
Inconsistent Planning: Task Graph Modification

Artur Ignatiev

Supervisor: Fedor Fomin

Master thesis

Saint Petersburg
2024

Contents

Abstract 3

1 Introduction 4
1.1 Guiding through specified arcs . 6
1.2 Reducing agent costs to achieve the task . 7
1.3 Our contribution . 8
1.4 Related work . 10

2 Preliminaries 11
2.1 Parameterized complexity . 11
2.2 Kernelization . 11
2.3 Time-inconsistent planning . 12

3 Probabilistic Model 13
3.1 Contribution . 13

4 Motivation to Complete Tasks 14
4.1 Motivate by deletion . 14
4.2 Motivate by addition . 22

5 Cost Reduction 26
5.1 Modification by deletion . 26

5.1.1 Approximation . 27
5.1.2 Decision problem . 28

5.2 Modification by adding . 29
5.3 Modification with a budget . 30

6 Conclusion 31
6.1 List of papers . 31

2

Abstract

The present bias is a well-documented behavioral trait that significantly influences
human decision-making, with present-biased agents often prioritizing immediate re-
wards over long-term benefits, leading to suboptimal outcomes in various real-world
scenarios. Kleinberg and Oren (2014) proposed a popular graph-theoretical model of in-
consistent planning to capture the behavior of present-biased agents. In this model, a
multi-step project is represented by a weighted directed acyclic task graph, where the
agent traverses the graph based on present-biased preferences.

We use the model of Kleinberg and Oren to address the principal-agent problem,
where a principal, fully aware of the agent’s present bias, aims to modify an existing
project by adding or deleting tasks. The challenge is to create a modified project that
satisfies two somewhat contradictory conditions. On one hand, the present-biased agent
should select specific tasks deemed important by the principal. On the other hand, if the
anticipated costs in the modified project become too high for the agent, there is a risk of
the agent abandoning the entire project, which is not in the principal’s interest.

To tackle this issue, we leverage the tools of parameterized complexity to investigate
whether the principal’s strategy can be efficiently identified. We provide algorithms and
complexity bounds for this problem.

3

1 Introduction

The notion of present bias is a standard assumption in behavioral economics used to
explain the gap between long-term intention and short-term human decision-making.
A present-biased agent prioritizes immediate rewards over long-term benefits, leading
to suboptimal outcomes in real-world scenarios. The present bias is one of the reasons
for time-inconsistent behavior of an agent changing his optimal plans in the short run
without new circumstances [OR99, TG15]. Some examples of human time-inconsistent
behavior include indulging in unhealthy eating, procrastination on essential tasks and
responsibilities, spending on immediate desires instead of saving, addiction abuse de-
spite being aware of the negative consequences or neglecting the immediate efforts in
environmental conservation.

While originating in behavioral economics, inconsistent planning is related to AI in
several ways. InModel of Human Behavior, AI systems are often designed to interact with
and assist humans. Understanding human behavior, including time inconsistency, is cru-
cial for creating AI systems that can adapt to and predict human actions and preferences.
AI models that consider time inconsistency provide more accurate recommendations or
assistance [ESG16]. In Personalization and Recommendations, recommendation systems
rely on understanding and predicting user preferences. If users exhibit time inconsis-
tency in their preferences, AI systems may need to adapt their recommendations accord-
ingly [DM22]. Finally, in Reinforcement Learning, agents make decisions to maximize cu-
mulative rewards over time. Time inconsistency can affect an AI agent’s ability to make
optimal decisions, as it may need to evaluate future rewards and penalties accurately
[LSP22].

Our work builds on Akerlof’s model [Ake91], in which the salience factor causes the
agent to prioritize immediate events over the future, with the cost of future tasks assumed
to be 1/β times smaller than their actual costs for some present-bias parameter β < 1.
Even a tiny salience factor could result in significant additional charges for the agent.

Kleinberg and Oren [KO14, KO18] introduced an elegant graph-theoretic model that
incorporates the salience factor and scenarios from Akerlof. In this model, an agent tra-
verses from a source s to a target t in a directed edge-weighted graph G. We will provide
the formal description shortly and begin with an illustrative example.

Kleinberg-Oren model example. Alice is a PhD student, and she has to accomplish
several research projects to obtain her PhD. After discussing with her advisor Bob, they
agree on several possible scenarios, see Fig. 1. Every arc of the task graph corresponds to
a project, and the cost of an arc is the expected cost required to finish this task. The node
s is the starting position of Alice, and the node t is the final node she wants to reach. Thus
Alice has three possible options to pursue, corresponding to the three paths in the graph,
namely, P1 = sabct, P2 = sadt, and P3 = sadet. She always wants to use the less costly
option. To estimate the costs, Alice uses the present-bias parameter β = 1/3—when
estimating the cost of a path; she estimates the cost of the first arc correctly. However,
she underestimates the costs of all further arcs of the path by factor β. Thus standing in s,
Alice estimates the cost of P1 as 6+(2+ 2+ 2)/3 = 8, the cost of P2 as 6+(1+ 6)/3 = 8 1

3 ,
and P3 as 6 + (1 + 3 + 7)/3 = 9 2

3 . She plans to pursue P1. By accomplishing the task
sa, Alice re-evaluates the remaining costs. The cost of the remaining part of P1 is now
2 + (2 + 2)/3 = 3 1

3 , which is more than the cost of the remaining part of P2, that is,
1 + 6/3 = 3. This impacts Alice’s plans and now she decides to follow P2. However, after
arriving at d, she compares the remaining costs of P2, which is 6 and P3, which is 5 1

3 . Alice
changes her plans again and switches to P3.

4

<latexit sha1_base64="nEZUMx7bJ6RMacRFHnRpurhk13E=">AAAB3nicbVDLSgMxFL1TX3V8VV26CRbBVZkRUTdi0Y3LFuwD2lIzaaYNzcyE5I5QSrduRNwouPdj9A/EvzF9bFo9cOFwzrnkngRKCoOe9+NklpZXVtey6+7G5tb2Tm53r2qSVDNeYYlMdD2ghksR8woKlLyuNKdRIHkt6N+M/doD10Yk8R0OFG9FtBuLUDCKViqbdi7vFbwJyF/iz0j+6tO9VB/fbqmd+2p2EpZGPEYmqTEN31PYGlKNgkk+cpup4YqyPu3y4eS8ETmyUoeEibYTI5moczkaGTOIApuMKPbMojcW//MaKYYXraGIVYo8ZtOHwlQSTMi4K+kIzRnKgSWUaWEvJKxHNWVof8S11f3Fon9J9aTgnxVOy16+eA1TZOEADuEYfDiHItxCCSrAgMMTvMKbc+88Os/OyzSacWY7+zAH5/0XFdyL6A==</latexit>s
<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t
<latexit sha1_base64="g1udoKqo8BCWu2kpDHD3VWkGU3k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu2XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHxkuM7g==</latexit>a

<latexit sha1_base64="fVYtN1fO879ZvvbO3E/FpGNntaU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPx8+M7w==</latexit>

b <latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c
<latexit sha1_base64="OlQqY3YZLIxt2bgUY/MluCmov9E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJu3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCorZNMMWyxRCSqE1CNgktsGW4EdlKFNA4EPgSj25n/8IRK80Tem3GKfkwHkkecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9cKEZTFKwwTVuuu5qfEnVBnOBE5LvUxjStmIDrBrqaQxan8yP3RKzqwSkihRtqQhc/X3xITGWo/jwHbG1Az1sjcT//O6mYmu/QmXaWZQssWiKBPEJGT2NQm5QmbE2BLKFLe3EjakijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fyteM8Q==</latexit>

d
<latexit sha1_base64="RmIhIcc96OVgeQ7eZV6aQIOc4wQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJvbLFbfqzkFWiZeTCuRo9MtfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDzFuM8g==</latexit>e

<latexit sha1_base64="wCg4f6ag7bq0uHXF05Kj5mo8ONE=">AAAB6HicdVBNSwMxEM3Wr1q/qh69BIvgqWRLWdtb0YvHFmwttEvJprNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa0PIh5NbW9/Y3MpvF3Z29/YPiodHHR2nikGbxSJW3YBqEFxC23AjoJsooFEg4DaYXGX+7T0ozWN5Y6YJ+BEdSR5yRo2VWt6gWCJlYuF5OCNujbiW1Ou1SqWO3YVFSAmt0BwU3/vDmKURSMME1brnksT4M6oMZwLmhX6qIaFsQkfQs1TSCLQ/Wxw6x2dWGeIwVrakwQv1+8SMRlpPo8B2RtSM9W8vE//yeqkJa/6MyyQ1INlyUZgKbGKcfY2HXAEzYmoJZYrbWzEbU0WZsdkUbAhfn+L/SadSdr1ytVUtNS5XceTRCTpF58hFF6iBrlETtRFDgB7QE3p27pxH58V5XbbmnNXMMfoB5+0T3GSNAA==</latexit>

6
<latexit sha1_base64="mcoJGQzBqH9XkS8v/ApvgNpkR2o=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8kupba3ghePLdgPaJeSTbNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa4Pxh5Pb2Nza3snvFvb2Dw6PiscnHR2nirI2jUWsegHRTHDJ2oYbwXqJYiQKBOsG0+vM794zpXksb80sYX5ExpKHnBJjpZY3LJZwGVtUqygjbg27ltTrNc+rI3dpYVyCNZrD4vtgFNM0YtJQQbTuuzgx/pwow6lgi8Ig1SwhdErGrG+pJBHT/nx56AJdWGWEwljZkgYt1e8TcxJpPYsC2xkRM9G/vUz8y+unJqz5cy6T1DBJV4vCVCATo+xrNOKKUSNmlhCquL0V0QlRhBqbTcGG8PUp+p90vLJbLVdalVKjso4jD2dwDpfgwhU04Aaa0AYKDB7gCZ6dO+fReXFeV605Zz1zCj/gvH0C0h6M7g==</latexit>

2
<latexit sha1_base64="mcoJGQzBqH9XkS8v/ApvgNpkR2o=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8kupba3ghePLdgPaJeSTbNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa4Pxh5Pb2Nza3snvFvb2Dw6PiscnHR2nirI2jUWsegHRTHDJ2oYbwXqJYiQKBOsG0+vM794zpXksb80sYX5ExpKHnBJjpZY3LJZwGVtUqygjbg27ltTrNc+rI3dpYVyCNZrD4vtgFNM0YtJQQbTuuzgx/pwow6lgi8Ig1SwhdErGrG+pJBHT/nx56AJdWGWEwljZkgYt1e8TcxJpPYsC2xkRM9G/vUz8y+unJqz5cy6T1DBJV4vCVCATo+xrNOKKUSNmlhCquL0V0QlRhBqbTcGG8PUp+p90vLJbLVdalVKjso4jD2dwDpfgwhU04Aaa0AYKDB7gCZ6dO+fReXFeV605Zz1zCj/gvH0C0h6M7g==</latexit>

2
<latexit sha1_base64="mcoJGQzBqH9XkS8v/ApvgNpkR2o=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8kupba3ghePLdgPaJeSTbNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa4Pxh5Pb2Nza3snvFvb2Dw6PiscnHR2nirI2jUWsegHRTHDJ2oYbwXqJYiQKBOsG0+vM794zpXksb80sYX5ExpKHnBJjpZY3LJZwGVtUqygjbg27ltTrNc+rI3dpYVyCNZrD4vtgFNM0YtJQQbTuuzgx/pwow6lgi8Ig1SwhdErGrG+pJBHT/nx56AJdWGWEwljZkgYt1e8TcxJpPYsC2xkRM9G/vUz8y+unJqz5cy6T1DBJV4vCVCATo+xrNOKKUSNmlhCquL0V0QlRhBqbTcGG8PUp+p90vLJbLVdalVKjso4jD2dwDpfgwhU04Aaa0AYKDB7gCZ6dO+fReXFeV605Zz1zCj/gvH0C0h6M7g==</latexit>

