,

z ≥ 0,

is a polytope, because the constraints can be rewritten as:

x− y− z ≤ 1,

−x + y + z ≤ −1,

−z ≤ 0.

A halfspace H is a polytope defined by a single inequality H =

{x ∈ Rd : hx ≤ c}. Every polytope is an intersection of halfspaces,

248 communication complexity

interior
boundary

vertex
fa
ce
t

Figure 12.2: The anatomy of a polytope.
The polytope has dimension 2. The six
1-dimensional faces are called facets.
The six 0-dimensional faces are called
vertices. The intersection between every
two facets is a face—it is either a vertex
or empty.

This fact is a consequence of Farkas’s
lemma. See Exercise 12.1.

Note that u ≥ 0 is crucial here.

An affine subspace of dimension k is a
set of the form A = {v0 + v : v ∈ V}
where v0 ∈ Rd and V ⊆ Rd is a
k-dimensional vector space.

and every finite intersection of halfspaces is a polytope. In particular,
the intersection of two polytopes is also a polytope.

An important fact is that every linear inequality that the points of
the polytope satisfy can be derived from the inequalities that define
the polytope:

Fact 12.1. If a non-empty polytope {x ∈ Rd : Ax ≤ b} is contained in a
halfspace {x ∈ Rd : hx ≤ c}, then there is a 1× n row vector u ≥ 0 such
that uA = h and ub ≤ c.

The vector u promised by Fact 12.1 shows how to derive the in-
equality of the halfspace from the inequalities defining the polytope.
It proves that the points of the polytope belong to the halfspace. For
every x ∈ P, we have hx = uAx ≤ ub ≤ c.

The dimension of a polytope P is the dimension of the minimal
affine subspace A such that P ⊆ A. A point v is on the boundary of P
if v ∈ P, and for every ε > 0, there is a point u ∈ A− P at distance at
most ε from v. A face of the polytope P is a set of the form F = P ∩ H,
where H is a halfspace that intersects P only on its boundary. There
may be multiple halfspaces that generate the same face.

The faces of a polytope are also polytopes. The dimension of a face
is smaller than that of P. When the dimension of the face is exactly
one less than the dimension of the polytope itself, we call it a facet. A
vertex of the polytope is a non-empty face of dimension 0—it consists
of a single point.

extension complexity of polytopes 249

For example, if the polytope is defined
by the 3× d matrix A by Ax ≤ b, and
A1 + A2 = A3, b1 + b2 = b3, then the
third inequality is implied by the first
two. The polytope has at most 2 facets.

There are 2k subsets of a set of size k.

The boundary of the polytope is the union of all of its facets.
Every point on the boundary belongs to some facet, and every point
on a facet belongs to the boundary. The inequalities defining the
polytope may not correspond to the facets of the polytope. They can
be redundant. Nevertheless, by Fact 12.1, a halfspace defining a facet
can be derived by combining the inequalities defining the polytope.

The number of inequalities needed to express a polytope is at least
the number of facets:

Fact 12.2. If a polytope is defined by r inequalities, then it has at most r
facets.

Fact 12.3. If a k-dimensional polytope P ⊆ Rd has r facets, it can be
expressed with r inequalities as P = {x : Ax ≤ b, Cx = e}, where A is
an r× d matrix, b is an r× 1 column vector, C is a k× d matrix, and e is a
k× 1 vector.

The facets can be used to generate all the other faces of the poly-
tope:

Fact 12.4. Every face of P can be expressed as the intersection of some of the
facets of P.

One important consequence of Fact 12.4 is that a polytope with k
facets can have at most 2k faces.

Transformations of Polytopes

Polytopes behave nicely under some natural transformations.
Translating a polytope gives another polytope. If P = {x ∈ Rd : Ax ≤
b} is a polytope, and z ∈ Rd is any vector, then the set

P + z = {x + z : x ∈ P}

is also polytope. This is because

P + z = {y ∈ Rd : Ay ≤ b + Az}.

Applying an arbitrary linear transformation to a polytope gives
another polytope.

Theorem 12.5. If L is a linear map from Rd to Rk, and P ⊆ Rd is a
polytope, then

L(P) = {L(x) : x ∈ P} ⊆ Rk

is also a polytope. Moreover, every face of L(P) is equal to L(F), for some
face F ⊆ P.

250 communication complexity

Figure 12.1 shows the convex hull of 8
points. Figure 12.2 shows the convex
hull of 6 points.

For example, a halfspace is not the
convex hull of finitely many points.

A bounded polytope is contained in
some ball of finite radius.

Think of L as a k× d matrix.

Before proving the theorem, we discuss an application. It is often
more convenient to describe a polytope by applying a linear transfor-
mation to another polytope. To illustrate this, let us explore a generic
way to generate a polytope from a finite set of points.

Given a set of points V = {v1, . . . , vk} ∈ Rd, the convex hull of these
points is the minimal convex set containing V. It is the intersection
of all convex sets containing V. Equivalently, it is the set of points
x ∈ Rd satisfying

x =
k

∑
j=1

µi · v

µj ≥ 0 for j = 1, 2, . . . , k
k

∑
j=1

µj = 1 ,

for some µ1, . . . , µk ∈ R. The equations above describe a polytope
whose points are of the form (x1, . . . , xd, µ1, . . . , µk). Projecting this
polytope onto the variables x1, . . . , xd is a linear transformation, so
the convex hull is also a polytope.

Not every polytope is the convex hull of a finite set of points.
However, every bounded polytope is the convex hull of a finite set of
points.

Fact 12.6. A bounded polytope is the convex hull of its vertices.

The conical hull of the finite set V ⊆ Rd is the set of points that can
be obtained by non-negative linear combinations of the points in V. It
is the set of points x ∈ Rd satisfying

x =
k

∑
j=1

µi · v

µj ≥ 0 for j = 1, 2, . . . , k,

for some µ1, . . . , µk ∈ R. Again, Theorem 12.5 implies that the conical
hull of a finite set of points is a polytope.

Proof of Theorem 12.5. We can assume without loss of generality
that P has full dimension; otherwise restrict L to an affine subspace
containing P. We can also assume that k ≤ d; since the dimension of
the image of L is at most k.

If L is invertible, then the proof is straightforward. If P = {x :
Ax ≤ b}, then

L(P) = {y : AL−1y ≤ b},
so L(P) is also a polytope. In addition, the structure of the polytope
is preserved. There is a one-to-one correspondence between the faces

extension complexity of polytopes 251

We used singular value decomposition
to prove a lower bound for the gap-
Hamming problem in Chapter 5.

The projection of a polytope can
actually have a different number of
faces and facets than the original
polytope. Quantifying how much the
number of facets of a polytope can
increase under linear transformations is
one of the main goals of this chapter.

of P and the faces of L(P). Every face of F of P corresponds to the
face L(F) of L(P).

When L is not invertible, the theorem is more involved to prove.
Every matrix L has a singular value decomposition of the form
L = U · Λ · V, where U is an invertible k × k matrix with UUᵀ = I,
where V is an invertible d× d matrix with VVᵀ = I, and where Λ is a
k× d diagonal matrix.

Express Λ as Λ = DS, where D is a k× d diagonal matrix where
all non-zero entries are 1, and S is a d × d diagonal matrix where
all entries on the diagonal are non-zero. The matrix D defines a
projection. Thus, L = UDSV, where U, V and S are invertible.

In words, Lx can be computed by first applying an invertible
linear transformation SV, then projecting using D and then applying
another invertible linear transformation U.

Lemma 12.7. If D is a k× d projection matrix and P ⊆ Rd is a polytope,
then the projection D(P) is also a polytope. Moreover, every face of D(P) is
equal to D(F), for some face F ⊆ P.

The lemma suffices to complete the proof.

Proof of Lemma 12.7. We prove the lemma by induction. The lemma
follows from repeating a process called Fourier-Motzkin elimination.
It is enough to prove that the lemma holds when k = d− 1.

Suppose D projects a point (x1, . . . , xk, z) in P to x = (x1, . . . , xk).
The inequalities defining P can be scaled so that they are of three
types, according to the coefficient of z:

Ai · x ≤ bi, type 0.

Ai · x + z ≤ bi, type 1.

Ai · x− z ≤ bi. type −1.

We now define new inequalities that capture the projection D(P).
An inequality of type 0 induces the same inequality on x ∈ Rk. Every
two inequalities

Ai · x + z ≤ bi

and
Aj · x− z ≤ bj

of type 1 and −1 can be combined to give a single inequality by
addition:

(Ai + Aj) · x ≤ bi + bj.

If P was defined by n inequalities, we obtain at most n2 inequalities
in this way. Denote by Q the polytope defined by these inequalities.
We claim that D(P) = Q.

252 communication complexity

Figure 12.3: A projection of the cube.

One direction is straightforward. Every inequality we have derived
is satisfied by the elements of P. So, D(P) ⊆ Q. The other direction
is more challenging. Assume x ∈ Q. We need to show that there
is a choice of z such that (x, z) ∈ P. Let ` be an index maximizing
A` · x − b` over all inequalities of type −1. Set z = A` · x − b`. This
choice of z ensures that (x, z) satisfies all inequalities of type −1:

Aj · x− bj ≤ z⇒ Aj · x− z ≤ bj.

The point (x, z) also satisfies all inequalities of type 0, since these do
not involve z. Every inequality Ai · x + z ≤ bi of type 1 is also satisfied,
because

(Ai + A`) · x ≤ bi + b`
⇒ A` · x− b` + Ai · x ≤ bi

⇒ z + Ai · x ≤ bi.

It remains to argue about the faces of D(P). Suppose H ⊆ Rk is a
halfspace such that H ∩ D(P) is a face of D(P). Express H as the set of
points satisfying h · x ≤ c for some h ∈ Rk and c ∈ R. Let H′ ⊆ Rk+1

be the set of points (x, z) such that h · x ≤ c. The set H′ is a halfspace,
and D(H′) = H.

We need to verify that H′ ∩ P is a face of P. That is, to verify that
H′ ∩ P is contained in the boundary of P. Let v = (x, z) ∈ H′ ∩ P and

extension complexity of polytopes 253

Recall that P has full dimension.

1 Wikipedia, 2016a

Think of the variable xu,v as the flow
from u to v.

let ε > 0. This means that x = D(v) belongs to the face H ∩ D(P).
So, there is a point u 6∈ D(P) at distance at most ε from x. The point
(u, z) is not in P and its distance from v is at most ε as well.

Algorithms from Polytopes

Polytopes are also useful from the perspective of algorithm
design. Many interesting computational problems can be reduced to
the problem of optimizing a linear function over some polytope1.

Below we provide two examples. Suppose we wish to solve some
optimization problem, like finding the distance between two vertices
in a graph. To do so, we construct a polytope P and a linear function
L so that the maximum of L over P is precisely the quantity we are
interested in.

Shortest Paths

Finding the shortest path between two location is a central algorith-
mic problem with many applications. Say we want to compute the
distance between the two vertices 1 and n in an undirected graph
with vertex set [n]. We show how to encode this algorithmic problem
as a question about optimizing a linear function over a polytope. For
every pair of distinct vertices u, v ∈ [n], define the variable xu,v, and
define the graph polytope P by

xu,v ≥ 0 for every u 6= v flow is nonnegative

∑
w 6=1

x1,w = 1 flow out of 1 is 1

∑
w 6=n

xw,n = 1 flow into n is 1

∑
w 6=u

xu,w = ∑
w 6=u

xw,u for every u 6∈ {1, n} flow into an intermediate vertex is
equal to the flow coming out

These equations define a polytope in P ⊆ Rd, with d = n(n− 1). It has
at most d facets, since it is defined by d inequalities.

Now, given a connected graph G with edge set E, consider the
problem of finding the point in the graph polytope P that minimizes
the linear function

L(x) = ∑
{u,v}/∈E

n · (xu,v + xv,u) + ∑
{u,v}∈E

(xu,v + xv,u).

Claim 12.8. minx∈P L(x) is the distance from 1 to n in G.

Proof. Denote by e1, e2, . . . , e` the edges of a shortest path in the
graph. If we give the pairs along this path weight 1 and all other
pairs weight 0, we get a point x in the polytope with L(x) = `.

254 communication complexity

n

1

n

1

n

1

n

1

directed cycle

alternative path

n1

shortest path Figure 12.4: One can move the flow
from a point x to a chosen shortest path
without increasing L.

It remains to show that for each x ∈ P, we have L(x) ≥ `. Suppose
x ∈ P is such that xu,v > 0 for some pair (u, v) that is not on a
shortest path. If v 6∈ {1, n}, since the flow into v is equal to the flow
out of v, there must be a vertex w so that xv,w > 0. If w 6∈ {1, n}, we
can now deduce that there is a vertex z so that xw,z > 0, and so on.

We conclude that either

1. there is a directed path e′1, . . . , e′k from n to 1 where all edges get
positive flow,

2. there is a directed path e′1, . . . , e′k from 1 to n where all edges get
positive flow, or

3. there is a directed cycle e′1, . . . , e′k with positive flow as in Figure
12.4.

In the first case, the point x is not a minimizer of L. We can reduce
the flow along the path by a small amount, stay inside the polytope,
and reduce L.

In the second case, we can reduce the flow along e′1, . . . , e′k, and
increase the flow along e1, . . . , e` by the same amount. This gives a
new point in the polytope, and the value of L does not increase, since
k ≥ `.

In the third case, we can reduce the flow along the cycle and get a
new point in the polytope. This reduces the value of L.

These operations do not increase the value of L. They eventually
gives a point in P that only places weight on the edges e1, . . . , e`. The
value of L on such a point is `.

extension complexity of polytopes 255

2 Edmonds, 1965

Matchings

Finding a maximum matching in a graph is another important prob-
lem with many applications. We show that finding the maximum
matching can also be encoded as the problem of optimizing a linear
function over some polytope.

For every pair u, v ∈ [n] of distinct vertices we have the variable
x{u,v}. Each matching corresponds to a point x where x{u,v} = 1 if
u, v are matched and x{u,v} = 0 if they are not. The convex hull M of
these points is called the matching polytope. It can be defined by the
inequalities2:

x{u,v} ≥ 0 for all distinct u, v

∑
v 6=u

x{u,v} ≤ 1 for all u The number of edges touching u is at
most 1.

∑
u<v∈A

x{u,v} ≤
|A| − 1

2
for all A ⊆ [n] with |A| odd A set of odd size k can contain at most

b k
2 c edges.

This polytope has at most (n
2) + n + 2n−1 facets, and is contained in

R(n
2).
Given a graph with n vertices defined by the set of edges E, let

L(x) = ∑
{u,v}∈E

x{u,v} − ∑
{u,v}/∈E

x{u,v}.

Claim 12.9. maxx∈M L(x) is the size of the largest matching in the graph.

Proof. Let Z denote the set of binary vectors z ∈ R(n
2) that correspond

to matchings. Since M is the convex hull Z, we can write every
x ∈ M as x = ∑z∈T αz · z, where αz ≥ 0 for all z and ∑z∈Z αz = 1.
Thus, if x ∈ M maximizes L(x), then we have

L(x) = L

(
∑
z∈T

αz · z
)

= ∑
z∈T

αz · L(z).

So some z ∈ Z must also achieve the maximum L(z) = L(x).
Now, z must correspond to a valid matching of the graph, since

by the definition of L, if z contains an edge e that is not in the graph,
setting ze = 0 gives another point in the polytope whose value under
L is even larger.

There is a single polytope—the matching polytope—such that
every n-vertex graph defines a linear function whose maximum value
on the polytope is precisely the maximum size of a matching in the
graph.

Unfortunately, the matching polytope has an exponential number
of facets, so we cannot use linear programming to efficiently find the
size of the largest matching in polynomial time this way.

256 communication complexity

Figure 12.5: A polytope with 8 facets
that has an extension with 6 facets.
Watch an animation.

Extension Complexity

The complexity of solving optimization problems on polytopes
is related to the number of facets of the polytope. Therefore, it is
important to find polytopes that encode computational problems and
have a small number of facets.

A generic way to reduce the number of facets is via extensions. A
polytope Q ⊆ Rk is an extension of a polytope P ⊆ Rd if there is a
linear map L : Rk → Rd such that L(Q) = P. The extension complexity
of P is the minimum number of facets achieved by any extension of
P.

One can interpret this in terms of computational complexity as
follows. The cost of a polytope is the number of facets. A polytope Q
allows us to optimize over a polytope P if Q is an extension of P. The
complexity of P is the least cost of an extension Q of P.

There are many polytopes that admit non-trivial extensions—
extensions with fewer facets. See Figure 12.5 for an example. In term
of proving impossibility results, the following lower bound always
holds:

Claim 12.10. The extension complexity of a polytope with n faces is at least
log n.

Proof. Suppose Q is an extension of P. By Theorem 12.5, each face of
P corresponds to a face of Q. Each face of Q is the intersection of a
subset of the facets of Q. So if Q has k facets, P can have at most 2k

faces.

http://homes.cs.washington.edu/~anuprao/pubs/polytopes.mp4

extension complexity of polytopes 257

3 Fiorini et al., 2012

4 Kaibel and Pashkovich, 2013

We focus on the case that n is a power
of two.

Figure 12.6: An octagon can be built
with 3 reflections.

This lower bound is often too weak to be useful. Later on, we
develop tools for proving stronger lower bounds for specific cases.
First, we explore some natural examples of polytopes with small
extension complexity.

Regular Polygons

A polygon is a polytope in the plane R2. Consider polygons with
n facets. There are such polygons whose extension complexity is
at least Ω(

√
n).3 However, if the polygon is sufficiently symmetric,

then it has low extension complexity4. When the polygon is regular,
its extension complexity is O(log n). By Fact 12.10, the extension
complexity of an n-gon cannot be less than log n. So, up to a constant
factor, this is the best we can hope for.

The key idea is that one can mirror a polygon without increasing
its extension complexity by much. Consider any polygon P ⊆ R2

which is defined by P = {x : Ax ≤ b}. By applying a rotation and
a translation, we can assume that x1 ≤ 0 is an inequality defining a
facet of P. Define a polytope Q ⊆ R3 by replacing each inequality

Ai,1 · x1 + Ai,2 · x2 ≤ bi

of P with the inequality

Ai,1 · x3 + Ai,2 · x2 ≤ bi,

for Q, and add in the inequalities −x3 ≤ x1 ≤ x3 to Q. Let π be the
projection map defined by

π(x1, x2, x3) = (x1, x2).

The polygon π(Q) is the union of P and its reflection with respect to
the line x1 = 0.

The number of inequalities defining Q is only 2 more than the
number of inequalities defining P, but the number of facets of π(Q)

may be a factor of 2 larger than the number of facets of P!
We can now construct a regular polygon with n = 2k facets using

k = log n mirror operations. We start with an isosceles triangle P0

with one angle of 2π/n. Triangles have three facets. Mirror P0 to get
a kite P1. Mirror the kite P1 to get a hexagon P2. Keep going until the
full n-gon is constructed.

Permutahedron

For every permutation σ : [n] → [n], define the point pσ =

(σ(1), σ(2), . . . , σ(n)) ∈ Rn. The permutahedron is the convex hull
of these n! points. See Figure 12.7.

258 communication complexity

1234

1324

2134 1243

3124

3214

2314

1342

1432

1423

2413

2143

4123

4132

3142

4231

3241

2341

2431

3421

4321

4312

4213

3412

Figure 12.7: The permutahedron with
n = 4, projected into 3-space. Watch an
animation.

5 Rado, 1952

Claim 12.11. The dimension of the permutahedron is n− 1.

Proof. First, observe that the permutahedron lies in the hyperplane
∑n

i=1 xi = (n
2). So its dimension is at most n − 1. To see that the

dimension is at least n− 1, let id denote the identity permutation, and
let σ2, . . . , σn be the n− 1 permutations obtained by swapping 1 with
2, . . . , n:

σi(k) =

1 if k = i,

i if k = 1,

k otherwise.

The n− 1 points of the form pid − pσi are linearly independent, since
pid − pσi is the only such vector with a non-zero entry in the i’th
coordinate.

Although the permutahedron has n! vertices, it has much fewer
facets.5

Lemma 12.12. The permutahedron is the set of points satisfying the condi-
tions:

n

∑
i=1

xi =
n

∑
i=1

i =
(

n
2

)
, (12.1)

∑
i∈S

xi ≥
|S|
∑
i=1

i for all sets S ⊆ [n] with 0 < |S| < n. (12.2)

http://homes.cs.washington.edu/~anuprao/pubs/permutahedron.mp4

extension complexity of polytopes 259

The chain may be empty.

The facets of the permutahedron correspond to these 2n − 2 inequalities.

Proof. Let Q denote the polytope defined by the constraints. Every
permutation satisfies the constraints, so the permutahedron is con-
tained in Q. Here is the key claim for proving Q is contained in the
permutahedron.

Claim 12.13. Let x be a point in Q. The sets that correspond to constraints
in (12.2) that x satisfies with equality can be arranged as a chain: S1 ⊂
S2 ⊂ . . . ⊂ Sk. Moreover, if k < n− 1, then there is a permutation σ and
0 < ε < 1 such that the point y = 1

1−ε (x− ε · pσ) is in Q, and satisfies one
more equality in (12.2) than x.

Proof. Suppose x satisfies ∑i∈S xi = ∑
|S|
i=1 i and ∑i∈T xi = ∑

|T|
i=1 i, for

two distinct sets S, T. To prove the first part of the claim, we need to
show that either S ⊆ T or T ⊆ S. Otherwise,

∑
i∈S∪T

xi = ∑
i∈S

xi + ∑
i∈T

xi − ∑
i∈T∩S

xi

≤
|S|
∑
i=1

i +
|T|
∑
i=1

i−
|T∩S|
∑
i=1

i using the inequality for T ∩ S.

=
|S|
∑
i=1

i +
|T|
∑

i=|T∩S|+1
i <

|S∪T|
∑
i=1

i. since |T ∩ S| < |T| and |S| < |S ∪ T|.

This contradicts the constraint for S ∪ T.
Now, assume k < n− 1. Let σ be an arbitrary permutation with

σ(Sj) = Sj for j = 1, 2, . . . , k. The point pσ also satisfies the same
equations in (12.2) as x, but it satisfies n− 1 equations with equality,
so x 6= pσ. Consider the point y = 1

1−ε (x− εpσ) for a small ε > 0 to be
determined.

Choose ε to be the largest number so that y satisfies all inequalities
in (12.2). This is well defined, since y is in Q when ε = 0, and y will
certainly leave Q before ε = 1. We claim that y must satisfy one more
equation with equality. For the inequalities in the chain, we have

∑
i∈Sj

yi =
1

1−ε (1− ε) ∑
i∈|Sj |

i.

By the choice of ε, some other equation must have become tight. So,
the point y satisfies one more equation with equality than x.

We now show that each x ∈ Q is in the permutahedron. Af-
ter we have applied the claim n times, we get a point of the form
y = c (x−∑σ ασ pσ) that is in Q, and satisfies n − 1 equalities that
correspond to the chain S1 ⊂ · · · ⊂ Sn−1, where c and the ασ’s are
positive numbers. The point y must be of the form y = pπ for some
permutation π—the permutation π is the unique permutation so

260 communication complexity

6 Goemans, 2015

The polytope Q is sometimes called
the Birkhoff polytope or the bipartite
perfect matching polytope.

that π(Sj) = Sj for all j ∈ [n]. We see that x = 1
c pπ + ∑σ ασ pσ. Fi-

nally, since x and all points of the form pσ satisfy (12.1), we see that
1
c + ∑σ ασ = 1. This means that x is in the permutahedron.

To see that each of the inequalities gives a facet, fix a set S ⊂ [n]
with 0 < |S| < n. For simplicity, suppose S = [t]. Denote by QS the
set of points in Q that satisfies ∑i∈S xi = ∑

|S|
i=1 i. Let pid = (1, 2, . . . , n)

be the identity permutation. For i = 2, 3, . . . , t, t + 2, t + 3, . . . , n, define
σi to be the permutation that swaps i with 1 if i ≤ t, or swaps i with
t + 1 if i > t. That is,

σi(k) =

1 if i ≤ t, k = i,

i if i ≤ t, k = 1

t + 1 if i > t, k = i,

i if i > t, k = t + 1,

k otherwise.

The n − 2 points pσi − pid are linearly independent. Each of these
points belongs to the face. Thus, the face QS has dimension n− 2, and
so must be a facet.

It remains to prove that all of these facets are different. Let S and
T be distinct sets. It suffices to show that the dimension of QS ∩QT is
less than n− 2. The difference between every two points in QS ∩ QT

is orthogonal to the three characteristic vectors χS, χT and χ[n] of the
three sets S, T and [n]. If the three vectors are linearly independent,
then QS ∩ QT indeed has dimension at most n − 3. Otherwise, it
must be the case that T is the complement of S. This implies that
QS ∩QT = ∅, since ∑

|S|
i=1 i + ∑

|T|
i=1 i 6= ∑n

i=1 i.

Although the permutahedron has 2n − 2 facets, it is known6 that its
extension complexity is O(n log n). This bound is tight. The polytope
has n! = 2Ω(n log n) vertices. So, its extension complexity is at least
Ω(n log n) by Fact 12.10.

Here we show that its extension complexity is at most n2. Let Q be
the polytope of all n× n doubly stochastic matrices. Namely, Q is the
set of all n× n matrices with non-negative entries so that the sum of
the entries in each row is 1 and the sum of the entries in each column
is 1.

Claim 12.14. The polytope Q is an extension of the permutahedron.