2

<latexit sha1_base64="wCg4f6ag7bq0uHXF05Kj5mo8ONE=">AAAB6HicdVBNSwMxEM3Wr1q/qh69BIvgqWRLWdtb0YvHFmwttEvJprNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa0PIh5NbW9/Y3MpvF3Z29/YPiodHHR2nikGbxSJW3YBqEFxC23AjoJsooFEg4DaYXGX+7T0ozWN5Y6YJ+BEdSR5yRo2VWt6gWCJlYuF5OCNujbiW1Ou1SqWO3YVFSAmt0BwU3/vDmKURSMME1brnksT4M6oMZwLmhX6qIaFsQkfQs1TSCLQ/Wxw6x2dWGeIwVrakwQv1+8SMRlpPo8B2RtSM9W8vE//yeqkJa/6MyyQ1INlyUZgKbGKcfY2HXAEzYmoJZYrbWzEbU0WZsdkUbAhfn+L/SadSdr1ytVUtNS5XceTRCTpF58hFF6iBrlETtRFDgB7QE3p27pxH58V5XbbmnNXMMfoB5+0T3GSNAA==</latexit>

6<latexit sha1_base64="TaonGQNBCbxGS6GR9tMr78xyrWQ=">AAAB6HicdVBNSwMxEM3Wr1q/qh69BIvgqWRLqe2t6MVjC7YW2qVk09k2NptdkqxQlv4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZ58eCa0PIh5NbW9/Y3MpvF3Z29/YPiodHXR0likGHRSJSPZ9qEFxCx3AjoBcroKEv4NafXmX+7T0ozSN5Y2YxeCEdSx5wRo2V2u6wWCJlYlGr4Yy4deJa0mjUK5UGdhcWISW0QmtYfB+MIpaEIA0TVOu+S2LjpVQZzgTMC4NEQ0zZlI6hb6mkIWgvXRw6x2dWGeEgUrakwQv1+0RKQ61noW87Q2om+reXiX95/cQEdS/lMk4MSLZcFCQCmwhnX+MRV8CMmFlCmeL2VswmVFFmbDYFG8LXp/h/0q2U3Vq52q6WmperOPLoBJ2ic+SiC9RE16iFOoghQA/oCT07d86j8+K8LltzzmrmGP2A8/YJ1NCM+w==</latexit>

1

<latexit sha1_base64="hLmGsOb3pcpJ1N9hB9J0KuVXo2o=">AAAB6HicdVBNSwMxEM36WetX1aOXYBE8lWwttb0VvHhswX5Au5RsOtvGZrNLkhXK0l/gxYMiXv1J3vw3ZtsKKvpg4PHeDDPz/FhwbQj5cNbWNza3tnM7+d29/YPDwtFxR0eJYtBmkYhUz6caBJfQNtwI6MUKaOgL6PrT68zv3oPSPJK3ZhaDF9Kx5AFn1FipdTksFEmJWFSrOCNujbiW1Ou1crmO3YVFSBGt0BwW3gejiCUhSMME1brvkth4KVWGMwHz/CDREFM2pWPoWyppCNpLF4fO8blVRjiIlC1p8EL9PpHSUOtZ6NvOkJqJ/u1l4l9ePzFBzUu5jBMDki0XBYnAJsLZ13jEFTAjZpZQpri9FbMJVZQZm03ehvD1Kf6fdMolt1qqtCrFRmUVRw6dojN0gVx0hRroBjVRGzEE6AE9oWfnznl0XpzXZeuas5o5QT/gvH0C06KM7w==</latexit>

3

<latexit sha1_base64="2yK1okor7sdDLDftWL6Nm7Zm8qQ=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQ8rgFvHhMwDwgWcLsZDYZMzu7zMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7/FhwbTD+cDY2t7Z3dnN7+f2Dw6PjwslpV0eJoqxDIxGpvk80E1yyjuFGsH6sGAl9wXr+7Drze/dMaR7JWzOPmReSieQBp8RYqV0bFYq4hC2qVZQRt45dSxqNerncQO7SwrgIa7RGhffhOKJJyKShgmg9cHFsvJQow6lgi/ww0SwmdEYmbGCpJCHTXro8dIEurTJGQaRsSYOW6veJlIRaz0PfdobETPVvLxP/8gaJCepeymWcGCbpalGQCGQilH2NxlwxasTcEkIVt7ciOiWKUGOzydsQvj5F/5NuueRWS5V2pdisrOPIwTlcwBW4UIMm3EALOkCBwQM8wbNz5zw6L87rqnXDWc+cwQ84b5/Zsozz</latexit>

7

Figure 1: For β = 1/3, the agentwill follow the path sadet instead of selecting the shortest
path sabct.

In thiswork, weuse themodel of Kleinberg andOren to study a variant of the principal-
agent problem, where the principal could reduce the choices to guarantee that the agent
will accomplish some selected tasks. We continue with our example.

Motivating by reducing choices. We continue with the example Fig. 1. To explain the
phenomenon of abandonment, Kleinberg and Oren use the reward model. We assume
that Alice expects a reward of r for obtaining her PhD. At every step, she evaluates the
cost of completing the path, and if this cost exceeds β · r (reward is also discounted by
β), she abandons the whole project. For this example, we put r = 24. While Bob, the
doctoral advisor of Alice, wants her to finish her study, he has additional interests too.
To Bob, the task corresponding to the arc dt is themost exciting part of the whole project.
However, if Alice proceeds according to the present bias protocol, she will go through P3
and never accomplish the task so important to Bob. The first thing that comes to Bob’s
mind—to leave only the tasks of the path P2 available to Alice—does not work. For Alice
standing in s, the estimated biased cost of path P2 is 8 1

3 > β · r = 1/3 · 24 = 8. Thus, if
Bob leaves P2 as the only choice for Alice, she will abandon her studies. This brings us
to the question that is the main motivation for our study. Is it possible to reduce choices
to make both Alice and Bob happy? That is, Alice will get PhD while working on the tasks
that are most interesting to Bob. In our example, the solution is easy—Bob has to delete
the task de—but in general, as we will see, this question brings interesting algorithmic
challenges. See Fig. 2.

<latexit sha1_base64="nEZUMx7bJ6RMacRFHnRpurhk13E=">AAAB3nicbVDLSgMxFL1TX3V8VV26CRbBVZkRUTdi0Y3LFuwD2lIzaaYNzcyE5I5QSrduRNwouPdj9A/EvzF9bFo9cOFwzrnkngRKCoOe9+NklpZXVtey6+7G5tb2Tm53r2qSVDNeYYlMdD2ghksR8woKlLyuNKdRIHkt6N+M/doD10Yk8R0OFG9FtBuLUDCKViqbdi7vFbwJyF/iz0j+6tO9VB/fbqmd+2p2EpZGPEYmqTEN31PYGlKNgkk+cpup4YqyPu3y4eS8ETmyUoeEibYTI5moczkaGTOIApuMKPbMojcW//MaKYYXraGIVYo8ZtOHwlQSTMi4K+kIzRnKgSWUaWEvJKxHNWVof8S11f3Fon9J9aTgnxVOy16+eA1TZOEADuEYfDiHItxCCSrAgMMTvMKbc+88Os/OyzSacWY7+zAH5/0XFdyL6A==</latexit>s
<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t
<latexit sha1_base64="g1udoKqo8BCWu2kpDHD3VWkGU3k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu2XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHxkuM7g==</latexit>a

<latexit sha1_base64="fVYtN1fO879ZvvbO3E/FpGNntaU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPx8+M7w==</latexit>

b <latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c
<latexit sha1_base64="OlQqY3YZLIxt2bgUY/MluCmov9E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJu3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCorZNMMWyxRCSqE1CNgktsGW4EdlKFNA4EPgSj25n/8IRK80Tem3GKfkwHkkecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9cKEZTFKwwTVuuu5qfEnVBnOBE5LvUxjStmIDrBrqaQxan8yP3RKzqwSkihRtqQhc/X3xITGWo/jwHbG1Az1sjcT//O6mYmu/QmXaWZQssWiKBPEJGT2NQm5QmbE2BLKFLe3EjakijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fyteM8Q==</latexit>

d
<latexit sha1_base64="RmIhIcc96OVgeQ7eZV6aQIOc4wQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJvbLFbfqzkFWiZeTCuRo9MtfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDzFuM8g==</latexit>e

<latexit sha1_base64="wCg4f6ag7bq0uHXF05Kj5mo8ONE=">AAAB6HicdVBNSwMxEM3Wr1q/qh69BIvgqWRLWdtb0YvHFmwttEvJprNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa0PIh5NbW9/Y3MpvF3Z29/YPiodHHR2nikGbxSJW3YBqEFxC23AjoJsooFEg4DaYXGX+7T0ozWN5Y6YJ+BEdSR5yRo2VWt6gWCJlYuF5OCNujbiW1Ou1SqWO3YVFSAmt0BwU3/vDmKURSMME1brnksT4M6oMZwLmhX6qIaFsQkfQs1TSCLQ/Wxw6x2dWGeIwVrakwQv1+8SMRlpPo8B2RtSM9W8vE//yeqkJa/6MyyQ1INlyUZgKbGKcfY2HXAEzYmoJZYrbWzEbU0WZsdkUbAhfn+L/SadSdr1ytVUtNS5XceTRCTpF58hFF6iBrlETtRFDgB7QE3p27pxH58V5XbbmnNXMMfoB5+0T3GSNAA==</latexit>

6
<latexit sha1_base64="mcoJGQzBqH9XkS8v/ApvgNpkR2o=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8kupba3ghePLdgPaJeSTbNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa4Pxh5Pb2Nza3snvFvb2Dw6PiscnHR2nirI2jUWsegHRTHDJ2oYbwXqJYiQKBOsG0+vM794zpXksb80sYX5ExpKHnBJjpZY3LJZwGVtUqygjbg27ltTrNc+rI3dpYVyCNZrD4vtgFNM0YtJQQbTuuzgx/pwow6lgi8Ig1SwhdErGrG+pJBHT/nx56AJdWGWEwljZkgYt1e8TcxJpPYsC2xkRM9G/vUz8y+unJqz5cy6T1DBJV4vCVCATo+xrNOKKUSNmlhCquL0V0QlRhBqbTcGG8PUp+p90vLJbLVdalVKjso4jD2dwDpfgwhU04Aaa0AYKDB7gCZ6dO+fReXFeV605Zz1zCj/gvH0C0h6M7g==</latexit>

2
<latexit sha1_base64="mcoJGQzBqH9XkS8v/ApvgNpkR2o=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8kupba3ghePLdgPaJeSTbNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa4Pxh5Pb2Nza3snvFvb2Dw6PiscnHR2nirI2jUWsegHRTHDJ2oYbwXqJYiQKBOsG0+vM794zpXksb80sYX5ExpKHnBJjpZY3LJZwGVtUqygjbg27ltTrNc+rI3dpYVyCNZrD4vtgFNM0YtJQQbTuuzgx/pwow6lgi8Ig1SwhdErGrG+pJBHT/nx56AJdWGWEwljZkgYt1e8TcxJpPYsC2xkRM9G/vUz8y+unJqz5cy6T1DBJV4vCVCATo+xrNOKKUSNmlhCquL0V0QlRhBqbTcGG8PUp+p90vLJbLVdalVKjso4jD2dwDpfgwhU04Aaa0AYKDB7gCZ6dO+fReXFeV605Zz1zCj/gvH0C0h6M7g==</latexit>