The polytope Q is defined by n2 + 2n inequalities. The claim
implies that the extension complexity of the permutahedron is at
most O(n2).

extension complexity of polytopes 261

Yσ
i,j = 1 if and only if σ(i) = j.

011

111
101

110

100

001

010

000

Figure 12.8: A separating polytope for
the AND function. Watch an animation.

011

111

101
110

100

001
010

000

Figure 12.9: A separating polytope for
the parity function: x1 + x2 + x3 mod 2.
Watch an animation.

Proof. Let v be the n × 1 vector (1, 2, . . . , n). Define the linear map
L(Y) = Yv where Y is an n × n matrix. We claim that L(Q) is the
permutahedron.

Each permutation σ corresponds to a boolean permutation matrix
Yσ ∈ Q. Since pσ = Yσv, every element of the permutahedron can be
realized as Yv for some Y ∈ Q. This proves that the permutahedron is
contained in L(Q).

To prove that L(Q) is contained in the permutahedron, use
Lemma 12.12. For each Y ∈ Q,

n

∑
i=1

(Yv)i =
n

∑
i=1

n

∑
j=1

Yi,j · j =
n

∑
j=1

j.

So, points in L(Q) satisfy (12.1). In addition, for each set S ⊆ [n] with
0 < |S| = k < n,

∑
i∈S

(Yv)i =
n

∑
j=1

αj · j,

with αj = ∑i∈S Yi,j. For all j ∈ [n],

0 ≤ αj ≤
n

∑
i=1

Yi,j ≤ 1,

and
n

∑
j=1

αj = ∑
i∈S

n

∑
j=1

Yi,j = k.

Under these constraints, the vector (α1, . . . , αn) that minimizes
∑n

j=1 αj · j has α1 = . . . = αk = 1 and αk+1 = . . . = αn = 0. So,
points in L(Q) satisfy (12.2) as well.

Polytopes from Boolean Circuits

The connection between polytopes and algorithms goes both ways.
Efficient algorithms also lead to efficient ways to represent poly-
topes. To explain this connection, we need the concept of a separating
polytope.

Given a boolean function f : {0, 1}n → {0, 1}, a polytope P ⊆ Rn is
separating for f if f (x) = 1 if and only if x ∈ P.

Lemma 12.15. If f can be computed by a circuit with s gates, then there is a
separating polytope for f with extension complexity at most O(s).

Proof. Consider the polytope P defined from the circuit by the fol-
lowing constraints. Let v1, . . . , vn be variables that correspond to
the n inputs to f . For every intermediate gate g in the circuit, let vg

http://homes.cs.washington.edu/~anuprao/pubs/andfunctiontope.mp4
http://homes.cs.washington.edu/~anuprao/pubs/parityfunctiontope.mp4

262 communication complexity

be a variable. All variables take values in [0, 1]. If g = ¬h, add the
constraint

vg = 1− vh.

If g = h ∨ r, add the constraints

vg ≥ vh,

vg ≥ vr,

vg ≤ vh + vr.

If g = h ∧ r, add the constraints

vg ≤ vh,

vg ≤ vr,

vg ≥ vh + vr − 1.

Finally, add the constraint vr = 1, where r is the output gate comput-
ing f .

The constraints, except the final one, ensure that whenever
v1, . . . , vn ∈ {0, 1}, the value of vg is boolean and is equal to the
value of the corresponding gate in the circuit on input (v1, . . . , vn).

When this polytope is projected onto the inputs, we obtain a poly-
tope P that we claim separates f . Indeed, let x ∈ {0, 1}n. If f (x) = 1,
then x ∈ P, since we can assign all of the variables the values com-
puted in the circuit, and these values satisfy the constraints. On
the other hand, if f (x) = 0, then there is no way to satisfy all the
constraints, so x is not in the polytope.

Slack Matrices

The main tool for understanding extension complexity is the
concept of a slack matrix. A slack matrix of a polytope P ⊂ Rd is a
matrix that captures key geometric properties of the polytope. It is
defined with respect to an n× d matrix A and an n× 1 vector b such
that P is contained in the polytope {x : Ax ≤ b}, and with respect to
a finite set of points V = {v1, . . . , vk} ⊆ P.

Definition 12.16. The slack matrix of the polytope with respect to A, b, V
is the n× k matrix S with

Si,j = bi − Ai · vj

where Ai is the i’th row of A.

The slack matrix is a non-negative matrix. All of its entries are
non-negative, since by assumptions on A, b, V, we always have

extension complexity of polytopes 263

a

b

c

d

e
f

g

h

Figure 12.10: A numbering of the facets
and vertices of the 1× 1× 1 cube.

The slack matrix corresponding to
Figure 12.10:

a b c d e f g h

1 0 0 0 0 1 1 1 1
2 0 1 1 0 0 1 1 0
3 1 1 1 1 0 0 0 0
4 1 0 0 1 1 0 0 1
5 0 0 1 1 0 0 1 1
6 1 1 0 0 1 1 0 0

7 Yannakakis, 1991

Represent L as a d× ` matrix.

Aivj ≤ bi. If all the rows of A are normalized to have length 1,
then Si,j is the distance of vj from the hyperplane defined by Ai, bi. It
is the slack of the j’th point from the i’th inequality.

A single polytope can have many different slack matrices, depend-
ing on the choice of A, b, V. The extension complexity of a polytope
P is determined by its slack matrices7. It is characterized by the
maximum non-negative rank of a slack matrix.

Theorem 12.17. If P has extension complexity r, then every slack matrix of
P has non-negative rank at most r + 1. Conversely, suppose

P ⊆ {x : Ax ≤ b}

is the convex hull of a finite set V. Suppose the slack matrix of P correspond-
ing to A, b, V has non-negative rank r, then P has extension complexity at
most r.

The theorem gives a powerful way to prove both upper and lower
bounds on extension complexity. The lower bounds are usually
proved using ideas inspired by communication complexity.

Proof. First, suppose the extension complexity of P ⊂ Rd is r. There
is a polytope Q ⊆ R` with r facets, and a linear transformation L
such that P = L(Q). Without loss of generality, possibly by modify-
ing L, we can assume that Q has full dimension.

By Fact 12.3, the polytope Q can be expressed as

Q = {x : Cx ≤ e},

where C is an r× ` matrix, and e is an r× 1 vector. Thus

P = {Lx : Cx ≤ e}.

264 communication complexity

Now, let S be the n× k slack matrix of P with respect to some A, b and
V = {v1, . . . , vk}. For j ∈ [k], let wj ∈ Q be such that Lwj = vj.

For each i ∈ [n], since Ai, bi give a valid inequality for P, we have
AiLx ≤ bi for x ∈ Q. By Fact 12.1, this inequality can be proved by
the inequalities defining Q—there is a non-negative 1× r vector ui

such that

uiC = AiL

and

bi = uie + αi,

with αi ≥ 0. Then we have

Si,j = bi − Aivj = uie + αi − uiCwj = ui(e− Cwj) + αi.

This representation of the entries of S allows us to give an upper
bound on the non-negative rank of S. Let U be the n× (r + 1) non-
negative matrix whose i’th row is[

ui αi

]
.

Let W be the (r + 1)× k non-negative matrix whose j’th column is[
e− Cwj

1

]
. Cwj ≤ e, since wj ∈ Q.

Since S = UW, the non-negative rank of S is at most r + 1.
Conversely, let P be the convex hull of V = {v1, . . . , vk}. Suppose

the slack matrix corresponding to A, b, V can be expressed as S =

UW, where U has r columns and W has r rows, both with non-
negative entries. Consider the polytope

Q = {(x, y) : Ax + Uy = b, y ≥ 0} ⊂ Rd+r.

It has at most r facets.
We claim that P equal to the projection of Q to the first d coor-

dinates, proving that it has extension complexity at most r. The
projection of Q is contained in P, since b = Ax + Uy ≥ Ax for all
(x, y) ∈ Q. It remains to show that P is contained in the projection of
Q. It is enough to prove that V is contained in the projection. Each
vj ∈ V corresponds to the column Wj of W. The column of S that
corresponds to vj is UWj = b− Avj. So,

Avj + UWj = b.

This means that vj is in the projection of Q, since UWj ≥ 0. We
conclude that P is equal to the projection of Q.

extension complexity of polytopes 265

A tree is a connected acyclic graph.

8 Edmonds, 1971

S

a

T

Figure 12.11: The slack of the pair S, T
is the number of edges leaving S. In
this case, the slack is 4.

An Upper Bound on Extension Complexity

The characterization of extension complexity by non-negative rank
gives a way to bound the extension complexity of some interesting
polytopes from above. Here is an example.

The spanning tree polytope is the convex hull of all trees over
the vertex set [n]. There is a variable xe for every potential edge
e = {u, v}. Every tree gives a point x in R(n

2) by setting xe = 1 if e is
an edge of the tree, and 0 otherwise. The spanning tree polytope is
the convex hull of all of these points.

The facets of the spanning tree polytope correspond8 to the in-
equalities:

∑
e

xe = n− 1,

∑
e⊆S

xe ≤ |S| − 1 for every non-empty S ⊆ [n]. The number of edges in any set of
vertices is at most its size minus 1.

Each vertex corresponds to a spanning tree T. Each facet of the
polytope corresponds to a subset S ⊆ [n]. The slack of the pair S, T
is exactly |S| − 1− k, where k is the number of edges of T that are
contained in S. If we direct all edges in T towards some fixed a ∈ S,
the slack is the number of children in S whose parents are not in S.

Motivated by this observation, we show that the slack matrix has
small non-negative rank. For every tree T, define the vector w = w(T)
in R(n

3) as follows. For distinct a, b, c ∈ [n], set

wa,b,c =

1 b is the parent of c when T is rooted at a,

0 otherwise.

For every set S, define the vector u by

ua,b,c =

1 a = min S, and b /∈ S, and c ∈ S,

0 otherwise.

The number ∑a,b,c ua,b,cwa,b,c is exactly the slack of the vertex of T
from the facet of S.

This means that we can express the slack matrix as a product of a
matrix with (n

3) columns and a matrix with (n
3) rows. In other words,

the non-negative rank of the slack matrix is at most (n
3). By Theo-

rem 12.17, the extension complexity of the spanning tree polytope is
at most (n

3).

Circuit Complexity

We conclude this section with an application to circuit complexity.
Recall the connection between circuit complexity and extension

266 communication complexity

9 Hrubeš, 2016

A −n correction term is necessary—see
Exercise 12.6.

complexity described in Lemma 12.15. Here we show how this
connection translates lower bounds on non-negative rank to circuit
lower bounds.9

For f : {0, 1}n → {0, 1}, consider the | f−1(0)| × | f−1(1)| matrix Mε

whose entries are indexed by inputs x ∈ f−1(0) and y ∈ f−1(1), and
whose (x, y)’th entry is

Mε
x,y = ∆(x, y)− ε,

where ∆(x, y) is the Hamming distance between x, y. If ε ≤ 1, the
entries of Mε are non-negative.

Theorem 12.18. For every f : {0, 1}n → {0, 1}, there is ε = ε f > 0 so
that the extension complexity of every separating polytope for f is at least
rank+(Mε)− 1− 2n.

The extension complexity of a separating polytope for f is at most
linear in the circuit complexity of f . So, the number min{rank+(Mε) :
0 < ε ≤ 1} is a lower bound on the circuit complexity of f .

Proof. Let P0 be a separating polytope for f with minimum extension
complexity. That is, f−1(1) ⊆ P0 and f−1(0) ∩ P0 = ∅. Let P be the
intersection of P0 with the cube [0, 1]n. Since the cube can be defined
with 2n inequalities, the extension complexity of P is at most 2n plus
that of P0.

Consider some x ∈ f−1(0). Extend the Hamming distance from x
to all of the cube [0, 1]n by

hx(v) =
n

∑
i=1

(1− xi)vi + xi(1− vi),

for v ∈ [0, 1]n. This is an affine function in v, and hx(v) = 0 for
v ∈ [0, 1]n if and only if x = v. Since x 6∈ P, there is εx > 0 so that for
all v ∈ P we have hx(v) > εx.

Let
ε = min{εx : x ∈ f−1(0)}.

For each x ∈ f−1(0) and v ∈ P we have hx(v) > ε. We have obtained
| f−1(0)| inequalities that all points in P satisfy. The matrix Mε is
the slack matrix of P with respect to these inequalities and the set
of points f−1(1). Theorem 12.17 implies that rank+(Mε) is at most 1
plus the extension complexity of P.

Lower Bounds on Extension Complexity

The highlight of this chapter is proving lower bounds on
extension complexity. We present a couple of examples. Our main
tools are the information theoretic techniques discussed in Chapter 6.

extension complexity of polytopes 267

The name correlation polytope stems
from its connection to probability
theory.