2
<latexit sha1_base64="mcoJGQzBqH9XkS8v/ApvgNpkR2o=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8kupba3ghePLdgPaJeSTbNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa4Pxh5Pb2Nza3snvFvb2Dw6PiscnHR2nirI2jUWsegHRTHDJ2oYbwXqJYiQKBOsG0+vM794zpXksb80sYX5ExpKHnBJjpZY3LJZwGVtUqygjbg27ltTrNc+rI3dpYVyCNZrD4vtgFNM0YtJQQbTuuzgx/pwow6lgi8Ig1SwhdErGrG+pJBHT/nx56AJdWGWEwljZkgYt1e8TcxJpPYsC2xkRM9G/vUz8y+unJqz5cy6T1DBJV4vCVCATo+xrNOKKUSNmlhCquL0V0QlRhBqbTcGG8PUp+p90vLJbLVdalVKjso4jD2dwDpfgwhU04Aaa0AYKDB7gCZ6dO+fReXFeV605Zz1zCj/gvH0C0h6M7g==</latexit>

2

<latexit sha1_base64="wCg4f6ag7bq0uHXF05Kj5mo8ONE=">AAAB6HicdVBNSwMxEM3Wr1q/qh69BIvgqWRLWdtb0YvHFmwttEvJprNtbDa7JFmhlP4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZFySCa0PIh5NbW9/Y3MpvF3Z29/YPiodHHR2nikGbxSJW3YBqEFxC23AjoJsooFEg4DaYXGX+7T0ozWN5Y6YJ+BEdSR5yRo2VWt6gWCJlYuF5OCNujbiW1Ou1SqWO3YVFSAmt0BwU3/vDmKURSMME1brnksT4M6oMZwLmhX6qIaFsQkfQs1TSCLQ/Wxw6x2dWGeIwVrakwQv1+8SMRlpPo8B2RtSM9W8vE//yeqkJa/6MyyQ1INlyUZgKbGKcfY2HXAEzYmoJZYrbWzEbU0WZsdkUbAhfn+L/SadSdr1ytVUtNS5XceTRCTpF58hFF6iBrlETtRFDgB7QE3p27pxH58V5XbbmnNXMMfoB5+0T3GSNAA==</latexit>

6<latexit sha1_base64="TaonGQNBCbxGS6GR9tMr78xyrWQ=">AAAB6HicdVBNSwMxEM3Wr1q/qh69BIvgqWRLqe2t6MVjC7YW2qVk09k2NptdkqxQlv4CLx4U8epP8ua/MdtWUNEHA4/3ZpiZ58eCa0PIh5NbW9/Y3MpvF3Z29/YPiodHXR0likGHRSJSPZ9qEFxCx3AjoBcroKEv4NafXmX+7T0ozSN5Y2YxeCEdSx5wRo2V2u6wWCJlYlGr4Yy4deJa0mjUK5UGdhcWISW0QmtYfB+MIpaEIA0TVOu+S2LjpVQZzgTMC4NEQ0zZlI6hb6mkIWgvXRw6x2dWGeEgUrakwQv1+0RKQ61noW87Q2om+reXiX95/cQEdS/lMk4MSLZcFCQCmwhnX+MRV8CMmFlCmeL2VswmVFFmbDYFG8LXp/h/0q2U3Vq52q6WmperOPLoBJ2ic+SiC9RE16iFOoghQA/oCT07d86j8+K8LltzzmrmGP2A8/YJ1NCM+w==</latexit>

1
<latexit sha1_base64="2yK1okor7sdDLDftWL6Nm7Zm8qQ=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hdkQ8rgFvHhMwDwgWcLsZDYZMzu7zMwKYckXePGgiFc/yZt/42wSQUULGoqqbrq7/FhwbTD+cDY2t7Z3dnN7+f2Dw6PjwslpV0eJoqxDIxGpvk80E1yyjuFGsH6sGAl9wXr+7Drze/dMaR7JWzOPmReSieQBp8RYqV0bFYq4hC2qVZQRt45dSxqNerncQO7SwrgIa7RGhffhOKJJyKShgmg9cHFsvJQow6lgi/ww0SwmdEYmbGCpJCHTXro8dIEurTJGQaRsSYOW6veJlIRaz0PfdobETPVvLxP/8gaJCepeymWcGCbpalGQCGQilH2NxlwxasTcEkIVt7ciOiWKUGOzydsQvj5F/5NuueRWS5V2pdisrOPIwTlcwBW4UIMm3EALOkCBwQM8wbNz5zw6L87rqnXDWc+cwQ84b5/Zsozz</latexit>

7
<latexit sha1_base64="q1r/EMyAekXRCw0moRczeL087zc=">AAAB63icdVBNS8NAEN3Ur1q/qh69LBbBU0jS2NaDUPTisYKthTaUzXbTLt3dhN2NUEL/ghcPinj1D3nz37hpK6jog4HHezPMzAsTRpV2nA+rsLK6tr5R3Cxtbe/s7pX3DzoqTiUmbRyzWHZDpAijgrQ11Yx0E0kQDxm5CydXuX93T6SisbjV04QEHI0EjShGOpfkhecPyhXHPm/UvDMPOrbj1L1qLSde3feq0DVKjgpYojUov/eHMU45ERozpFTPdRIdZEhqihmZlfqpIgnCEzQiPUMF4kQF2fzWGTwxyhBGsTQlNJyr3ycyxJWa8tB0cqTH6reXi395vVRHjSCjIkk1EXixKEoZ1DHMH4dDKgnWbGoIwpKaWyEeI4mwNvGUTAhfn8L/Scez3Zrt3/iV5uUyjiI4AsfgFLigDprgGrRAG2AwBg/gCTxb3Hq0XqzXRWvBWs4cgh+w3j4BqtaOBA==</latexit>

r = 24

Figure 2: Let P1 = sabct and P2 = sadt. For β = 1/3, the agent will follow the path
P2. Indeed, in node s, the estimated cost is 6 + 1/3(2 + 2 + 2) = 8, which is exactly the
value 1/3 · r of discounted reward, so the agent proceeds to a. When standing in a, the
estimated cost of the remaining part of P1 is now 3 1

3 and of P2 is 3. Both costs are less
than the discounted reward, so the agent follows P2.

We proceed with the formal description of the Kleinberg-Oren’s model.

5

Definition 1.1 (Kleinberg-Oren’s Model [KO14])

An instance of the time-inconsistent planningmodel is a 6-tupleM = (G, w, s, t, β, r)
where:

• G = (V(G), E(G)) is a directed acyclic n-vertex graph called a task graph.
V(G) is a set of elements called vertices, and E(G) ⊆ V(G)×V(G) is a set of
arcs (directed edges). Vertices ofG represent states of intermediate progress,
whereas edges represent possible actions that transition an agent between
states.

• w : E(G) → N0 is a weight function representing the costs of transitions
between states. The transition of the agent from state u to state v along arc
uv ∈ E(G) is of cost w(uv).

• The agent starts from the start vertex s ∈ V(G).

• t ∈ V(G) is the target vertex.

• The rational β ≤ 1 is the agent’s present-bias parameter.

• r ∈ Q≥0 is the reward the agent receives by reaching t.

An agent is initially at vertex s and canmove along arcs in their designated directions.
The agent’s task is to reach the target t. The agent moves according to the following rule.
When standing at a vertex v, the agent evaluates (with a present bias) all possible paths
from v to t. In particular, a v-t path P ⊆ G with edges e1, e2, . . . , ep is evaluated by the
agent standing at v to cost

ζM(P) = w(e1) + β ·
p

∑
i=2

w(ei).

We refer to this as the perceived cost of the path P. For a vertex v, its perceived cost to the
target is the minimum perceived cost of any path to t,

ζM(v) = min{ζM(P) | P is a v-t path}.

We refer to an v-t path P with perceived cost ζM(v) as to a perceived path. If for the agent
in vertex v the perceived cost ζM(v) exceeds β · r, the value of the reward evaluated in
the light of the present bias, the agent abandons the whole project. Thus when in vertex
v, the agent picks one of the perceived paths1 and traverses its first edge, say vu. After
arriving at the new vertex u, the agent computes the perceived cost to the target ζM(u),
selects a perceived u-t path, and traverses its first edge. This repeats until the agent either
abandons the project or reaches t.

1.1 Guiding through specified arcs

We are interested in the variant of the principal-agent problem where the princi-
ple wants the present-biased agent to perform certain tasks. Using the Kleinberg-Oren
model, we model this problem as the following graph modification problem.

1If there are several paths of minimum perceived cost, we assume that an agent uses a consistent tie-
breaking rule, like selecting the node that is earlier in a fixed topological ordering of G.

6

For a set of arcs T ⊆ E(G), we say that an s-t path P is a T-path if P contains all arcs
of T. Our work addresses the following question.

For a given set of prescribed tasks T, is it possible to modify the time-inconsistent
planningmodel by deleting (or adding) a few tasks such that in themodifiedmodel,
the present-biased agent will reach t by following a T-path?

Formally, we study the following algorithmic problems. The first problemmodels the
situationwhen the principal wants to guide the agent through the project by reducing the
available options. The second problem models the situation when, instead of reducing
the choice, the principal could add more choices from a selected family of tasks. In this
case, we assume that we will not create directed cycles when we add arcs.

T-path-Deletion

Input: Time-inconsistent planning model M = (G, w, s, t, β, r), integer k and a set
of arcs T ⊆ E(G).
Task: Find a subset of arcs D ⊆ E(G) of size at most k (or prove that no such set
exists), such that after removing D from M, the present-biased agent will follow a
T-path.

T-path-Addition

Input: Time-inconsistent planning model M = (G, w, s, t, β, r), integer k, a set of
arcs T ⊆ E(G), and a set of additional weighted arcs A ⊂ V × V.
Task: Find a set S of at most k arcs from A (or prove that no such set exists), such
that after adding these arcs to G the agent will follow a T-path.

1.2 Reducing agent costs to achieve the task

The second class of tasks that we are interested in is the problem of reducing the
agent’s costs. As task designers, we would like the agent to achieve the goal withminimal
or limited costs, for example, an agent has a limited budget and cannot spend more than
it. First, we introduce an optimization version of this problem.

We consider that there is no reward in these algorithmic problems, and the agent is
always moving forward. In the case of equal estimates at the vertices, we use a proba-
bilistic model Section 3 and [DFI22] in which, in the case of ambiguity, the agent uses a
distribution to select a path.

Optimal Reducing Expectation by Deletion (Opt-REC-Deletion)

Input: Time-inconsistent planning model M = (G, w, s, t, p, β), integer k.
Task: Find the minimum value of E(Cβ), which can be achieved by removing no
more than k arcs from the graph G.

7

Optimal Reducing Expectation by Addition (Opt-REC-Addition)

Input: Time-inconsistent planning model M = (G, w, s, t, p, β), integer k and a set
of additional weighted arcs A ⊂ V × V.
Task: Find the minimum value of E(Cβ), which can be achieved by addition no
more than k arcs from A to the graph G.

We also study decision problems Reducing Expectation of Cost by Deletion and Re-
ducing Expectation of Cost by Addition.

Reducing Expectation of Cost by Deletion (REC-Deletion)

Input: Time-inconsistent planning model M = (G, w, s, t, p, β), integers k, ℓ.
Task: Is there a S ⊆ E, |S| ≤ k such that in G − S math expectation E(Cβ) ≤ ℓ.

Reducing Expectation of Cost by Addition (REC-Addition)

Input: Time-inconsistent planning model M = (G, w, s, t, p, β), integers k, ℓ and a
set of additional weighted arcs A ⊂ V × V.
Task: Is there a set S of at most k arcs from A, such that after adding these arcs to
G the agent expectation E(Cβ) ≤ ℓ.

The process of adding and deleting arcs could be simulated by changing the weights
of the arcs. This more general model, where the principal could change the weights of
the arcs in order to motivate the agent, is much more algorithmically challenging. We
consider that it is possible to increase and decrease the weight on the edges, as well as
create new edges within the budget. All weights in the resulting graph should be in N0.
Thus, we formulate the following more general problem.

Reducing Expectation of Cost with the Budget (REC-Budget)

Input: Time-inconsistent planning model M = (G, w, s, t, p, β), integers ℓ and
budget B.
Task: Is there a reassignment of the weights on the edges in the graph G for a
given budget B so that E(Cβ) ≤ ℓ.

1.3 Our contribution

Motivation to complete tasks. Our work extends the current understanding and offers
a nuanced perspective on the interplay between computation tractability, graph theory,
and decision-making scenarios involving present-biased agents. In our algorithmic study
of T-path-Deletion and T-path-Addition, we use the tools of parameterized complexity.

We start with establishing the hardness of the T-path-Deletion problem parameter-
ized by k. The problem trivially belongs to the class XP. An algorithm of running time
|E(G)|k · poly(|M|) is to try all subsets of at most k arcs and simulate in polynomial time
the actions of the agent on the graph, resulting in the removal of each of the subset.
In Theorem 4.1, we show that T-path-Deletion is W[1]-hard parameterized by k even
when T consists of a single arc. This shows that designing an algorithm of running time
f (k) · poly(|M|) is highly unlikely for any function f of k only. We refine this result in
Theorem 4.2 by establishing that T-path-Deletion problem is Para-NP-hard with various

8

parameters. In particular, the problem is NP-hard when the maximum cost of the T-path
is 6, when the reward r = 48, there exists only T-path, or when the input graphG has only
one heavy arc, and all its other arcs are of weight 1. Thus, Theorem 4.2 refute the exis-
tence of parameterized algorithms for many natural parameters of the time-inconsistent
model.

The intractability results of T-path-Deletion lead us to contemplate the following
question: although deriving efficient algorithms for general scenarios seems unlikely, could
certain structural properties of the instance be algorithmically exploited? In other words,
while the overall problem may be inherently challenging, there may be specific proper-
ties within certain instances that could be leveraged to developmore efficient algorithms.
We introduce two such structural properties, shedding light on potential avenues for al-
gorithmic improvement in the context of T-path-Deletion.

The first structural property that we exploit algorithmically is the following. Suppose
that in the input graphG, any path from s to t contains atmostm edges. This corresponds
to the situationwhen any sequence of tasks, either taken or anticipated by the agent, con-
tains at most m steps. In Theorem 4.4, we give an FPT algorithm parameterized by k and
m. Our second parameterization concerns the situation when the underlying undirected
graph has a small number of edge-disjoint cycles. Every such cycle could potentially force
the agent to change the decision. Thus this parameter is related to the number of nodes
where the time-inconsistent agent could change his mind. The main result here is The-
orem 4.5, which establishes the possibility of compressing the instance when the under-
lying graph of G has a small number of edge-disjoint cycles. More precisely, a feedback
edge set of an undirected graph is a set of edges whose removal turns the graph into a
forest. Informally, Theorem 4.5 proves that there is a polynomial time algorithm that, for
any instance of the problem, constructs an equivalent instance whose size is bounded by
a polynomial of the minimum feedback edge set of the underlying undirected graph. In
other words, T-path-Deletion admits a polynomial kernel parameterized by the size of a
feedback edge set of the underlying undirected graph. In particular, this implies that the
problem is FPT parameterized by the size of a feedback edge set.

Finally, we provide several algorithmic results for the T-path-Addition problem. We
consider the case when the set of prescribed arcs T form a path P containing all vertices of
the graph. In terms of principal-agent problem, this corresponds to the following inter-
esting scenario. The principal already decided on the sequence of steps the agent should
perform. However, in order the agent to move along this path, the anticipated cost of
the proposed path needs to be lowered. Coming back to our example with Alice and Bob,
Bob already knows what work Alice has to perform but Alice is too scared by anticipated
amount of time she has to spend on these tasks. Could Bob add some tasks (shortcuts to
the path) such that Alice at the end will do all the tasks from T? As we will see in Theo-
rem 4.6, even in this case, T-path-Addition remains intractable. On the positive side, in
Theorem 4.7, we prove that for a wide class of problems with a well-separable properties
of additional tasks, the problem becomes FPT.

Reducing the agent’s path.Westartwith (1
β)

n-approximation for theOpt-REC-Deletion
problem. On the other hand, we refine this result in Theorem 5.1 by establishing that
there is no (1

β − ε)n–approximate FPT algorithm with parameter k under the assumption
W[1] ̸= FPT for any ε > 0. In Theorem 5.2 and corollary 5.2, we show that REC-Deletion
problem is NP-hard, as well as W[1]-hard with respect to the parameter k and several
other parameters that naturally arise in this setting.

For the setting, when the principal wants to add arcs to reduce agent costs, in Theo-
rem5.4, we show that for Opt-REC-Addition problem there is polynomial algorithmwhen

9

the input graph of the problem is a path on n vertices and set A is detours on the path.
But Theorem 5.5 shows that the problem is NP-hard in general case.

Finally, we consider the case when the process of graph modification can be repre-
sented as a change in the weight of arcs. In Theorem 5.6, we establish that REC-Budget
problem is NP-hard.

1.4 Related work

Themathematical ideas of present bias go back to the 1930swhen [Sam37] introduced
the discounted-utility model. It has developed into the hyperbolic discounting model,
one of the cornerstones of behavioral economics [Lai94, MLLC04]. The model of time-
inconsistent planning that we adopt for our work is due to Kleinberg and Oren [KO14,
KO18]. It could be seen as a special case of the quasi-hyperbolic discounting model (see
e.g. [Lai94, MLLC04]), which also generalizes both Samuelson’s discounted-continuity
model [Sam37] and Akerlof’s salience factor [Ake91]. While there is a lot of empiri-
cal support for this model, there are also known psychological phenomena about time-
inconsistent behavior it does not capture [FLO02].

There is a significant amount of follow-up work on the model of Kleinberg and Oren,
see e.g. [DFI22, FS20, HS23, GILP16, KOR16, KOR17, MPS22]. In particular, the following
two problems are most relevant to our model.

The first problem is of finding a motivating subgraph. In our model, this corresponds
to the situation when the set of prescribed arcs T is empty. [TTW+17] show that find-
ing motivating subgraphs is NP-complete. They also investigate a few variations of the
problem where intermediate rewards can be placed on vertices. [AK19] independently
show that finding a motivating subgraph is NP-complete. Furthermore, they show that
the approximation version of the problem (finding the smallest r such that a motivating
subgraph exists) cannot be approximated in polynomial time to a ratio of

√
n/3 unless P =

NP. Still, a 1 +
√

n -approximation algorithm exists. They also explore another variation
of the problem with intermediate rewards. [FS20] studied the parameterized complexity
of computing a simplemotivating subgraph. [AK17] study a variation on themodel where
the designer is free to raise arc costs.

The second problem related to our work is the P-motivating subgraph problem of
[OS19]. In this variant of the principal-agent problem with a present-biased agent, the
principal identifies an s-t path P in the task graph G. Then the question is whether there
is a subgraph ofG, such that in this subgraph, the agent will follow along P. In ourmodel,
this corresponds to the situation when the prescribed arcs T form the edge set of P. Also,
the difference with our model is that [OS19] looks for any P-motivating subgraph, while
in our model, we are interested in a subgraph from the original graph by a small number
of arc deletions/additions. [OS19] prove that the P-motivating subgraph problem is NP-
complete even when there are only two different costs of arcs. In the same scenario of
two costs, [OS19] gave an algorithm that runs in polynomial time when the number of
light arcs in the path P is a constant.

Finally, in graph algorithms, a prevalent subject of interest revolves around graph
modifications, wherein the objective is to alter a graph bymodifying adjacencies or delet-
ing vertices to achieve a graph with predefined properties. For comprehensive insights
into this topic, we direct readers to surveys such as [BBD06, CDFG23, NSS01]. Our con-
tribution can be viewed as an augmentation to the existing body of literature within this
vibrant research domain.

10

2 Preliminaries

2.1 Parameterized complexity

We briefly recap the main definitions of parameterized complexity.

Definition 2.1
A parameterized problem is a language Q ⊆ Σ∗ × N, where Σ∗ is the set of strings
over a finite alphabet Σ. Respectively, an input of Q is a pair (I, k) where I ∈ Σ∗

and k ∈ N; k is the parameter of the problem.

We define the size of an instance (x, k) of a parameterized problem as |x| + k. One
interpretation of this convention is that, when given to the algorithm on the input, the
parameter k is encoded in unary.

Definition 2.2
A parameterized problem Q is fixed-parameter tractable (FPT) if it can be decided
whether (I, k) ∈ Q in time f (k) · |I|O(1) for some computable function f that de-
pends of the parameter k only. Respectively, the parameterized complexity class
FPT is composed of fixed-parameter tractable problems.

For technical reasons, it will be convenient to assume, from now on, that f is also
nondecreasing. We now define the complexity class XP.

Definition 2.3
A parameterized problem Q is slice-wise polynomial (XP) if it can be decided
whether (I, k) ∈ Q in time f (k) · |I|g(k) for some computable functions f , g that
depends of the parameter k only. Respectively, the parameterized complexity class
XP is composed of slice-wise polynomial problems.

The W-hierarchy is a collection of computational complexity classes: we omit the
technical definitions here. The following relation is known amongst the classes in the
W-hierarchy: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. It is widely believed that
FPT ̸= W[1], and hence if a problem is hard for the class W[i] (for any i ≥ 1) then it is
considered to be fixed-parameter intractable. For our purposes, to prove that a problem
isW[1]-hard it is sufficient to show that an FPT algorithm for this problem yields an FPT
algorithm for some W[1]-complete problem. We also use notation Para-NP-hard with
parameter k that means NP-hard for a constant value of the parameter k. We refer to
[CFK+15] for an introduction to parameterized complexity.

2.2 Kernelization

Preprocessing, or data reduction, is a widely used technique in almost all practical
computer implementations that aim to solve NP-hard problems. The goal of the prepro-
cessing step is to efficiently solve the easier parts of a problem instance and reduce (or
shrink) it to its more difficult core structure, which is called the problem kernel of that
instance. In other words, this method aims to reduce (but does not necessarily solve) a
given problem to an equivalent, smaller instance in time that is polynomial in the size of
the input. A slower, exact algorithm can then be used to solve this smaller instance.