A vertex of the correlation polytope
with n = 5 and A = {1, 3, 5}:

∈A ∈A ∈A

∈A 1
0 0

∈A 1 0 1
0 0 0 0

∈A 1 0 1 0 1

The facets of C are hard to determine.
No explicit expression is known to
capture them.

The Correlation Polytope

The correlation polytope Cn is the convex hull of cliques. There are
n + (n

2) = (n+1
2) variables of the form xT for T ⊂ [n] of size 1 or 2. For

every A ⊆ [n], define the point

xA
T =

1 if T ⊆ A,

0 otherwise.

The correlation polytope is the convex hull of these 2n points. Each
point of the correlation polytope can be thought of as a lower trian-
gular matrix whose rows and columns are labelled by elements of [n].

Claim 12.19. The polytope C = Cn has full dimension (n+1
2).

Proof. Let A = {v0 + v : v ∈ V} be an affine subspace of minimum
dimension containing C. The origin is in C. For every i ∈ [n], the
linear space V contains the vector x{i}. For every two distinct i, j ∈
[n], the linear space V contains the vector x{i,j} + x{i} − x{j}. These
(n+1

2) vectors are linearly independent.

Ideas from communication complexity can be used to prove a
strong lower bound on the extension complexity of the correlation
polytope.

Theorem 12.20. The extension complexity of Cn is at least 2Ω(n).

The proof harnesses the characterization of extension complexity
by non-negative rank. It exploits a specific slack matrix of C. Con-
sider the inequalities:

∑
i∈B

x{i} ≤ 1 + ∑
T∈(B

2)

xT for all non-empty B ⊆ [n].

For each xA, the inequalities hold—for a specific B, the left hand side
is exactly |A ∩ B|, and the right hand side is exactly 1 + (|A∩B|

2). So, it
is a valid inequality for all the points of Cn.

Consider the slack matrix S for Cn that correspond to these in-
equalities, and the points of the form xA. The matrix S, in some
locations, is the disjointness matrix. We see that SA,B = 0 when
A and B intersect in one element, and SA,B is 1 when A and B are
disjoint.

To prove Theorem 12.20, it suffices to show that the the non-
negative rank of S is high. The lower bound is proved, actually, for all
2n × 2n non-negative matrices A so that

Ax,y

= 1 if x, y are disjoint,

≤ 1− δ if |x ∩ y| = 1,
(12.3)

268 communication complexity

If the entries corresponding to inter-
secting sets are allowed to be larger
than the entries corresponding to dis-
joint sets, the matrix may have small
non-negative rank. For example, the
matrix defined by Sx,y = |x ∩ y|+ 1 has
non-negative rank at most n + 1. This
shows that for δ ≤ 0, the non-negative
rank of S can be quite small.

When δ < 1, Theorem 12.21 corre-
sponds to proving a lower bound on the
extension complexity of any polytope
approximating the correlation polytope.

10 Göös and Watson, 2014

q(xy|m) is a product distribution, since
Am has non-negative rank 1.

for some 0 ≤ δ ≤ 1. This a rich collection of matrices that contains S
as a special case.

Theorem 12.21. If A is a non-negative matrix satisfying (12.3) then
rank+(A) ≥ 2Ω(δ4n).

The proof of the theorem is an adaptation of the lower bound
for the randomized communication complexity of disjointness. A
slight modification of the proof10 allows to improve the lower bound
to 2Ω(δn).

Proof. Consider the distribution on x, y given by

q(xy) =
Ax,y

∑a,b Aa,b
.

If A has non-negative rank r, then M = ∑r
m=1 Am, where each Am is

a non-negative rank 1 matrix. In other words, q(xy) can be expressed
as a convex combination of r product distributions, by setting

q(xy|m) =
(Mm)x,y

∑a,b(Am)a,b
,

and

q(m) =
∑a,b(Am)a,b

∑a,b Aa,b
.

Let X, Y, M be jointly sampled according to q. Let D denote the event
that the sets X, Y are disjoint. The key step is to prove that for every
i ∈ [n],

I(Xi : M|X<i, Y≥i,D) + I(Yi : M|X≤i, Y>iD) ≥ Ω(δ4) (12.4)

Before proving (12.4), we show how to use it. Since Mx,y = 1 for
disjoint sets x, y, we know that q(xy|D) is the uniform distribution
on all pairs of disjoint sets. In particular, conditioned on D, the
coordinates (X1, Y1), . . . , (Xn, Yn) are independent. By Lemma 6.19,
we get that

2 log r ≥
n

∑
i=1

I(Xi : M|X<i, Y≥i,D) + I(Yi : M|X≤i, Y>i,D)

≥ Ω(δ4n).

This completes the proof.
It remains to prove (12.4). Fix i ∈ [n]. Denote by γ the number that

satisfies

I(Xi : M|X<i, Y≥i,D) + I(Yi : M|X≤i, Y>iD) = 2
3 · γ4.

Let Z = (M, X<i, Y>i). Let U denote the event that X ∩ Y ⊆ {i}.
Let p(xym) = q(xym|U). For every value z that Z may obtain, let

extension complexity of polytopes 269

αz denote the statistical distance of p(xiyi|z) from the uniform on
{0, 1}2. Let G denote the event that αz ≤ 2γ. Let Q denote the event
i /∈ X, i /∈ Y.

The main claim is that the probability of G conditioned on Q is
high.

Claim 12.22. p(G|Q) ≥ 1− 4γ.

Before proving the claim, we use it to complete the proof. Let I
denote the event that i ∈ X, i ∈ Y. Whenever αz ≤ 2γ,

p(I , Z = z)
p(Q, Z = z)

≥ 1/4− 2γ

1/4 + 2γ
=

1− 8γ

1 + 8γ
.

So, we have

p(I) ≥ p(I ,G) ≥ 1− 8γ

1 + 8γ
· p(Q,G).

Using Claim 12.22, we can conclude

p(I) ≥ 1− 8γ

1 + 8γ
· (1− 4γ) · p(Q) = (1−O(γ)) · p(Q).

Equation (12.3) implies that p(I) ≤ (1− δ) · p(Q). So, we must have
γ ≥ Ω(δ).

Proof of Claim 12.22. Let βz denote the statistical distance of p(xi|z)
from the uniform distribution on {0, 1}. We collect some data that
allows to upper bound the expected value of βz. By definition of γ,
since conditioning on D induces the uniform distribution on disjoint
sets,

2
3 · I(Xi : M|X<i, Y>i, Yi = 0,D) ≤ I(Xi : M|X<i, Y≥i,D) ≤ 2

3 · γ4.

The distribution of Xi conditioned on the value of X<i, Y>i and on
Yi = 0,D is uniform in {0, 1}. The distribution p(z|yi = 0) is identical
to q(z|yi = 0,D). Convexity and Pinsker’s inequality (Lemma ??)
thus imply

E
p(z|yi=0)

[βz] ≤
√

E
p(z|yi=0)

[β2
z] ≤

√
γ4 = γ2.

Now, Markov’s inequality implies

γ > p(βz > γ|yi = 0)

≥ p(xi = 0|yi = 0) · p(βz > γ|xi = 0 = yi)

=
p(βz > γ|xi = 0 = yi)

2
.

So,
p(βz > γ|xi = 0 = yi) ≤ 2γ.

270 communication complexity

11 Rothvoß, 2014

We use this notation here since it is
more convenient later on.

A symmetric argument proves that the probability that the sta-
tistical distance of p(yi|z) from uniform exceeds γ is less than 2γ.
Finally, as in the final step of the proof of Claim 6.20, we can apply
Lemma 6.21 and the union bound to complete the proof.

The Matching Polytope

The matching polytope Mn is the convex hull of all matchings in a
graph on n vertices. Its (n

2) coordinates are labelled by subsets e of [n]
of size two. Here we prove that its extension complexity is high.11

Theorem 12.23. The extension complexity of Mn is at least 2Ω(n).

The proof of the theorem is similar, at a high level, to the proof
for the correlation polytope we saw earlier. The matching polytope,
however, introduces some new difficulties.

We start by identifying the relevant slack matrix. For a point
z ∈ R(n

2), consider the set of inequalities:

∑
e∈(x

2)

ze ≤
|x| − 1

2
for all x ⊆ [n] with |x| odd.

These inequalities hold for every matching z, because the number
of edges from z contained in a set x is an integer and at most |X|/2.

Now, suppose n is even. Let S be the slack matrix that corresponds
to the inequalities defined above and the set of points in Mn that
correspond to perfect matchings, namely matchings of size n/2.
Theorem 12.17 tells us that in order to prove Theorem 12.23 it suffices
to bound the non-negative rank of S from below.

Lemma 12.24. rank+(S) ≥ 2Ω(n).

Once again, the proof of the lemma closely follows the ideas from
the lower bound on the randomized communication complexity of
disjointness.

Proof. The rows of S correspond to sets x of odd size, and the column
to perfect matchings y. Consider the distribution on (x, y) given by

q(xy) =
Sx,y

∑i,j Si,j

If S has non-negative rank r, then q(xy) can be expressed as a convex
combination of r product distributions. There is a distribution q(m)

on [r], and for each m ∈ [r], there is a product distribution q(xy|m) on
(x, y), so that

q(xy) =
r

∑
m=1

q(m) · q(xy|m).

extension complexity of polytopes 271

W
AC B1

Y

B2 B3 B4 B5 B6

X

Figure 12.12: An example of A,W , F
when n = 6, and X, Y conditioned on
D.

The set of edge yi may be empty.

It is convenient to work with 4n + 6 vertices. LetW be a fixed
subset of half the vertices. Let A be a fixed perfect matching that
matchesW to its complement. Let F = (C, B1, . . . , Bn) be a uniformly
random partition ofW such that |C| = 3, and |Bi| = 2 for each i. Let
Ai denote the set of two edges of A that touch Bi.

We say that a set x is consistent with F if C ⊆ x ⊆ W , and xi =

x ∩ Bi is not of size 1 for each i. We say that a perfect matching y is
consistent with F if y contains the 3 edges of A cut by C, and for each
i, either Ai ⊆ y, or y matches Bi to itself and matches the neighbors of
Bi under Ai to themselves. We denote by yi the edges of y contained
in Ai.

Let X, Y, M be sampled according to the distribution q, indepen-
dently of F. Let D denote the event that (X, Y) are consistent with
F, and for every i, the set Xi does not cut the edges of Yi. See Figure
12.12 for an illustration.

We show below that for each i,

I(Xi : M|X<iY≥iFD) + I(Yi : M|X≤iY>iFD) ≥ Ω(1). (12.5)

This completes the proof. Conditioned on D, for each fixing of F, the
pairs

(X1, Y1), . . . , (Xn, Yn)

are independent. Lemma 6.19 implies

2 log r ≥
n

∑
i=1

I(Xi : M|X<iY≥iFD) + I(Yi : M|X≤iY>iFD) M is supported on r elements.

≥ Ω(n). by (12.5)

272 communication complexity

Conditioned on the value of Z, to
define F we need to partition 5 vertices
to two sets—C of size 3 and Bi of size 2.

Every vertex in x touches either one
of the k edges leaving x or one of the
edges staying within x.

If Yi 6= Ai then Yi = ∅. If Xi 6= ∅ then
Xi = Bi .

Thus, r ≥ 2Ω(n) as required.
It remains to prove (12.5). Fix i for the rest of the proof. Let U

denote the event that X, Y are consistent with F, and for each j 6= i,
the edges of Yj are not cut by Xj. So D implies U , but under U the
edges of Yi may be cut by Xi. Let Z denote the random variable
Z = (X<i, Y>i, B<i, B>i). In fact, we prove the stronger statement that
for each fixing Z = z, we have γ ≥ Ω(1) where

γ4/2 = I(Xi : M|YiCzD) + I(Yi : M|XiCzD).

Fix z for the rest of the proof. Let q(xycm) be the distribution of
X, Y, C, M described above. Let

p(xycm) = q(xycm|zU).

Given c, m, the distribution p(xiyi|cm) is supported on four possible
values. Let αcm denote the distance of this distribution from the
uniform distribution on these four values. Call a pair (c, m) good if
αcm ≤ γ. Denote by G the set of good pairs. Let Q denote the event
that Xi = ∅, Yi 6= Ai. Let I denote the event that Xi 6= ∅, Yi = Ai.

The following two claims are enough to complete the proof. The
first is analogous to Claim 12.22 in the proof of Theorem 12.21. The
second claim uses the combinatorial structure of matchings to deduce
a property of good pairs.

Claim 12.25. p((C, M) ∈ G|Q) ≥ 1− 4γ.

Claim 12.26. For any value of m, we have |{c : (c, m) ∈ G}| ≤ 4.

Let us see how to use the claims to complete the proof. First,
we need to understand the distribution p(xiyi). If x is a set of odd
size, and y is a perfect matching with k edges that go from x to its
complement, then

|x| = k + 2 · ∑
e∈(x

2)

ye.

The slack Sx,y is exactly

Sx,y =
|x| − 1

2
− ∑

e∈(x
2)

ye =
k− 1

2
. (12.6)

Let L = (C, X<i, X>i, Y<i, Y>i). For every fixing of L, the distribution
of X, Y under p is determined by a 2× 2 submatrix of S of the form

[Yi 6=Ai Yi=Ai

Xi=∅ 1 1
Xi 6=∅ 1 2

]
. (12.7)

extension complexity of polytopes 273

The slack is either 1 = (3− 1)/2 or 2 = (5− 1)/2. It is 1 if only the 3
edges that go out of C are cut by X. It is 2 if the 3 edges from C and
the 2 edges from Bi are cut by X.

Here lies a crucial difficultly in the proof. In the disjointness ma-
trix, used in the proof of Theorem 12.21, the corresponding submatrix
is of the form

[Yi=0 Yi=1

Xi=0 1 1
Xi=1 1 1− δ

]
.

In that case, we showed that there are many M’s where the entry
corresponding to Xi = 1 = Yi gets as much weight as the entry
corresponding to Xi = 0 = Yi. This leads to a contradiction. For the
matching polytope, the entry corresponding to intersections is larger
than the entries corresponding to disjoint sets. It is not clear how to
derive a contradiction.

In fact, it seems that there is a counterexample to our efforts.
Consider the matrix T whose entries are indexed by u, v ∈ {0, 1}n

defined by Tu,v = 〈u, v〉+ 1. The matrix T has non-negative rank at
most n + 1. Nevertheless, it has the same local structure as in (12.7).
The freedom to choose C, and Claim 12.26 allow us to avoid this
counterexample. In a nutshell, we partition the weight of the 2 entry
into many parts. This effectively replaces the 2 by a number smaller
than 1.

Whenever (c, m) ∈ G, we have that p(xiyi|cm) is γ-close to uniform.
So,

p(I , c, m)

p(Q, c, m)
≥ 1/4− 2γ

1/4 + 2γ
=

1− 8γ

1 + 8γ
. (12.8)

Therefore,

p(I) = ∑
m

p(I , m) ≥ 1
4
· ∑
(c,m)∈G

p(I , m) by Claim 12.26.

=
(5

3)

4
· ∑
(c,m)∈G

p(I , m) · p(c|I , m) since given Xi 6= ∅, Yi = Ai , m, the con-
ditional distribution on c is uniform.

≥ 5
2
· 1− 8γ

1 + 8γ
· ∑
(c,m)∈G

p(Q, c, m) by (12.8).

≥ 5
2
· 1− 8γ

1 + 8γ
· (1− 4γ) · p(Q). by Claim 12.25.

By (12.7), we have p(I) ≤ 2 · p(Q). Since 5/2 > 2, we must have
γ ≥ Ω(1).

Finally, we turn to proving each of the two claims.

274 communication complexity

c c0
X

Y

Figure 12.13: Two values of c that
intersect in only one element. The set x
is consistent with c, and the matching y
is consistent with c′.

c1

c2

c3

Figure 12.14: If c1, c2, c3 are three sets
whose union is of size 5, and pairwise
intersections are of size 2, there is
no other set that can be added to the
collection while keeping the pairwise
intersection of size 2.

Recall

γ4/2 = I(Xi : M|YiCzD) + I(Yi : M|XiCzD)
and that D is the event that (X, Y) are
consistent with the partition F, and for
each i, the set Xi does not cut the edges
of Yi .

Proof of Claim 12.26. Fix m. The set c is a subset of size 3 in a universe
of size 5. We claim that if c1 and c2 are two sets with |c1 ∩ c2| ≤ 1, then
we cannot have (c1, m) ∈ G and (c2, m) ∈ G. Indeed, assume towards
a contradiction that (c1, m), (c2, m) ∈ G, as in Figure 12.13. Since
αcm ≤ γ < 1/2, we know that p(Xi = ∅|cm) > 0. The x shown in
Figure 12.13 has positive probability conditioned on m. Similarly, the
edges y shown in Figure 12.13 have positive probability conditioned
on m. However, since Xi, Yi are independent conditioned on m, both
have positive probability conditioned on m. But this cannot happen,
since this configuration corresponds to an entry of S that is 0. So it
has 0 probability in p.

This means that all of the sets c, c′ that are in G must intersect in
at least 2 elements. We claim that there can be at most 4 such sets.
Indeed, take any two sets c1 6= c2 in such a family. Assume without
loss of generality that c1 = {1, 2, 3} and c2 = {1, 2, 4}. If every other
subset c3 is contained in [4], then indeed there are at most (4

3) = 4
sets. Otherwise, there is a set c3 such that 5 ∈ c3. Then {1, 2} ⊂ c3,
otherwise c3 cannot share two elements with each of c1, c2. Now, if
there is a forth set c4 in the family then c4 cannot include both 1, 2,
since then it will be equal to c1, c2 or c3. But if c4 includes only one
of the elements of {1, 2}, it will intersect one of c1, c2, c3 in just one
element, a contradiction.

Proof of Claim 12.25. Since both q(Yi 6= Ai|zD) and q(Xi = ∅|zD) are
at least 1

2 , we get

I(Xi : M|CzD, Yi 6= Ai) + I(Yi : M|CzD, Xi = ∅) ≤ γ4.

Since the events Xi = ∅ and U together imply D,

p(xycm|Xi = ∅) = q(xycm|zD, Xi = ∅).

The distribution p(xi|czD, Yi 6= Ai) is uniform on a universe of size
2—see (12.7). Let βcm denote the statistical distance of p(xi|cm) from

extension complexity of polytopes 275

uniform. By convexity and Pinsker’s inequality (Corollary 6.13),

E
p(cm|Xi=∅)

[βcm] ≤
√

E
p(cm|Xi=∅)

[β2
cm] ≤

√
γ4 ≤ γ2.

By Markov’s inequality, p(βcm > γ|Xi = ∅) < γ. So

p(βcm > γ|Xi = ∅, Yi 6= Ai) ≤
p(βcm > γ|Xi = ∅)

p(Yi 6= Ai|Xi = ∅)
≤ 2γ.

A symmetric argument proves that the statistical distance of p(yi|cm)

from uniform is at most γ except with probability 2γ. The distribu-
tion p(xiyi|cm) is a product distribution. Lemma 6.21 and the union
bound complete the proof.

Exercises

Ex 12.1 — Let P = {x : Ax ≤ 0} be a non empty polytope that is
contained in the halfspace H = {x : hx ≤ c}.
1.Prove that if K is the conical hull of finitely many points, and x is

a point outside K, then there is a hyperplane separating x and K.
Namely, x lies on one side of the hyperplane, and K on the other
side (except the origin).

2.Let A1, . . . , An be the rows of A. Prove that h is in the conical hull
of the n points A1, . . . , An.

3.Conclude that Fact 12.1 is true in this case—there is u ≥ 0 such
that uA = h and ub ≤ c.

Ex 12.2 — Farkas’s Lemma states for every convex set S ⊆ Rd, and
every point x /∈ S, there is a halfspace containing S but not containing
x. Use the lemma to prove Fact 12.1. Hint: Consider the (n+ 1)× (d+ 1)
matrix A′ obtained by adding b as a column of A, and adding one more row:
(0, . . . , 0,−1). Apply Farkas’s Lemma to the conical hull of the rows of A′

and a point that depends on the given halfspace.

Ex 12.3 — Show that the non-negative rank of the slack matrix of a
regular 2k sided polygon in the plane is at most O(k) by giving an
explicit factorization of the matrix into non-negative matrices.

Ex 12.4 — Show that the extension complexity of any regular poly-
gon in the plane with n facets is O(log n). Hint: What is the extension
complexity of a union of two polygons?

Ex 12.5 — Show that the non-negative rank of the slack matrix of
the permutahedron with respect to the 2n − 2 inequalities from
Lemma 12.12 and its n! vertices is O(n2).

276 communication complexity

Ex 12.6 — Show that Theorem 12.18 is false if we remove the −2n
term from the lower bound. Hint: The AND function.

Ex 12.7 — The cube in n dimensions is the convex hull of the set
{0, 1}n. Identify the facets of the cube. Is it possible that the exten-
sion complexity of the cube is O(

√
n)?

Ex 12.8 — Given two disjoint sets A, B, each of size n, define the
bipartite matching polytope to be the convex hull of all bipartite
matchings—matchings where every edge goes from A to B. Show
that the extension complexity of the bipartite matching polytope is at
most O(n2).

Ex 12.9 — Show that there is a k for which the convex hull of cliques
of size k has extension complexity 2Ω(n).

Ex 12.10 — The cut polytope Kn is the convex hull of all cuts in a
graph. Here the number of variables in (n

2), one variable for each
potential edge e ⊂ [n] of size 2. For every set A ⊆ [n] define the
vertex

yA
e =

1 if |e ∩ A| = 1,

0 otherwise.

The cut polytope is the convex hull of all these points.

1.How many vertices does Kn have?

2.Prove that the extension complexity of the cut polytope is 2Ω(n).
Hint: Find an invertible linear map that maps the cut polytope to the
correlation polytope.

The distributed setting presents many
algorithmic challenges. Networks may
be asynchronous. Parties may not
necessarily follow the protocol. The
protocol can be disrupted by adversarial
actions, etc. We stick to the model of
synchronous networks. We assume
that all parties execute the protocol
correctly, and there are no errors in the
communication.

13
Distributed Computing

Distributed computing is the study of algorithms and protocols
for computers operating in a distributed environment. In such an
environment, there are n parties that are connected together by
a communication network, yet no single party knows what the
whole network looks like. Nevertheless, the parties wish to solve
computational problems together.

The network is defined by an undirected graph on n vertices.
Each vertex represents one of the parties. The parties communicate
according to a protocol in order to achieve some common goal. Each
protocol begins with each party knowing its own name, and perhaps
some part of the input. The protocol proceeds in rounds. In each
round, each of the parties can send a message to all of her neighbors
in the graph.

The setup is often interesting even when the goal is to learn some-
thing about the structure of the network itself, and there are no
inputs besides the names.

Some Protocols

We start with a couple of protocols that help to understand the
model, and demonstrate some of the subtitles one needs to address
when studying distributed systems.

Proper Coloring

Suppose the parties in a distributed environment want to properly
color the underlying graph. Each party needs to choose its own color
so that no two neighboring parties have the same color.

Suppose n parties are connected together and every party has at
most 2 neighbors. Here is a protocol that finds a proper coloring

278 communication complexity

1 Cole and Vishkin, 1986

The constant in the O(log∗ n) term
depends on d.

2 Linial, 1992

with a constant number of colors in O(log∗ n) rounds of communica-
tion.1 Initially, each party colors itself with its name. This is a proper
coloring. The goal now is to iteratively reduce the number of colors.

In each round, the parties send all of their neighbors their current
color. If a ∈ {0, 1}t denotes the color of one of the parties in a round,
and b, c ∈ {0, 1}t denote the colors assigned to its neighbors, then the
party sets i to be a number such that ai 6= bi, and j to be a number
such that aj 6= cj. Its new color is set to be (i, j, ai, aj). The new
coloring is still proper.

In this way, the number of colors has been reduced from t to
O(log2 t). After O(log∗ n) rounds, the number of colors is constant.

This coloring protocol can be generalized to handle arbitrary
graphs of constant degree d. Any graph of degree d can be colored
using d + 1 colors. Here we give a protocol2 that uses O(log∗ n)
rounds to find a proper coloring with O(d2 log d) colors. The protocol
relies on the following combinatorial lemma.

Lemma 13.1. For every t > 0, there is are t sets T1, . . . , Tt ⊆ [m] with
m = 5d2dlog te such that for any distinct i1, i2, . . . , id+1 ∈ [t], the set Ti1 is
not contained in the union of Ti2 , . . . , Tid+1

.

Proof. The existence of the sets is proved using the probabilistic
method. Pick the t sets T1, . . . , Tt at random from [m], where each
element is included in each set independently with probability 1

d .
Let us upper bound the probability that T1 is contained in the

union of T2, . . . , Td+1. For each j ∈ [m], the probability that j ∈ T1 and
j 6∈ ⋃i>1 Ti is

1
d
(1− 1

d)
d ≥ d

4
. since 1− x ≤ 2−2x for x ≤ 1/2.

The probability we are interested in is, thus, at most

(1− d
4)

m < e−d log t. since 1− x ≤ e−x for x ≥ 0.

By symmetry, a similar bound holds for all d + 1 distinct indices.
The number of choices for d + 1 indices is at most td+1 ≤ 2d log t. By
the union bound, the probability that the family does not have the
property we need is at most e−d log t · 2d log t < 1.