11

Recall that a kernelization algorithm, given an instance (I, k) of some parameterized
problem, runs in polynomial time and outputs an equivalent instance (x′, k′) of the same
problem such that |I′|, k′ ≤ f (k), for some computable function f . This instance (I′, k′) is
called the kernel, and function f is called the size of the kernel. Kernelization is one of the
fundamental tools for parameterized algorithms, and it is well known that a problem ad-
mits a kernel from parameter k if and only if there exists an FPT algorithm for it from this
parameter. We refer to books [CFK+15, FLSZ19] for further expositions of kernelization.

2.3 Time-inconsistent planning

Let Pβ(s, t) be a s-t path followed by an agent with present-bias β and let cβ(s, t) be
the cost of this path. Let d(s, t) be the distance, that is the cost of a shortest s-t path.
Then Kleinberg and Oren defined the measure describing the “price of irrationality” of
the system.

Definition 2.4
The cost of the irrationality of the model M = (G, w, s, t, β) is

cβ(s, t)
d(s, t)

.

Is there some bounds for the cost of irrationality? To begin with, it can be exponential
relative to the number of vertices in the graph.

Example 2.1 ([KO14])

There is the graph with n vertices in which cost of irrationality equals µn, where
µ < 1/β.

s t

v1

v2 v3

v4

v5x

µx
µ2x

µ3x
µ4x

µ5x

0

0
0

0

0

Figure 3: Akerlof example.

On the other hand, each graphwith a high cost of irrationality has a specific structure.
We describe this structure in the following theorem. Let σ(G) denote the skeleton of
G, the undirected graph obtained by removing the directions on the edges of G. Let Fk
denote the graph with nodes v1, v2, . . . , vk, and w, and edges (vi, vi+1) for i = 1, . . . , k − 1,
and (vi, w) for i = 1, . . . , k. We refer to Fk as the k-fan.

Theorem 2.1 ([KO14])

For every λ > 1 there exist n0 > 0 and ε > 0 such that if n > n0 and
cβ(s, t)/d(s, t) > λn, then σ(G) contains an Fk-minor for some k ≥ εn.

12

3 Probabilistic Model

The results of this section have been published in [DFI22]. For a more detailed pre-
sentation of the results, you can check the paper.

One omitted detail in the definitionmakes themeaning of the cost of irrationality am-
biguous. It could be that several paths with minimum perceived cost ζM(v) lead from v.
In this situation an agent in the state vmight be indifferent between several arcs leaving
v—they both evaluate to equal perceived costs. While for the agent standing in a vertex v
the perceived costs of all perceived paths are the same, the actual costs of feasible paths
could be different.

Because of that, we revisit themodel of Kleinberg andOren in [KO14] and redefine the
cost of irrationality. Our approach is natural—when in doubt, toss a coin! When several
paths of minimum prescribed cost lead from v, the agent selects one of them with some
probability and traverses the first arc of this path.

Thus the instance of the inconsistent planning model is a 6-tuple M = (G, w, s, t, p, β),
where for each edge uv of the task graph, we assign the probability p(u, v) of transition
u → v. Here for every u ∈ V(G), ∑uv∈E(G) p(u, v) = 1.

Moreover, the probability can be positive only for edges that could serve for transi-
tions of the agent. In other words, p(u, v) > 0 only if there is a u-t path P of perceived
cost ζM(u)whose first edge is uv. The selection of probability p corresponds to some pre-
dictions or future preferences in breaking the ties. For example, when the agent at stage
u faces ℓ u-t paths of minimum perceived cost and has no preferences over any of them, it
would be natural to assign each transition from u the probability 1/ℓ. On the other hand,
if the agent has preferences in selecting from paths of equal costs, this can be controlled
by a different selection of p. With these settings, we call an s-t path P feasible, if with a
non-zero probability the present-biased agent will follow P.

Now we can define the cost of the agent with present-bias β as discrete random vari-
able Cβ with Pr(Cβ = W) being the probability that the path traversed by the agent is of
costW. Then we can redefine the cost of irrationality as follows.

Definition 3.1 ([DFI22])

The cost of the irrationality of the model M = (G, w, s, t, p, β) is

Xβ =
Cβ

d(s, t)
.

Let us note that when no ties occur, our definition coincides with the definition of
Kleinberg and Oren. Estimating the cost of irrationality Xβ could help the task-designer
to evaluate the chances of abandonment, the situationwhen an agent realizes that accom-
plishing the task takes much more effort than he presumed initially, and thus ultimately
gives up.

3.1 Contribution

We introduce the randomized version of the cost of irrationality and initiate its study
from the computational perspective. To support our point of view on the cost of irra-
tionality, we start from the combinatorial result, showing that there are time-inconsistent
planningmodels with exponentially (in n) many feasible paths of different costs. It yields

13

that in the deterministic model of Kleinberg and Oren (Definition 2.4) there could be ex-
ponentially many different costs of irrationality.

To study the cost of irrationality Xβ, we define the following computational problem.

Estimating the Cost of Irrationality (ECI)

Input: A time-inconsistent planning model M = (G, w, s, t, p, β), andW ≥ 0.
Task: Compute Pr(Xβ ≤ W).

We show that ECI is #P-hard. Thus computationally, ECI is not easier than counting
Hamiltonian cycles, counting perfect matching, satidying assignments, and all other #P-
complete problems. Our hardness proof strongly exploits the fact that the edge weight w
of themodel are exponential in the n, the number of vertices ofG. We show that when the
edge weights are bounded by some polynomial of n, then ECI is solvable in polynomial
time. We also obtain polynomial time algorithms, even for exponential weights, for the
important “border” cases: minimum, maximum, and average. More precisely, we prove
that each of the following tasks

(a) finding the minimum value W such that Pr(Xβ ≤ W) is positive and computing
Pr(Xβ ≤ W),

(b) finding the minimum valueW such that Pr(Xβ ≤ W) = 1, and

(c) computing E(Xβ),

can be done in polynomial time.
We also take a look at ECI from the perspective of structural parameterized complex-

ity. Structural parameterized complexity is the common tool in graph algorithms for an-
alyzing intractable problems. We prove the following

• ECI is #P-hard even when in the inconsistent planning model M = (G, w, s, t, p, β),
we have tw(G) = 2.

• ECI is W[1]-hard parameterized by fvs(G) and by vc(G). On the other hand, ECI is
solvable in times nO(fvs(G)) and nO(vc(G)).

On the other hand, when parameterized by the minimum size of the feedback edge set
of the underlying graph, fes(G), that is the set of edges whose removal makes the graph
acyclic, the problem becomes fixed-parameter tractable.

4 Motivation to Complete Tasks

4.1 Motivate by deletion

In this section we study the complexity of the T-path-Deletion problem. We show
that it is NP-hard, as well asW[1]-hard with respect to the parameter k and several other
parameters that naturally arise in this setting. Also in Theorems 3 and 4 we show that the
problem admits an FPT algorithm with respect to the structural parameter fes, and also
that by adding a new parameter—the maximum edge length of the path, one can obtain
an efficient parameterized algorithm.

To prove hardness, we will reduce the NP-hard problem Shortest Path Most Vital
Edges [BFN+19] to our problem. In [GT11] authors prove that the SP-MVE problem is

14

W[1]-hardwith parameter k andpolynomialweights on the arcs. The original formulation
of the SP-MVE problem assumes an undirected graph, but all the results are preserved
for the case of an directed acyclic graph.

Shortest Path Most Vital Edges (SP-MVE)

Input: A directed acyclic graph G = (V, E) with positive arcs lengths, two vertices
s, t ∈ G, and integers k, ℓ ∈ N.
Task: Is there an arc subset S ⊆ E, |S| ≤ k, such that the length of a shortest s-t
path in G − S is at least ℓ?

The following theorem rules out algorithms with a running time of f (k) · |V(G)|O(1)

for T-path-Deletion, for any function f of k only.

Theorem 4.1
T-path-Deletion isW[1]-hard parameterized by k for any β ≤ 1 even when T con-
sists of a single arc and the weights of arcs are polynomial in |V(G)|.

Proof. We construct a parameterized reduction from the SP-MVE problem to the T-path-
Deletion problem. Let (G, s, t, k, ℓ) be an input of SP-MVE such that weights of arcs of G
are bounded by a polynomial in the number of vertices of theG. We construct an instance
of T-path-Deletion M = (G′, w, s′, t′, β, r), integer k′ and a set of arcs T ⊆ E(G) such that
in G′ at most k arcs can be removed to motivate the agent to pass along the T-path if and
only if in G it is possible to remove at most k arcs so that the shortest path between s and
t is at least ℓ.

We construct graph G′ from G as follows. We start the construction of G′ by multi-
plying all the arcs’ weights of G by 2. Then we add new vertices s′, v1, t′ and arcs with
the following weights: w(s′v1) = 0, w(v1t′) = 2ℓ − 1, w(s′s) = 0, and w(tt′) = 0, see
Fig. 4. We put one prescribed arc T = {s′v1}, parameter k′ = k, and reward r = 2ℓ

β . Fi-
nally, we make arc s′s and tt′ of multiplicity k + 1. Thus G′ has |V(G)|+ 3 vertices and
|E(G)|+ 2k + 4 arcs.

s′

s t

t′

v1

0 0

0 2ℓ− 1

G

Figure 4: The construction of the graph G′ for Theorem 4.1.

Such a construction could clearly be done in time polynomial in k and |V(G)|. Thus,
to prove that this is an FPT-reduction, it remains to show that the reduction transforms
an instance of T-path-Deletion into an equivalent instance of SP-MVE. In other words,
we have to prove that (M = (G′, w, s′, t′, β, r), k′, T) is a yes-instance of T-path-Deletion
if and only if (G, s, t, k, ℓ) is a yes-instance of SP-MVE.

15

First, the principal wants the agent to pass through T = s′v1 and thus through the
path s′v1t′. Hence, none of the arcs of this path could be removed. Second, in G′ arcs
s′s and tt′ are of multiplicity k + 1, but the principal could remove at most k′ = k arcs.
Therefore, it is safe to assume that in every solution to SP-MVE, none of these arcs is
removed. This allows us to conclude that the only arcs the principal could remove to
reach his goal are from G. Let D be the set of k arcs deleted by the principal from G.

The agent starts at vertex s′. Currently, the perceived cost of the upper path s′v1t′ is
β(2ℓ− 1). If the agent moves to v1, he will follow the path s′v1t′ because the perceived
reward β · r is always more than the perceived costs along this path at each step. The
only reason why the agent decides not to follow this path is that there is another path in
G′ − D with a smaller estimated cost, which should be at most β(2ℓ− 2). The arcs s′s and
tt′ are of zero costs, and the principal reaches his goal if and only if graph G′ − D has no
path from s to t of cost at most 2ℓ− 2. Since in G′ the weights of the arcs taken from G
are twice their original weights in G, it means that the agent will move to v1 instead of
s′ in G′ − D (and thus will follow the plans of the principal) if and only if the length of a
shortest s-t path in G − D is at least ℓ.

Corollary 4.1

T-path-Deletion problem isW[1]-hard parameterized by the number of light arcs
(set of arcs that have the minimum weight in the instance).

Proof. We use reduction from Theorem 4.1. We turn all arcs of cost more than 1 into a
sequence of arcs of weight 1 in graph G′ Fig. 4. While the size of the graph increases, it
is still bounded by a polynomial of the size of the original graph. In the new graph, we
have arcs of only two weights, and the number of light arcs equals 2k + 3.

Theorem 4.1 can also be generalized to the case of any constant |T| ≥ 1, we can
split the arc s′v1 into path s′u1 . . . uhv1 with zero arcs where h is a constant and set T =
{s′u1, u1u2, . . . , uhv1}. It means that T-path-Deletion is W[1]-hard parameterized by k
with any constant |T| ≥ 1. On the other hand, the problem is alsoW[1]-hard parameter-
ized by k with an empty set T, see Theorem 4.3.

The lower bound established in Theorem 4.1 immediately questions whether there is
a potential for more refined parameterizations to yield parameterized tractability. Un-
fortunately, the problem is Para-NP-hard for many natural parameters like the value of
the reward r or the cost of an T-path. That is, the problem remains NP-hard even when
these parameters are constants. We summarize these results in the following theorem.

Theorem 4.2
T-path-Deletion problem remains NP-hard even when one of the following con-
ditions holds.

1. The costs of any T-paths in M does not exceed C ≤ 6.

2. The reward r is a constant that does not exceed 48.

3. There is a unique T-path in G.

4. All arcs in G but one are of weight 1.

5. Any path from s to t contains at most m = 8 arcs.

16

Proof. The proof is similar to the Theorem 4.1 except for some parameters. We construct
a parameterized reduction from the SP-MVE problem to the T-path-Deletion problem.
Let (G, s, t, k, ℓ) be an input of SP-MVE such that weights of arcs of G are bounded by
a polynomial in the number of vertices of the G. We construct an instance of T-path-
Deletion M = (G′, w, s′, t′, β, r), integer k′ and a set of arcs T ⊆ E(G) such that in G′ at
most k arcs can be removed to motivate the agent to pass along the T-path if and only if
in G it is possible to remove at most k arcs so that the shortest path between s and t is at
least ℓ.

We construct graph G′ from G as follows. We add new vertices s′, v1, v2, t′ and arcs
with the following weights: w(s′v1) = ℓ/2, w(v1t′) = 1, w(s′v2) = 1, w(v2s) = ℓ and
w(tt′) = 1, see Fig. 5. We put one prescribed arc T = {s′v1}, parameter k′ = k, and
reward r = ℓ

β . Finally, we make arc s′v2, v2s and tt′ of multiplicity k + 1. Thus G′ has
|V(G)|+ 4 vertices and |E(G)|+ 3k + 5 arcs.

s′

v2 s t

t′

v1

1

ℓ

1

ℓ/2 1

G

Figure 5: The construction of the graph G′ for Theorem 2.

Note that the agent will not remain at the vertex s′ since the anticipated cost of the
path s′v1t′ is less than βr. Let’s set the agent’s estimates at the vertex s′:

1 + βℓ+ β(ℓ− 1) + β <
ℓ

2
+ β < 1 + βℓ+ βℓ+ β.

Then
ℓ− 2

4ℓ
< β <

ℓ− 2
4ℓ− 2

, we set β any rational number in this interval.

We now show that the answer to the SP-MVE problem is positive if and only if the
answer to the T-path-Deletion problem is positive. Thus, the agent will choose to go
to graph G if and only if there is a path between s and t of length no more than ℓ − 1.
Hence, in graph G′, at most k edges can be removed to motivate the agent to pass along
the T-path if and only if in a graph G, it is possible to remove at most k edges so that the
shortest path between s and t is at least ℓ.

Let’s look at the complexity of the problem with in terms of natural parameters.

1. It is proven in [BFN+19] that Shortest Path Most Vital Edges problem is NP-hard
with ℓ ≥ 9 for undirected graphs. It can be easily seen that the result also holds
for directed acyclic graphs. Hence, in the reduction we solve a NP-hard problem
with the value of the parameter ℓ = 10 using the solution of the T-path-Deletion
problem with parameter cost of the T-path P: ℓ′ = ℓ/2 + 1 = 6.

2. We know that ℓ−2
4ℓ < β < ℓ−2

4ℓ−2 , so
(4ℓ−2)·ℓ

ℓ−2 < r < ℓ·4ℓ
ℓ−2 , since r = ℓ

β . When ℓ = 10 we
have 47 1

2 < r < 50. Thus, the T-path-Deletion problem is NP-hard with r = 48.

3. In graph G′ there is only one T-path sv1t.

17

4. According to [BFN+19], Shortest Path Most Vital Edges remains NP-hard on di-
rected graphs with edges of unit wights. In this way, all arcs in graph G will be of
unit weight, and the arc v2s is split into ℓ unit arcs with multiplicities of k + 1. In
the proof of Theorem 2 we have all arcs except for one of weight 1.

5. Shortest PathMost Vital Edges problem isNP-hard on the graphs in which any path
from s to t contains at most 5 arcs [BFN+19]. Thus, in graph G′, any path from s′ to
t′ contains no more than 8 arcs.

Theorem 4.3
T-path-Deletion isW[1]-hard parameterized by k even when T is empty set.

Proof. We use the same reduction from Theorem 2 except for the set T = ∅. Let’s look
at the agent’s decision at the vertex v2, the agent evaluates any path v2s . . . tt′ at least as
ℓ+ β, which is more than expected reward βr = ℓ, so if the agent goes to the vertex v2,
then he will never reach the vertex t′.

The lower bounds of Theorem 4.1 and Theorem 4.2 create an impression that no ef-
ficient algorithms for T-path-Deletion could exist for any reasonable scenario. Despite
that, we can identify two interesting parameterizations that make the problem compu-
tationally tractable. The first parameter models the natural situation when any sequence
of tasks, either taken or anticipated by the agent, contains a bounded number of steps
m. In other words, in this model we assume that in the input graph G, any path from
s to t contains at most m edges. Although our problem is Para-NP-hard for the parame-
ter m and W[1]-hard parameterized by k. Our next theorem provides an FPT algorithm
parameterized by k and m.

Theorem 4.4

T-path-Deletion problem is solvable in time O(m2k) · poly(|M|).

Proof. To prove the theorem, we employ the classic technique of parameterized algo-
rithms, namely branching. The idea is to identify a subgraph H of G with at mostm2 arcs
such that if the principal can motivate the present-biased agent to move over edges of T
by removing a set D of at most k arcs, then at least one arc of D should be from H.

Consider how the present-biased agent navigates from s to t in graph G. If the agent’s
path includes all arcs from T, there is no need for the principal to delete any arc from G,
so we set D = ∅. Otherwise, we construct a subgraph H of G as follows.

Let P0 = sv1v2 · · · vp, p ≤ m, be the path along which the present-biased agent tra-
verses inG from s to t (perhaps not reaching the vertex t if the agent abandons the project
at vertex vp). When standing at a vertex vi, 1 ≤ i ≤ p − 1, the agent evaluates (with a
present bias) all possible paths from vi to t. Wepick up a path Pi of theminimumperceived
cost ζM(Pi) from vi to t. Then we define the graph H as the union of paths H = ∪p−1

i=0 Pi.
For every 0 ≤ i ≤ p − 1, path Pi has at most m − i arcs. Thus, the number of arcs in
subgraph H does not exceed ∑m

i=0(m − i) ≤ m2. Since computing the perceived cost of a
path could be done in polynomial time [KO14], the time required to construct graph H is
polynomial in the input size.

Let D ̸= ∅, |D| ≤ k, be the arcs the principal deletes to achieve his goals. We claim
that at least one arc of D is from H. Indeed, if this is not the case, then the minimum

18

value ζM(vi) for each vertex vi in graph G − D does not change. Hence, if none of the
arcs of H are deleted, the agent will traverse G − D along the path P0 and thus will not
traverse all arcs from T.

This suggests the following branching algorithm. We go through all arcs of H. By the
above arguments, we know that at least one of the arcs, say e, is inD. Thus, for the correct
guess of the arc e, we have that M = (G, w, s, t, β, r) with parameter k is a yes-instance
if and only if M′ = (G − e, w, s, t, β, r) with parameter k − 1 is a yes-instance. In other
words, we employ the following branching algorithm:

(i) Compute graph H and branch into |E(H)| = O(m2) subproblems, corresponding
to removing an arc from G and reducing the parameter by 1. (ii) Repeat the procedure
recursively. That is, in polynomial time, we find a new path of the agent P′ in graph
G′ := G − e and check if it contains all the selected arcs. If yes, then we stop; otherwise,
go to step (i).

To analyze the running time of the algorithm, we obtain a branching tree of depth k
and arity at mostm2, and thus withO(m2k) nodes. For each tree node, we compute graph
H, which is done in time polynomial in |M|. Thus, the running time of the algorithm is
m2k · poly(|M|).

Our second algorithmic result about T-path-Deletion concerns the limited number of
situationswhen an agent could change a decision. Let us note that the agent could change
his mind only when he is on a vertex of some cycle of the underlying undirected graph.
The following parameterization concerns the situation when the underlying undirected
graph has few edge-disjoint cycles.

A feedback edge set of an undeirected graph G is the set of edges whose removal makes
G acyclic. For a directed graphG, we use fes(G) to denote theminimum size of a feedback
edge set of the underlying undirected graph of G. Equivalently, fes(G) is the cyclomatic
number of the underlying graph. Note that if G is weakly connected, that is, the under-
lying graph of G is connected, then fes(G) = |E(G)| − |V(G)|+ 1.

We consider kernelization for T-path-Deletion parameterized by fes(G). Recall that
a kernelization algorithm, given an instance (x, k) of some parameterized problem, runs
in polynomial time and outputs an equivalent instance (x′, k′) of the same problem such
that |x′|, k′ ≤ f (k), for some function f . This instance (x′, k′) is called the kernel, and
function f is called the size of the kernel. Kernelization is one of the fundamental tools
for parameterized algorithms, and it is well known that a problem admits a kernel from
parameter k if and only if there exists an FPT algorithm for it from this parameter. We
refer to books [CFK+15, FLSZ19] for further expositions of kernelization.

It is convenient for us to consider the more general variant of our problem, called T-
path-Deletion with False Promises, where promised rewards for distinct vertices may be
distinct. Formally, we consider time-inconsistent planning models M = (G, w, s, t, β, r)
where r : V(G) → R≥0. In this variant of the model, the agent occupying a vertex v
abandons the project if ζM(v) > β · r(v). Note that T-path-Deletion is a special case of
T-path-Deletion with False Promises where r(v) = r.

To obtain a kernel, we have to compress weights and rewards. For this, we use the
approach proposed by Etscheid et al. [EKMR17] that is based on the result of Frank and
Tardos [FT87].

Proposition 4.1 ([FT87]). There is an algorithm that, given a vector w ∈ Qd and an in-
teger N, in polynomial time finds a vector w ∈ Zd with ∥w∥∞ ≤ 24d3

Nd(d+2) such that
sign(w · b) = sign(w · b) for all vectors b ∈ Zd with ∥b∥1 ≤ N − 1.

19

Theorem 4.5
There is a polynomial-time algorithm that, given an instance of T-path-Deletion
with False Promises, outputs an equivalent instance where the graph has at most
8 fes(G) + 3 vertices and at most 9 fes(G) + 2 arcs. Moreover, if the weights and
rewards are rational, and β is a rational constant which is not a part of the input,
then the T-path-Deletionwith False Promises problem admits a polynomial kernel
when parameterized by the size of a feedback edge set of the input graph.

Proof. Let (M, k, T) be an instance of T-path-Deletion with False Promises with M =
(G, w, s, t, β, r). Let also f = fes(G). We apply the following reduction rules.
Rule 1. If there is v ∈ V(G) \ {s, t} with din(v) = 0 or dout(v) = 0, then set G := G − v.
Furthermore, if v is incident to an arc from T, then stop and return a trivial no-instance
of T-path-Deletion with False Promises.