The protocol for coloring networks with degrees at most d pro-
ceeds in rounds as before. The initial number of colors in n. Each
round reduces the number of colors from some t to 5d2dlog te. The
parties know t and they also know a family of t sets as promised by
Lemma 13.1. Each party sends its current color to all its neighbors.
Each party associates each of the ≤ d colors she received with a set
from the family. Her new color is an element that belongs to her own
set but not to any of the others.

distributed computing 279

3 Frischknecht et al., 2012; and Holzer
and Wattenhofer, 2012

Continuing in this way, the number of colors is reduced to O(d2 log d)
in O(log∗ n) rounds.

Lower Bounds

We move to proving lower bounds in the distributed setting.
Communication complexity naturally fits the distributed world.
However, the most powerful lower bounds we know how to prove in
communication complexity hold when the number of parties is two
or relatively small.

The solution is simple and general. Partition the n vertices of the
network into a few parts. Think of each part as a party in a standard
communication complexity problem. The messages between the parts
can be viewed as communication between the parties.

Below, we explain two lower bounds that are proved in this way.
Both lower bounds are proved by reduction to the communication
complexity of the disjointness problem—one uses 2-party commu-
nication complexity, and the other uses 3-party communication
complexity in the number-on-forehead model.

Computing the Diameter

Suppose the parties want to compute the diameter of the network—
namely, the largest distance between two vertices in the underlying
graph. Intuitively, the diameter corresponds to the maximum time
it takes to pass a message between two points in the network. To
compute the diameter, the network must communicate many bits3:

Theorem 13.2. Given any distributed protocol for computing the diameter of
an n-vertex graph, there is an input for which Ω(n2) bits are transmitted in
total.

The lower bound holds even if the goal is to distinguish whether
the diameter of the graph is at most 2 or at least 3, and when the
protocol is allowed to be randomized. The proof is by reduction to
the randomized two-party communication complexity of disjointness.

Proof. Let X, Y ⊆ [n] × [n] be two subsets of a universe of size n2.
For every such pair of sets, we shall define a graph GX,Y. We show
that if there is an efficient distributed algorithm for computing the
diameter of GX,Y, then there is an efficient communication protocol
for deciding whether or not X and Y are disjoint.

The graph GX,Y has 4n + 2 vertices (see Figure 13.1). Let A =

{a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} and D = {d1, . . . , dn}
be disjoint cliques, each of size n. Let v be a vertex that is connected

280 communication complexity

A

B

C

D

v w

i

j

i

i

i

j

if (i, j) /2 X if (i, j) /2 Y

Figure 13.1: GX,Y for n = 4.

to all the vertices in A ∪ B and w be a vertex that is connected to all
the vertices in C ∪ D. Connect v and w with an edge as well. For each
i, connect ai to ci, and bi to di. Finally, connect ai to bj if and only if
(i, j) /∈ X, and ci to dj if and only if (i, j) /∈ Y.

Claim 13.3. The diameter of GX,Y is 2 if X, Y are disjoint, and 3 if X, Y are
not disjoint.

Proof. The interesting parts of the claim are the distances between A
and D, and between B and C. The distances between all other pairs
of vertices are at most 2. Here we focus on the distances between A
and D. The case of B and C is similar.

When (i, j) /∈ X or (i, j) 6∈ Y, the distance of ai from dj is at
most 2. For example, if (i, j) /∈ X, we have the path ai → bj → dj.
Otherwise, (i, j) ∈ X ∩Y, and in this case the distance from ai to dj is
at least 3.

Consider the protocol obtained when Alice simulates all the
vertices in A, B and v, and Bob simulates all the vertices in C, D and
w. This protocol solves the disjointness problem. By Theorem 6.18,
the total communication is at least Ω(n2). This proves that the O(n)
edges that cross from Alice’s part to Bob’s part must carry at least
Ω(n2) bits of communication to compute the diameter of the graph.

distributed computing 281

4 Drucker et al., 2014

This lower bounds holds only for
deterministic protocols.

A

B

Ca

b

c

if b � a 2 Q if c � b 2 Q

if
c � a

2
2 Q

Figure 13.2: The graph G.

5 Ruzsa and Szemerédi, 1978

The proof of Claim 13.5 is left to
Exercise 13.1.

Computing the Girth

Another basic measure associated with a graph is its girth—the
length of the shortest cycle in the graph. The girth is a fundamental
parameter of graphs. Computing the girth in a distributed setting is a
non-trivial task4:

Theorem 13.4. Any distributed protocol for computing the girth of an

n-vertex graph must involve at least n22−O(
√

log n)) bits of communication.

The lower bound holds even if the goal is to detect if the girth is at
least 3. It is even hard to determine if there is a single triangle in the
graph.

Proof. The proof is by reduction to disjointness in the number-on-
forehead model with 3 parties. The reduction together with the lower
bound from Theorem 5.12 complete the proof.

Suppose Alice, Bob and Charlie have 3 sets X, Y, Z ⊆ U written
on their foreheads, where U is a universe we shall soon specify. We
define a graph GX,Y,Z that has a triangle if and only if X ∩ Y ∩ Z is
non-empty.

The definition of the graph is based on the coloring promised by
Theorem 4.2. This coloring implies that there is a subset Q ⊆ [n] of

size at least n2−O(
√

log n) that does not contain any non-trivial 3-term
arithmetic progressions.

First define5 an auxiliary graph G. Its vertex set is the union of
three disjoint sets A, B and C, each of size 2n. We identify each of
theses sets with the integers in [2n]. The edges are defined as follows:
for each a ∈ A, b ∈ B, c ∈ C,

{a, b} ∈ E(G)⇔ b− a ∈ Q,

{b, c} ∈ E(G)⇔ c− b ∈ Q,

{a, c} ∈ E(G)⇔ c− a
2
∈ Q.

See Figure 13.2.

Claim 13.5. The graph G has at least n|Q| triangles, and no two distinct
triangles in G share an edge.

The universe U is the set of triangles in G. The graph GX,Y,Z is the
subgraph of G defined by

{a, b} ∈ E(GX,Y,Z)⇔ a triangle of G containing {a, b} is in Z,

{b, c} ∈ E(GX,Y,Z)⇔ a triangle of G containing {b, c} is in X,

{a, c} ∈ E(GX,Y,Z)⇔ a triangle of G containing {a, b} is in Y.

282 communication complexity

2 Y

2 X

2 Z

A

B

C

Figure 13.3: The graph GX,Y,Z .

Claim 13.6. The graph GX,Y,Z contains a triangle if and only if X ∩ Y ∩
Z 6= ∅.

Proof. If a, b, c are the vertices of a triangle in X ∩ Y ∩ Z, then they
form a triangle in GX,Y,Z. Conversely, if GX,Y,Z contains a triangle,
then each edge of the triangle is contained in a single triangle of
G, by Claim 13.5. This implies that the 3 edges define a triangle in
X ∩Y ∩ Z.

Given sets X, Y, Z as input, Alice, Bob and Charlie execute the
protocol for detecting triangles in the network GX,Y,Z. Alice simulates
the behavior of vertices in A, Bob simulates the behavior B, and Char-
lie of C. Each of the parties knows enough information to simulate
the behavior of these nodes. For example, Alice knows the neigh-
bors of A, since she knows Y, Z. Finally, by Theorem 5.12, the total
communication of the protocol must be at least

Ω(|U|) = Ω(n|Q|) = n22−O(
√

log n).

Exercises

Ex 13.1 — Prove Claim 13.5.

List of Figures

1 The addition, multiplication and division tables of F5. . 15

2 Any chip can be broken into two pieces while cutting few
wires. 17

3 Disjointness when n = 8. Each row corresponds to a set
X ⊆ [8], and each column corresponds to a set Y ⊆ [8].
The X, Y entry is black if and only if X and Y are disjoint. 19

4 The vertices that are not neighbors of v cannot be involved
in any intersection between C and I. 20

1.1 An execution of a protocol. 26

1.2 A combinatorial rectangle. 27

1.3 The evolution of the rectangle corresponding to the cur-
rent vertex of the protocol tree as the protocol executes.
The leaves define a partition into rectangles, which is shown
in all steps. 28

1.4 A boolean function g represented as a matrix. The black
entries are 1’s and the white entries are 0’s. A monochro-
matic rectangle is highlighted in gray. 29

1.5 Balancing a protocol. 29

1.6 Every rooted binary tree must contain a vertex that accounts
for at least 1/3rd fraction, but no more than a 2/3rd frac-
tion of all the leaves. 29

1.7 A partition into rectangles that cannot be realized by any
protocol. 30

1.8 Rectangles 1 and 2 intersect vertically, while rectangles 1
and 3 intersect horizontally. 31

1.9 Either there is a rectangle consistent with x that intersects
at most half of the other rectangles horizontally, or there
is a rectangle consistent with y that intersects at most half
of the other rectangles vertically. 31

1.10 The equality function does have large monochromatic rect-
angles. 34

284 communication complexity

1.11 Inner-product when n = 8. Each row corresponds to x,
and each column corresponds to y. The entries correspond
to 〈x, y〉. 35

1.12 The greater than function has large monochromatic rect-
angles of both types. 37

1.13 A (7, 4)-rich function. 38

1.14 An input to the lopsided disjointness problem with n =

12, k = 3, t = 2. 39

1.15 The lopsided disjointness matrix with n = 7, k = 2. The
columns corresponds to sets of size at most k from [n]. The
rows correspond to arbitrary subsets of [n]. 39

1.16 A 1-cover of size 3. 43

2.1 The disjointness matrix D9,4, which represents disjointness
when restricted to sets of size at most 4 on a universe of
size 9. The sets are ordered lexicographically. Compare
this with Figure 3. 56

2.2 After applying a suitable linear transformation, the unit
ball is the inscribed ellipsoid of maximum volume inside
K. 62

2.3 arccos(α) ≤ π/2− 2πα/7 for 0 ≤ α ≤ 1. 62

2.4 The region where all zk’s must fall to ensure that (i, j) ∈
R, when Mi,j = 0. 62

2.5 The region where all zk’s must fall to ensure that (i, j) ∈
R, when Mi,j = 1. 63

3.1 When X, Y are disjoint, half of X will be eliminated in ex-
pectation. 68

4.1 The average of two distinct points on a sphere cannot lie
on the sphere—they must lie in the interior. 80

4.2 A cylinder intersection. Watch an animation. 82

4.3 Figure 4.2 viewed from above. 82

4.4 A cylinder intersection. Watch an animation. 83

4.5 Figure 4.4 viewed from above. 83

4.6 Figure 4.4 viewed from the right. 83

4.7 A monochromatic corner. 83

4.8 A rainbow-corner. 84

4.9 A rainbow-corner induced by two smaller rainbow-corners. 85

5.1 A dense graph with no 3-cycles. 92

5.2 Xk,j and X′k,j intersect the rest of the sets in unique points
with high probability. 100

5.3 The set A′ contains many sets that do not intersect each
other too much. 104

http://homes.cs.washington.edu/\protect \unhbox \voidb@x \penalty \@M \ {}anuprao/pubs/cylshadow.mp4
http://homes.cs.washington.edu/\protect \unhbox \voidb@x \penalty \@M \ {}anuprao/pubs/cylshadow2.mp4

distributed computing 285

5.4 There will be a set in B that intersects many of the sets X1, . . . , Xk.104

5.5 Four examples showing projections of the set {±1}15 onto
different 2-dimensional vector spaces. The circles are cen-
tered at the origin and have radius

√
2. 109

6.1 The entropy of a bit B with distribution p. 118

6.2 A finite set in R3 projected onto the 3 planes. 122

6.3 If the vertices near a fixed vertex do not form a tree, then
the graph contains a short cycle. 126

6.4 Two intersecting families of sets on a universe of size 3.
. 128

6.5 The divergence between two distributions on bits p, q. . 130

6.6 Pinsker’s Inequality for two bits. The difference between
the divergence and its lower bound is shown. 134

6.7 The solid line plots the divergence of an ε-biased bit from
a bit with bias 2/3. The dashed line plots 2

ln 2 (ε− 2/3)2. 135

6.8 An example of an input to pointer chasing, with n = 8, k =

5. 138

7.1 An illustration of the sampling procedure. (M4, ρ4) is se-
lected in this case and MA = MB. Note that ρ5 < q(M5)

but ρ5 > p(M5). 153

7.2 The sampling procedure of Theorem 7.6. Here T is 3 and
the sampled point is the 3’rd point of ST 156

7.3 Sampling from p when the sender knows only one distri-
bution. Here Alice chooses M7, and it likely takes the par-
ties four rounds to compute M7. 159

7.4 Finding the correct path m. In this case, m is found after
3 mistakes have been fixed. 164

8.1 A decision tree computing x1 ∨ (x2 ∧ x3). 171

8.2 The evolution of Rv and R during the algorithm. 175

9.1 A circuit computing the parity x1⊕ x2⊕ x3. This circuit
has size 15 and depth 4. 185

9.2 A schematic description of GX and HY. 189

9.3 A formula F and the tree Ti that corresponds to the input
gates of xi. Shaded input gates correspond to xi. 192

9.4 A refutation of F. In each step, two clauses are combined
to give a new clause that must be true. The final step pro-
duces an empty clause, which represents a contradiction.196

10.1 A branching program computing x1 ∧ x2 ∧ x3. 207

286 communication complexity

10.2 An example of the hard inputs H, J for the matching prob-
lem. The graph G has many large induced matchings. Al-
ice gets a random subgraph H of G. Bob gets a graph J
which matches all the vertices not included in some match-
ing of G. The maximum matching includes the edges touch-
ing S and all the edges contained in a random induced
matching. 213

10.3 The bipartite graph defined by the branching program can
be partitioned into cliques. The Qi’s and Ri’s in the claim
are not necessarily consecutive blocks, and some of the
Qi’s may be of size 1. 217

11.1 A heap. Here the minimum (3) is deleted from the heap,
and a new number (2) is added. 222

11.2 Maintaining numbers in a binary search tree with S =

{2, 3, 7, 8, 9, 10, 11, 12, 16}. 223

11.3 An example of a van Emde Boas tree. 224

11.4 Maintaining a partition of the universe into sets using the
union-find data structure. Each cell is associated with an
element of the universe, and stores a pointer to the cell
corresponding to its parent, as well as the height of the
subtree rooted at the element. The result of merging two
sets is shown. 225

11.5 An example of the sets Sj when k = 2 and r = 6. The
indicator vector of Sj is the j + 1’st row of the matrix. . 237

11.6 The butterfly graph with d = 3 and σ = 2. 240

11.7 The edges of B when k = 3, r = 5, and j = 2. 243

12.1 A cube in R3 can be defined by the 6 inequalities −1 ≤
x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1. 247

12.2 The anatomy of a polytope. The polytope has dimension
2. The six 1-dimensional faces are called facets. The six
0-dimensional faces are called vertices. The intersection
between every two facets is a face—it is either a vertex or
empty. 248

12.3 A projection of the cube. 252

12.4 One can move the flow from a point x to a chosen short-
est path without increasing L. 254

12.5 A polytope with 8 facets that has an extension with 6 facets.
Watch an animation. 256

12.6 An octagon can be built with 3 reflections. 257

12.7 The permutahedron with n = 4, projected into 3-space.
Watch an animation. 258

http://homes.cs.washington.edu/\protect \unhbox \voidb@x \penalty \@M \ {}anuprao/pubs/polytopes.mp4
http://homes.cs.washington.edu/\protect \unhbox \voidb@x \penalty \@M \ {}anuprao/pubs/permutahedron.mp4

distributed computing 287

12.8 A separating polytope for the AND function. Watch an an-
imation. 261

12.9 A separating polytope for the parity function: x1 + x2 +

x3 mod 2. Watch an animation. 261

12.10 A numbering of the facets and vertices of the 1× 1× 1
cube. 263

12.11 The slack of the pair S, T is the number of edges leaving
S. In this case, the slack is 4. 265

12.12 An example of A,W , F when n = 6, and X, Y conditioned
on D. 271

12.13 Two values of c that intersect in only one element. The set
x is consistent with c, and the matching y is consistent with
c′. 274

12.14 If c1, c2, c3 are three sets whose union is of size 5, and pair-
wise intersections are of size 2, there is no other set that
can be added to the collection while keeping the pairwise
intersection of size 2. 274

13.1 GX,Y for n = 4. 280

13.2 The graph G. 281

13.3 The graph GX,Y,Z. 282

http://homes.cs.washington.edu/\protect \unhbox \voidb@x \penalty \@M \ {}anuprao/pubs/andfunctiontope.mp4
http://homes.cs.washington.edu/\protect \unhbox \voidb@x \penalty \@M \ {}anuprao/pubs/parityfunctiontope.mp4

Bibliography

A. Aho, J. Ullman, and M. Yannakakis. On notations of information
transfer in VLSI circuits. In Proc. 15th Ann. ACM Symp. on Theory of
Computing, pages 133–139, 1983.

Miklós Ajtai. A lower bound for finding predecessors in yao’s call
probe model. Combinatorica, 8(3):235–247, 1988.

Noga Alon and Alon Orlitsky. Repeated communication and ramsey
graphs. IEEE Transactions on Information Theory, 41(5):1276–1289,
1995.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity
of approximating the frequency moments. J. Comput. Syst. Sci, 58(1):
137–147, 1999.

Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for
irregular graphs. Graphs and Combinatorics, 18(1):53–57, 2002.

Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly Op-
timal Separations Between Communication (or Query) Complexity
and Partitions. In CCC, pages 1–14, 2016.

Alexandr Andoni, Piotr Indyk, and Mihai Patrascu. On the optimality
of the dimensionality reduction method. In FOCS, pages 449–458,
2006.

László Babai, Peter Frankl, and Janos Simon. Complexity classes in
communication complexity theory (preliminary version). In FOCS,
pages 337–347, 1986.

László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols
and logspace-hard pseudorandom sequences. In STOC, pages 1–11,
1989.

László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V.
Lokam. Communication complexity of simultaneous messages.
SIAM J. Comput, 33(1):137–166, 2003.

290 communication complexity

Ajesh Babu and Jaikumar Radhakrishnan. An entropy based proof of
the moore bound for irregular graphs. arXiv:1011.1058, 2010.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An
information statistics approach to data stream and communication
complexity. Journal of Computer and System Sciences, 68(4):702–732,
2004.

Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to
compress interactive communication. In STOC, pages 67–76, 2010.

David A Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in nc 1. In STOC, pages
1–5, 1986.

Balthazar Bauer, Shay Moran, and Amir Yehudayoff. Internal compres-
sion of protocols to entropy. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 40. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

Paul Beame and Faith E. Fich. Optimal bounds for the predecessor
problem and related problems. J. Comput. Syst. Sci., 65(1):38–72,
2002.

Paul Beame and Toniann Pitassi. Simplified and improved resolution
lower bounds. In FOCS, pages 274–282, 1996.

Felix A. Behrend. On the sets of integers which contain no three in
arithmetic progression. Proc. Nat. Acad. Sci., 28(12):561–563, 1946.

Mark Braverman. Interactive information complexity. SIAM Journal on
Computing, 44(6):1698–1739, 2015.

Mark Braverman and Ankit Garg. Public vs private coin in bounded-
round information. In ICALP, volume 8572, pages 502–513, 2014.

Mark Braverman and Ankur Moitra. An information complexity
approach to extended formulations. In STOC, pages 161–170, 2013.

Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff.
Direct products in communication complexity. In FOCS, pages
746–755, 2013.

Gerth Stølting Brodal, Shiva Chaudhuri, and Jaikumar Radhakrish-
nan. The randomized complexity of maintaining the minimum. In
SWAT, volume 1097, pages 4–15, 1996.

Joshua Brody, Harry Buhrman, Michal Kouckỳ, Bruno Loff, Florian
Speelman, and Nikolay Vereshchagin. Towards a reverse newman’s
theorem in interactive information complexity. Algorithmica, 76(3):
749–781, 2016.

bibliography 291

Amit Chakrabarti and Oded Regev. An optimal lower bound on the
communication complexity of gap-Hamming-distance. SIAM Journal
on Computing, 41(5):1299–1317, 2012.

Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao.
Informational complexity and the direct sum problem for simulta-
neous message complexity. In FOCS, pages 270–278, 2001.

Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-
party protocols. In STOC, pages 94–99, 1983.

Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik
Mukhopadhyay. Simulation theorems via pseudorandom properties.
arXiv:1704.06807, 2017.

Fan R. K. Chung, Ronald L. Graham, Peter Frankl, and James B.
Shearer. Some intersection theorems for ordered sets and graphs.
Journal of Combinatorial Theory, Ser. A, 43(1):23–37, 1986.

Richard Cole and Uzi Vishkin. Deterministic coin tossing and acceler-
ating cascades: micro and macro techniques for designing parallel
algorithms. In STOC, pages 206–219, 1986.

William Cook, Collette R Coullard, and Gy Turán. On the complexity
of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38,
1987.

Martin Dietzfelbinger and Henning Wunderlich. A characterization
of average case communication complexity. Inf. Process. Lett., 101(6):
245–249, 2007.

Irit Dinur and Or Meir. Toward the krw composition conjecture: Cubic
formula lower bounds via communication complexity. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 50. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of
the congested clique model. In PODC, pages 367–376, 2014.

Pavol Duris, Zvi Galil, and Georg Schnitger. Lower bounds on
communication complexity. Information and Computation, 73(1):1–22,
1987.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathemat-
ics, 17:449–467, 1965.

Jack Edmonds. Matroids and the greedy algorithm. Math. Program, 1

(1):127–136, 1971.

292 communication complexity

Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall.
Communication complexity towards lower bounds on circuit depth.
Computational Complexity, 10(3):210–246, 2001.

David Ellis, Yuval Filmus, and Ehud Friedgut. Triangle-intersecting
families of graphs. Journal of the European Mathematical Society, 14(3):
841–885, 2012.

Tomàs Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amor-
tized communication complexity. SIAM Journal on Computing, 24(4):
736–750, 1995.

Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Com-
puting with noisy information. SIAM Journal on Computing, 23(5):
1001–1018, 1994.

Samuel Fiorini, Thomas Rothvoß, and Hans Raj Tiwary. Extended
formulations for polygons. Discrete & Computational Geometry, 48(3):
658–668, 2012.

Michael L. Fredman and Michael E. Saks. The cell probe complexity
of dynamic data structures. In STOC, pages 345–354, 1989.

Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks
cannot compute their diameter in sublinear time. In SODA, pages
1150–1162, 2012.

Bernard A Galler and Michael J Fisher. An improved equivalence
algorithm. Communications of the ACM, 7(5):301–303, 1964.

Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of
information and communication for boolean functions. JACM, 63(5):
46, 2016.

Dmitry Gavinsky and Shachar Lovett. En route to the log-rank
conjecture: New reductions and equivalent formulations. In ICALP,
pages 514–524, 2014.

Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson.
Toward better formula lower bounds: an information complexity
approach to the krw composition conjecture. In STOC, pages
213–222, 2014.

Kurt Gödel. Über formal unentscheidbare sätze der principia mathe-
matica und verwandter systeme I. Monatshefte für mathematik und
physik, 38(1):173–198, 1931.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the commu-
nication and streaming complexity of maximum bipartite matching.
In SODA, pages 468–485, 2012.

bibliography 293

Michel X. Goemans. Smallest compact formulation for the permuta-
hedron. Math. Program, 153(1):5–11, 2015.

Mika Göös and Thomas Watson. Communication complexity of
set-disjointness for all probabilities. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 28. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic
communication vs. partition number. In FOCS, pages 1077–1088,
2015.

Ronald L. Graham. Rudiments of Ramsey theory. Number 45 in Regional
Conference series in mathematics. American Mathematical Society,
1980.

Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey
theory. Wiley-Interscience Series in Discrete Mathematics. John Wiley
& Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1980.

D. Gregoryev. Lower bounds in algebraic computational complexity.
Theorems in Computational Complexity 1, (118):25–82, 1982.

Vince Grolmusz. Circuits and multi-party protocols. Computational
Complexity, 7(1):1–18, 1998.

Misha Gromov. In a search for a structure, part 1: On entropy. 2012.

Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39(2–3):297–308, August 1985.

Alfred. W. Hales and Robert. I. Jewett. On regularity and positional
games. Trans. Amer. Math. Soc., 106:222–229, 1963.

Bernd Halstenberg and Rüdiger Reischuk. Different modes of
communication. SIAM Journal on Computing, 22(5):913–934, 1993.

Lawrence H Harper. Optimal numberings and isoperimetric problems
on graphs. Journal of Combinatorial Theory, 1(3):385–393, 1966.

Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar
Radhakrishnan. The communication complexity of correlation. In
CCC, pages 10–23, 2007.

Juris Hartmanis and Richard E Stearns. On the computational
complexity of algorithms. Transactions of the American Mathematical
Society, 117:285–306, 1965.

Johan Håstad and Avi Wigderson. Composition of the universal
relation. Advances in Computational Complexity Theory, pages 119–134,
1990.

294 communication complexity

Johan Håstad and Avi Wigderson. The randomized communication
complexity of set disjointness. Theory of Computing, 3(1):211–219,
2007.

Fred C Hennie. One-tape, off-line turing machine computations.
Information and Control, 8(6):553–578, 1965.

Thomas Holenstein. Parallel repetition: Simplification and the no-
signaling case. Theory of Computing, 5(1):141–172, 2009.

Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs
shortest paths and applications. In PODC, pages 355–364, 2012.

Pavel Hrubeš. A note on semantic cutting planes. ECCC, 20:128, 2013.

Pavel Hrubes and Anup Rao. Circuits with medium fan-in. In CCC,
volume 33, pages 381–391, 2015.

Pavel Hrubeš. Personal communication, 2016.

Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper
and lower bounds for tree-like cutting planes proofs. In LICS, pages
220–228, 1994.

Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct
elements problem. In FOCS, pages 283–288, 2003.

Fritz John. Extremum problems with inequalities as subsidiary
conditions. Traces and Emergence of Nonlinear Programming, pages
187–204, 1948.

Stasys Jukna. Boolean function complexity: advances and frontiers,
volume 27. Springer Science and Business Media, 2012.

Volker Kaibel and Kanstantsin Pashkovich. Constructing extended
formulations from reflection relations. Facets of Combinatorial
Optimization, pages 77–100, 2013.

Bala Kalyanasundaram and Georg Schnitger. The probabilistic
communication complexity of set intersection. SIAM Journal on
Discrete Mathematics, 5(4):545–557, 1992.

Michael Kapralov. Better bounds for matchings in the streaming
model. In SODA, pages 1679–1697, 2013.

Mauricio Karchmer and Avi Wigderson. Monotone circuits for
connectivity require super-logarithmic depth. SIAM Journal on
Discrete Mathematics, 3(2):255–265, 1990.

bibliography 295

Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic
depth lower bounds via the direct sum in communication com-
plexity. Computational Complexity, 5(3/4):191–204, 1995. doi:
10.1007/BF01206317. URL https://doi.org/10.1007/BF01206317.

Hartmut Klauck. One-way communication complexity and the
Nečiporuk lower bound on formula size. SIAM Journal on Computing,
37(2):552–583, 2007.

Jon M. Kleinberg and Éva Tardos. Algorithm design. Addison-Wesley,
2006.

Gillat Kol. Interactive compression for product distributions. In STOC,
pages 987–998, 2016.

Jan Krajíček. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. The Journal of
Symbolic Logic, 62(02):457–486, 1997.

V. Krapchenko. A method of determining lower bounds for the
complexity of π schemes. Math. Notes Acad. Sci. USSR, 11:474–479,
1971.

Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search
for approximate nearest neighbor in high dimensional spaces. SIAM
Journal on Computing, 30(2):457–474, 2000.

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal
on Computing, 21(1):193–201, 1992.

László Lovász. Communication complexity: A survey. Technical report,
1990.

László Lovász and Michael E. Saks. Lattices, Möbius functions and
communication complexity. In FOCS, pages 81–90, 1988.

Shachar Lovett. Communication is bounded by root of rank. In STOC,
pages 842–846, 2014.

Oleg Lupanov. A method for synthesizing circuits. Izv. vysshykh
uchebnykh zavedenii, Radiofizika, 1:120–140, 1958.

Peter Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On
data structures and asymmetric communication complexity. Journal
of Computer and System Sciences, 57:37–49, 1 1998.

E. I. Neciporuk. On a boolean function. Dokl. Akad. Nauk SSSR, 7:
765–766, 1966.

Ilan Newman. Private vs. common random bits in communication
complexity. Information Processing Letters, 39(2):67–71, 31 July 1991.

https://doi.org/10.1007/BF01206317

296 communication complexity

Noam Nisan and Avi Wigderson. Rounds in communication complex-
ity revisited. SIAM Journal on Computing, 22(1):211–219, 1993.

Noam Nisan and Avi Wigderson. On rank vs. communication
complexity. Combinatorica, 15(4):557–565, 1995.

Denis Pankratov. Direct sum questions in classical communication
complexity. Master’s thesis, University of Chicago, 2012.

Mihai Pătraşcu. Unifying the landscape of cell-probe lower bounds.
SIAM Journal on Computing, 40(3):827–847, 2011.

Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for prede-
cessor search. In STOC, pages 232–240, 2006.

Mihai Patrascu and Mikkel Thorup. Dynamic integer sets with optimal
rank, select, and predecessor search. In FOCS, pages 166–175, 2014.

Pavel Pudlák. Lower bounds for resolution and cutting plane proofs
and monotone computations. The Journal of Symbolic Logic, 62(03):
981–998, 1997.

Richard Rado. An inequality. London Journal of Mathematics Society, 27:
1–6, 1952.

Sivaramakrishnan Natarajan Ramamoorthy and Anup Rao. Non-
adaptive data structure lower bounds for median and predecessor
search from sunflowers. ECCC, 24:40, 2017.

Anup Rao and Makrand Sinha. Simplified separation of information
and communication. ECCC, 22:57, 2015.

Anup Rao and Amir Yehudayoff. Simplified lower bounds on the
multiparty communication complexity of disjointness. In CCC,
volume 33, pages 88–101, 2015.

Anup Rao and Amir Yehudayoff. Anti-concentration in most direc-
tions. CoRR, 2019. URL https://arxiv.org/abs/1811.06510.

Ran Raz and Pierre McKenzie. Separation of the monotone nc
hierarchy. In STOC, pages 234–243. IEEE, 1997.

Ran Raz and Avi Wigderson. Monotone circuits for matching require
linear depth. JACM, 39(3):736–744, 1992.

Alexander Razborov. On the distributed complexity of disjointness.
Theoretical Computer Science, 106:385–390, 1992.

John Alan Robinson. A machine-oriented logic based on the resolution
principle. JACM, 12(1):23–41, 1965.

https://arxiv.org/abs/1811.06510

bibliography 297

Thomas Rothvoß. The matching polytope has exponential extension
complexity. In STOC, pages 263–272, 2014.

Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points
carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math.
Soc. J. Bolyai, 18:939–945, 1978.

Alex Samorodnitsky. An inequality for functions on the hamming
cube. Combinatorics, Probability and Computing, 26(3):468–480, 2017.

Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor
searching in the cell probe model. J. Comput. Syst. Sci., 74(3):364–385,
2008.

Claude Shannon. The synthesis of two-terminal switching circuits. Bell
Labs Technical Journal, 28(1):59–98, 1949.

Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27, 1948. Monograph B-1598.

Alexander A. Sherstov. The communication complexity of gap
hamming distance. Theory of Computing, 8(1):197–208, 2012.

Alexander A. Sherstov. Communication lower bounds using direc-
tional derivatives. J. ACM, 61(6):34:1–34:71, 2014.

Alexander A Sherstov. Compressing interactive communication under
product distributions. In FOCS, pages 535–544, 2016.

Balazs Szegedy. An information theoretic approach to Sidorenko’s
conjecture. arXiv:1406.6738, 2014.

Clark D. Thompson. Area-time complexity for VLSI. In STOC, pages
81–88, 1979.

P. van Emde Boas. Preserving order in a forest in less than logarithmic
time. In FOCS, pages 75–84, 1975.

Thomas Vidick. A concentration inequality for the overlap of a vector
on a large set, with application to the communication complexity
of the gap-hamming-distance problem. Chicago J. Theor. Comput. Sci,
2012, 2012.

Emanuele Viola. The communication complexity of addition. Combi-
natorica, 35(6):703–747, 2015. doi: 10.1007/s00493-014-3078-3. URL
https://doi.org/10.1007/s00493-014-3078-3.

John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische
Annalen, 100:295–320, 1928.

https://doi.org/10.1007/s00493-014-3078-3

298 communication complexity

Wikipedia. Linear programming — Wikipedia, the free encyclopedia,
2016a. URL https://en.wikipedia.org/wiki/Linear_programming.
[Online; accessed 30-August-2016].

Wikipedia. Boolean satisfiability problem — Wikipedia, the free
encyclopedia, 2016b. URL https://en.wikipedia.org/wiki/

Boolean_satisfiability_problem. [Online; accessed 30-August-
2016].

Mihalis Yannakakis. Expressing combinatorial optimization problems
by linear programs. Journal of Computer and System Sciences, 43(3):
441–466, 1991.

Andrew Chi-Chih Yao. Some complexity questions related to distribu-
tive computing. In STOC, pages 209–213, 1979.

Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments. In
FOCS, pages 420–428, 1983.

Amir Yehudayoff. Pointer chasing via triangular discrimination. ECCC,
23, 2016.

https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Index

Algorithms from polytopes,
253

Asymmetric Communication,
38

Boolean circuits, 185

Boolean formulas, 191

Branching programs, 207, 215

Cauchy-Schwartz inequality,
14, 42, 112, 113, 166

Certificates, 178

Chain rule, 121, 132

Coloring (distributed
computing), 277

Combinatorial rectangles, 27,
30, 33, 52

Connectivity (data structure),
239, 242

Convexity, 14

Correlated sampling, 152

Cutting planes (proof system),
199

Cylinder intersections, 81

Decision trees, 171

Deterministic compression,
150

Deterministic protocols, 17, 25

Diameter (distributed
computing), 279

Dictionary, 221

Direct sums, 44, 166

Discrepancy, 89, 103

Disjointness, 96, 103, 140, 179

Distributed computing, 277

Dynamic data structures, 234

Entropy, 117

Equality function, 19, 34, 54

Extension complexity of
polytopes, 265, 266

Finite Fields, 15

Fooling sets, 36

Formulas with arbitrary gates,
193

Gap-hamming, 106

General internal compression,
163

Girth (distributed computing),
281

Graphs, 11

Greater-than, 136

Indexing problem, 131

Inner-product, 93, 172

Jensen’s inequality, 14, 91

Karchmer-Wigderson games,
186

KL-divergence, 129

Krapchenko’s method, 41

Lifting, 171

300 communication complexity

Log-rank conjecture, 58, 178

Matching problem, 188

Maximum matching
(streaming), 211

Memory size, 207

Minimax, 71

Moment estimation
(streaming), 210

Monochromatic Rectangles, 33

Monotone boolean circuits,
188

Montone boolean circuits, 190

Mutual information, 129

Nearest neighbor search, 225,
233

Nearly monochromatic
rectangles, 73

Non-negative rank, 56

Number-on-Forehead
Protocols, 77

One-round compression, 154

Pinsker’s inequality, 134, 135,
143, 144, 165, 269, 275

Point-chasing, 138

Polynomials, 15

Polytopes, 247, 249

Predecessor search, 223, 230

Prefix sum (data structure),
235

Probabilistic inequalities, 13

Probability, 12

Proof systems, 195

Protocol, 19

Public versus private coins, 72

Ramsey theory, 83

Randomized protocols, 65

Rank, 51, 52

Rectangle covers, 42

Resolution, 195

Richness, 38

Round elimination, 136, 230

Set intersection (data
structure), 229

Shearer’s inequality, 128

Simulation, 149

Singular value decomposition
(SVD), 109

Slack matrix, 262

Sort statistics, 222

Sorted lists (data structure),
235

Span problem (data structure),
230

Static data structures, 228

Streaming algorithms, 210

The pigeonhole principle, 196

Union-find, 224

	Preface
	Conventions and Preliminaries
	Introduction
	I Communication
	Deterministic Protocols
	Rectangles
	Balancing Protocols
	From Rectangles to Protocols
	Lower Bounds
	Rectangle Covers
	Direct-sums in Communication Complexity

	Rank
	Communication Complexity and Rank
	Properties of Rank
	Lower bounds based on rank
	Non-Negative Rank
	Better Upper Bounds using Rank

	Randomized Protocols
	Some Protocols
	Randomized Communication Complexity
	Public Coins vs Private Coins
	Nearly Monochromatic Rectangles

	Numbers On Foreheads
	Some Protocols
	Defining Protocols in the Number-on-Forehead model
	Cylinder Intersections
	Lower Bounds from Ramsey Theory

	Discrepancy
	Definitions
	Discrepancy and Communication
	Convexity in Combinatorics
	Lower Bounds for Inner-Product
	Disjointness and Discrepancy
	Concentration of Measure

	Information
	Entropy
	Chain Rule and Conditional Entropy
	Divergence and Mutual Information
	Lower Bound for Indexing
	The Power of Interaction
	Randomized Complexity of Disjointness

	Compressing Communication
	Simulations
	Compressing Protocols with No Private Randomness
	Correlated Sampling
	Compressing a Single Round
	Internal Compression of Protocols
	Direct Sums in Randomized Communication Complexity
	Other Methods to Compress Protocols

	Lifting
	Decision Trees
	The Lifting Theorem
	Separating Rank and Communication

	II Applications
	Circuits and Proofs
	Boolean Circuits
	Karchmer-Wigderson Games
	Monotone Circuit-Depth Lower Bounds
	Monotone Circuit-Depth Hierarchy
	Boolean Formulas
	Boolean Depth Conjecture
	Proof Systems
	Resolution Refutations
	Cutting Planes

	Memory Size
	Lower Bounds for Streaming Algorithms
	Lower Bounds for Branching Programs

	Data Structures
	Dictionaries
	Ordered Sets
	Lower Bounds on Static Data Structures
	Lower bounds on Dynamic Data Structures
	Graph Connectivity

	Extension Complexity of Polytopes
	Transformations of Polytopes
	Algorithms from Polytopes
	Extension Complexity
	Slack Matrices
	Lower Bounds on Extension Complexity

	Distributed Computing
	Some Protocols
	Lower Bounds
	Computing the Girth

	List of Figures
	Bibliography
	Index