The rule is safe, that is, it returns an equivalent instance of the problem because v
with din(v) = 0 or dout(v) = 0 cannot be involved in any s-t path or agent’s evaluation.
We apply Rule 1 exhaustively. The next rule is trivially safe.
Rule 2. If t is not reachable from s then stop and return a trivial no-instance.

Notice that if we did not stop after applying the rules then s and t are unique source
and target, respectively, of G. In particular, for each vertex v, v is reachable from s and t
is reachable from v. The next rule is crucial for kernelization.
Rule 3. If G has a path xyz such that dout(x) = 1 and din(y) = dout(y) = 1 then

• delete y and add an arc xz,

• set w(xz) := w(xy) + w(yz),

• if T ∩ {xy, yz} ̸= ∅ then set T := (T \ {xy, yz}) ∪ {xz},

• set r(x) := min{r(x) + 1−β
β w(yz), r(y) + 1

β w(xy)}.

To argue that the rule is safe, assume that the instance (M′, k, T′) is obtained by the
application of the rule from (M, k, T) and denote by w′ and r′ the obtained weight and
reward functions. We claim that the instances are equivalent.

For the forward direction, assume that (M, k, T) is a yes-instance. Then there is a set
of arcs D of size at most k such that after removing D from G, the present-biased agent
follows a T-path P. We define D′ = (D \ {xy, yz})∪ {xz} if {xy, yz} ∩ D ̸= ∅, and we set
D′ = D otherwise. Note that |D′| ≤ |D| ≤ k. We claim that D′ is a solution to (M′, k, T′).
The claim is trivial if P does not contain x because in this case xy, yz /∈ E(P). Assume
that this is not the case and x ∈ V(P). Let Q be the x-t subpath of P. Because dout(x) = 1
and din(y) = dout(y) = 1, xyz is a prefix of Q. Because the agent does not abandon the
project, ζM(x) ≤ β · r(x) and ζM(y) ≤ β · r(y). Suppose that r′(x) = r(x) + 1−β

β w(yz).
Then ζM′(x) = ζM(x) + (1 − β)w(yz) ≤ β · r′(x). If r′(x) = r(y) + 1

β w(yz) then ζM′(x) =
ζM(y) + w(xy) ≤ β · r′(x). Therefore, the agent occupying x would not abandon the
project in the modified graph. Thus, the agent would follow the path Q′ obtained from
Q by the replacement of xyz by xz. This implies that the path P′ obtained from P by the
replacement of xyz by xz is a T′-path in G′ − D′ in the modified instance and the agent
should follow it. We conclude that (M′, k, T′) is a yes-instance.

For the opposite direction, assume that (M′, k, T′) is a yes-instance and denote by D′

a set of arcs of G′ of size at most k such that after removing D′ from G′, the present-
biased agent follows a T′-path P′. If xz ∈ D′, we set D = (D′ \ {xz}) ∪ {xy}, and we set

20

D = D′ otherwise. By the definition, |D| = |D′| = k. We claim that D is a solution to
(M, k, T). Similarly to the proof for the forward direction, the claim is trivial if P′ does
not contain x. Let assume that x ∈ V(P′). Then xz ∈ E(P′). Denote byQ′ the x-t subpath
of P′. Since the agent follows Q′, ζM′(x) ≤ β · r′(x). Because r′(x) ≤ r(x) + 1−β

β w(yz),
ζM(x) = ζM′(x)− (1 − β)w(yz) ≤ β · r(x). Hence, the agent occupying x in G would not
abandon the project and go to y. Further, we have that ζM(y) = ζM′(x)− w(xy). Because
r′(x) ≤ r(y) + 1

β w(xy), ζM(y) ≤ β · r(y). Therefore,the agent occupying y in G would go
to z. We obtain that the agent occupying x inGwould follow the path obtained fromQ′ by
replacing of xz by xyz. This implies that the path P obtained from P′ by the replacement
of xz by xyz is a T-path in G − D and the agent should follow it. Thus, (M, k, T) is a
yes-instance. This concludes the safeness proof.

Rule 3 is applied exhaustively whenever possible. Assume from now that Rules 1, 2,
and 3 cannot be applied to (M, k, T) with M = (G, w, s, t, β, r). Observe that the rules
cannot increase the feedback edge set of the underlying graph, that is, fes(G) ≤ f . We
show the following claim.

Claim 4.1
|V(G)| ≤ 8 fes(G) + 3 and |E(G)| ≤ 9 fes(G) + 2

Proof of Claim 4.1. Denote by H the underlying undirected graph of G.
We observe that H has no adjacent vertices of degree two in V(H) \ {s, t}. To see

this, assume that that x and y are adjacent vertices of degree two distinct from s and t.
We assume without loss of generality that xy ∈ E(G). Notice that it cannot happen that
din(x) = 0 in G because of Rule 1. Hence, dout(x) = 1. Similarly, dout(y) = 1. Because
G is acyclic and y ̸= t, y has a neighbor z distinct from x. However, this means that we
would be able to apply Rule 3 for the path xyz contradicting our assumptions that the
rules cannot be applied.

Let F be a set of edges of size fes(G) such that R = H − F is acyclic. Because G is
weakly connected, R is a tree. Denote by X the set containing s, t, and the endpoints of
the edges of F. Note that |X| ≤ 2 fes(G) + 2. Observe that all the leaves of R are in X
because of Rule 1. It is a folklore observation that a tree with ℓ leaves has at most ℓ− 2
vertices of degree at least three. Thus, R has at most 2 fes(G) vertices v ∈ V(H) \ X of
degree at least three. The degrees of vertices inV(H) \ X are the same in H and R. Hence,
H has at most 2 fes(G) vertices of degree at least three outside X. By our observation that
H has no adjacent vertices of degree two distinct from s and t, we obtain that H has at
most 4 fes(G) + 1 vertices v ∈ V(H) \ X of degree two because R is a tree. Therefore, the
total number of vertices of G is at most 8 fes(G) + 3. Because R has at most 8 fes(G) + 2
edges, the number of arcs of G is at most 9 fes(G) + 2. This concludes the proof.

Since Rules 1, 2, and 3 can be applied in polynomial time, Claim 4.1 concludes the
proof of the first part of the theorem.

To show the second claim, assume that the weights and rewards are rational and β =
p/q is a constant. Consider the vector w ∈ Qd for d = |V(G)|+ |E(G)| whose elements
are the values of the reward function r for the vertices of G and the weights of arcs. We
define N = d max{p, q} − 1. Then we apply the algorithm of Frank and Tardos from
Proposition 4.1. The algorithm outputs a vector w ∈ Zd and we replace the rewards and
the weights by the corresponding values of the elements of w. We have that sign(w · b) =
sign(w · b) for all vectors b ∈ Zd with ∥b∥1 ≤ N − 1. In particular, the equality holds for
vectors b whose elements are 0,±p, q. This implies that the replacements of the rewards

21

and weights creates an equivalent instance. Because the rewards and weights are upper-
bounded by 24d3

Nd(d+2) and d = O(fes(G)), we obtain that each numerical parameter can
be encoded by a string of length O(fes(G)3). We conclude that the algorithm outputs an
instance of T-path-Deletion with False Promises of sizeO(fes(G)4). This means that we
have a polynomial kernel. This completes the proof.

In the second part of Theorem4.5, we assume that β is a rational constant which is not
a part of the input. However, it can be observed that the claimholds if β = p/q for integers
p, q ≤ 2fes(G)c for some constant c. Also, we note that because T-path-Deletion is NP-
complete for rational weights and any rational positive constant β < 1, any problem from
NP can be reduced to T-path-Deletion in polynomial time. This implies the following
corollary.

Corollary 4.2

If the weights are rational and β is a rational constant which is not a part of the
input, then T-path-Deletion admits a polynomial kernel when parameterized by
the size of a feedback edge set of the input graph.

Also, we can solve T-path-Deletion in FPT time using the algorithm from Theo-
rem 4.5—we reduce an instance of T-path-Deletion to an equivalent instance of T-path-
Deletion with False Promises with a graph of bounded size and guess a solution.

Corollary 4.3

T-path-Deletion can be solved in 2O(fes(G)) · nO(1) time.

4.2 Motivate by addition

In this section, we show that the T-path-Addition problem is computationally hard
with respect to the number of edges added even on the simplest type of instances when
the initial graph is a path whose edges form T and only detours are allowed to be added—
edges whose start and end belong to the path. In this case, we assume that all the arcs
we add go from left to right. We will call such inputs a path with detours. To prove this
result, we need the following problem:

Modified k-Sum
Input: Sets of positive integers X1, X2, . . . , Xk and integer Z.
Task: Decide whether there is x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk such that x1 + · · ·+
xk = Z.

It is known [DFI22] that this problem isW[1]-hard with respect to the parameter k.

Theorem 4.6
T-path-Addition problem on the path with detours instances isW[1]-hard param-
eterized by k.

Proof. We construct a parameterized reduction of the Modified k-Sum problem to the T-
path-Addition problem. Let X1, X2, . . . , Xk and Z be an instance of the Modified k-Sum

22

problem. We transform the input such that all elements xj ∈ Xi are in the interval [b, 2b].
For that we assign b = max

i=1,...,k
max
xj∈Xi

xj, add b to all elements xj, and set Z := Z + kb.

Then we construct an instance of T-path-Addition.

• Parameter k is unchanged.

• Graph G is the path on 2k + 4 vertices v1v2v3 . . . v2k+4. We assign a reward r to the
vertex t = v2k+4 (see Fig. 6).

• We set additional arcs A =
⋃k

i=1 X′
i
⋃{v2v4, v3t}, where X′

i is the set of multiple arcs
v2i+2v2i+4, and the weights of these arcs are numbers from the set Xi. The weight
of arc v2v4 is 1 and the weight of arc v3t is Z + 1

β − 1.

s v2 v3 v4 v5 v6 v7 v8 v2k+2 v2k+3 t

ra 0 y 0 c · b 0 c · b . . . 0 c · b

1 X′
1 X′

2 X′
k

Z +
1
β
− 1

Figure 6: Construction of the graph for reduction in Theorem 4.6.

To make it easier to describe, let us first assume that our input graph G is not just a
path but a path with two additional arcs {v2v4, v3t} (colored in green in the Fig. 6). We
will show how to build a reduction for this type of input, and then we will explain why it
is possible not to add these two arcs to the path, but to give them in a set of additional
arcs A. Note that we take the values of k, b and Z from the input of the Modified k-Sum
problem. We will select the parameters a, c, β, r, y during the proof.

Initially, we want that the agent in graph G is not motivated even to leave the start
vertex s = v1. For this we put

a + β · (1 + k · c · b) > β · r,
a + β · (y + k · c · b) > β · r,

a + β · (Z +
1
β
− 1) > β · r.

(1)

For our purposes, we will consider only the values of y ≥ 1
β > 1. Therefore, in (1), it

is sufficient to satisfy only the first and the third inequalities. To motivate the agent to
move from vertex s, it is necessary to add some path from the vertex v4 to t along the arcs
from {Xi}k

i=1. We denote this path by P̂ and its cost, that is the sum of the costs of its
arcs, by w(P̂). For an agent to decide to move from the vertex s, it is necessary that his
initial estimate be no more than the expected reward, namely:

a + β · (1 + w(P̂)) ≤ β · r. (2)

But on the other hand, when the agent reaches vertex v2, we need him to continue his
path to vertex v3, and not immediately turn into the green arc that leads to vertex v4.

23

From here, we impose the following constraint on the cost of the added path:

1 + β · w(P̂) > β · (Z +
1
β
− 1). (3)

Similarly, the condition that the agent does not leave the black path destined for him at
vertex v3 is that

y + β · w(P̂) < Z +
1
β
− 1. (4)

We put c = 2k, a = k · c · b + 1 = 2k2b + 1, r = Z +
a
β
+ 2 − ε, where ε—rational

number between 0 and 1. Then it is easy to check that all inequalities from system (1)
are satisfied. We also should select the values of y and w(P̂) to satisfy the remaining
inequalities (2)–(4). Note that (2) is equivalent to w(P̂) ≤ r − 1 − a

β
= Z + 1 − ε and (3)

is equivalent to w(P̂) > (Z +
1
β
− 1)− 1

β
= Z − 1.

Because the weights of all edges in our construction are integers, we have that under
the already existing restrictions, if the agent could go along the black path, thenwe added
the path from v4 to t along the arcs from {Xi}k

i=1 of cost exactly Z. In each Xi the numbers
are in the interval from b > 0 to 2b, hence the value Z does not exceed 2bk. It follows that
if we have found the v4-t path of cost Z, then we have added at least one of the proposed
arcs in each gadget since the initial arcs have costs c · b = 2bk ≥ Z.

The inequality (4) is equivalent to y < (Z− β ·w(P̂))+
1
β
− 1.Now let us analyzewhat

will happen after the agent reaches vertex v4. It is obvious that at all subsequent vertices,
he will be motivated to move on (the estimate of his remaining path will not exceed the
expected reward β · r, since the estimate of the path does not exceed his estimate at vertex
s, from which he decided to move on). We only need to make sure that in each gadget
the agent does not turn into a blue arc, but continues along the black ones. Since the
minimum value of an arc in any Xi is b, then the following inequality guarantees that the
agent will make the right choice in each gadget:

∀i ≥ 4 0 + β · (c · b + w(vi+2-t path)) < b + β · w(vi+2-t path).

β <
1
c
=

1
2k

.

Thus, if we take a present bias coefficient β < 1/2k into the input of the T-path-
Addition problem, then the agent will follow the black path if and only if it is possible to
assemble a path of cost exactly Z from the arcs x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk, or, which
is the same when the answer to the Modified k-Sum problem is “yes”.

Now we will show how to fine-tune the parameters so that we do not have to force the
addition of green arcs to the graph but provide themwithin the addition set, thus leaving
only the path as the input.

In order to add arc v2v4, it is necessary that even with the shortest path from vertex
v3 to vertex t, the agent is not motivated to move from s. In other words,

a + β · (y + k · b) > β · r.

y > r − a
β
− kb = Z − kb + 2 − ε.

24

To add arc v3t, we need that at vertex v2, the agent turns to the already added arc v2v4.
That is

0 + β · y > 1.

Finally, we set 

c = 2k,
a = 2k2b + 1,
β < 1

2k ,
r = Z + 2 + a

β − ε,

Z − kb + 2 − ε < y ≤ Z − β · w(P̂) + 1
β − 1.

The last double inequality has a solution for y, since the left hand side is less than the
right hand side:

Z − kb + 2 − ε < Z − β · w(P̂) +
1
β
− 1.

βw(P̂)− 1
β
+ 3 < kb + ε.

We show that starting from some k the desired inequalities hold.

βw(P̂)− 1
β
+ 3 <

w(P̂)
2k

− 2k + 3 ≤ b − 2k + 3 < kb + ε.

By Theorem 4.6, T-path-Addition is difficult even in the particular case when the set
of selected tasks is a Hamiltonian path. On the other hand, the problem is solvable in
time 2|A|nO(1) by going through all potential solutions S ⊆ A, |S| ≤ k, and checking in
polynomial time whether S is a solution of the problem. Our next theorem generalizes
this observation to the situation when the set A has a special structure.

Let us start with an example. Let c ∈ [n], V1 = {v1, . . . , vc}, V2 = {vc, . . . , vn}, and
let A do not contain any arc (vi, vj) such that i < c < j. Let us partition A into two
intersection components A1 = A ∩ (V1 × V1) and A2 ∩ (V2 × V2), see Fig. 7. We want to
show that to solve the problem, we then can solve it onG[V1] andG[V2] separately in total
time (2|A1| + 2|A2|) · nO(1).

v1 vc vn

A1 A2

Figure 7: Intersection components of set A for the T-path-Addition problem.

Let S ⊆ A, S1 = S∩ A1, S2 = S∩ A2, k1 = |S1|, k2 = |S2|. Consider the agent’s path in
G∪ S and also divide it into twoparts going throughV1 andV2, respectively. Notice that in
case the agent gets toV2, the second part of the path is exactly the agent’s path in G[V2]∪
S2. Now let us consider the first part of the path. Notice that for every vertex vi ∈ V1,
any perceived path induces one of the shortest paths in G[V2] ∪ S2. That means that the
agent’s decisions depend only on G[V1] ∪ S1 and distG[V2]∪S2

(vc, vn), where by distG(s, t)
we denote weight of the shortest path in G from s to t. Moreover, distG[V2]∪S2

(vc, vn) takes
part only in comparison of a perceived cost with β · r that can be replacedwith comparison

25

of the perceived cost in G[V1] ∪ S1 with β(r − distG[V2]∪S2
(vc, vn)), so the first part of the

agent’s path is exactly the agent’s path in G[V1] ∪ S1 with reward r − distG[V2]∪S2
(vc, vn).

Hence, there exists a solution S for the initial problem if and only if there exist k1, k2 :
k1 + k2 ≤ k, S1 ⊆ A1 of size k1 and S2 ⊆ A2 of size k2 such that in G[V2] ∪ S2 the agent
follows path vc . . . vn with reward r, and in G[V1]∪ S1 the agent follows path v1 . . . vc with
reward r − distG[V2]∪S2

(vc, vn). We also notice that for every such (k1, k2, S1, S2), the above
also holds for any (k1, k2, S1, S′

2) where S′
2 ⊆ A2 of size k2 such that the agent takes path

vc, . . . , vn in G[V1] ∪ S′
2, and distG[V2]∪S′

2
(vc, vn) ≤ distG[V2]∪S2

(vc, vn). That means, that it
is sufficient to consider only S2 that minimizes distG[V2]∪S2

(vc, vn).
Now we can solve T-path-Addition in time (2|A1| + 2|A2|) · nO(1) in the following way.

For every k2 ≤ k we compute d[k2] = {distG[V2]∪S2
(vc, vn) | S2 ⊆ A2, |S2| ≤ k2, the agent

follows path vc . . . vn in G[V2] ∪ S2 with reward r}. That can be done in time 2|A2|nO(1) by
going through all S2 ⊆ A2. Then, for every k1 ≤ k we go through all S1 ⊆ A1, |S1| = k1
and check whether the agent follows path v1 . . . vc in G[V1]∪ S1 with reward r − d[k − k1].
That can be done in time 2|A1|nO(1).

Let us now generalize the result. Let 1 = c1 < c2 < · · · < cm+1 = n be such indices
that for every 2 ≤ ℓ ≤ m there is no edge (vi, vj) such that i < cℓ < j. For every 1 ≤
ℓ ≤ m, let Vℓ = {vcℓ , . . . , vcℓ+1}, and let us partition A into intersection components
Aℓ = A ∩ (Vℓ × Vℓ). Then we show that the following theorem holds.

Theorem 4.7

T-path-Addition problem on paths with detours can be solved in time 2τnO(1),
where τ is the size of the maximum intersection component of A.

Proof. For every 1 ≤ ℓ ≤ m, let A∪
ℓ = Aℓ ∪ · · · ∪ Am and let d[ℓ][κ] = min{distG[A∪

ℓ]∪S

(vcℓ , vn) | S ⊆ A∪
ℓ , |S| ≤ κ, the agent follows path vcℓ . . . vn with reward r}. If there is

no such S then d[ℓ][κ] is assigned to +∞. Then, to solve the problem it is sufficient to
compute all d[ℓ][κ] and check whether d[1][k] is not equal to +∞.

We compute d[ℓ][κ] using dynamic programming technique. Using the same argument
as in case ofm = 2 above, wenotice that d[ℓ][κ] = min{distG[Aℓ]∪S(vcℓ , vcℓ+1)+ d[ℓ+ 1][κ−
κ′] | S ⊆ Aℓ, κ′ ≤ κ, the agent follows path vcℓ . . . vcℓ+1 in G[Aℓ] ∪ S with reward r − d[ℓ+
1][κ − κ′]}. We start with ℓ = m and iteratively decrease it after exhausting all possible
κ ≤ k. Then, we can compute all d[ℓ][κ] and solve the problem in time 2τnO(1).

5 Cost Reduction

5.1 Modification by deletion

In this section we study the complexity of the Opt-REC-Deletion and REC-Deletion
problem. We show that it isNP-hard, as well asW[1]-hard with respect to the parameter k
and several other parameters that naturally arise in this setting. Also for the optimization
version of the problem, we show that there is no (1

β − ε)n–approximate FPT algorithm
with parameter k under the assumptionW[1] ̸= FPT for any ε > 0.

26

5.1.1 Approximation

Lemma 5.1

An empty set gives (1
β)

n-approximation for Opt-REC-Deletion.

Proof. Let us prove that the path chosen by the agent has weight at most (1
β)

n · OPT,
where OPT is the weight of the shortest path from s to t. Then, since the optimal agent’s
path cannot be shorter than the shortest path in the graph, we get the approximation.

Let us consider the agent’s path (s = v0, v1, . . . , vh−1, vh = t). For each 1 ≤ i ≤ h, let
ai be the weight of the edge (vi−1, vi), and for each 0 ≤ i ≤ h, let OPTi be the weight of
the shortest path from vi to t. Our goal is to prove that a1 + · · ·+ ah ≤ (1

β)
n ·OPT0. We

prove a stronger inequality a1 + . . . ai +OPTi ≤ (1
β)

i ·OPT0 for every i using induction.
For i = 0, the inequality holds. For i ≥ 0, we notice that

ai+1 + β ·OPTi+1 ≤ OPTi.

Hence,

ai+1 +OPTi+1 ≤ 1
β
OPTi ⇒

i+1

∑
j=1

aj +OPTi+1 ≤
i

∑
j=1

aj +
1
β
·OPTi ≤

1
β
(

i

∑
j=1

aj +OPTi) ≤ (
1
β
)i+1OPT0.

Corollary 5.1

The Opt-REC-Deletion problem admits (1
β)

n-approximation algorithm working in
polynomial time.

Now we show that there is no better approximation factor than (1
β)

n if W[1] ̸= FPT

or P ̸= NP.

Theorem 5.1
The Opt-REC-Deletion problem is W[1]-hard with respect to the parameter k for
any β and there is no (1

β − ε)n–approximate FPT algorithmwith parameter k under
the assumptionW[1] ̸= FPT for any ε > 0.

Proof. We construct a parameterized reduction from the Shortest Path Most Vital Edges
problem to the Opt-REC-Deletion problem.

Let G be the graph given at the input of the problem Shortest Path Most Vital Edges.
We construct graph G′ as shown in the Fig. 8, add new vertexes s, v1, v2, t and edges
w(s, v1) = a, w(s, v2) = 0, w(v2, s̃) = ℓ, w(v2, t) = 0, w(t̃, t) = 0, where vertexes s̃, t̃ are
initial and final vertices of the graph G. Also multiply all the weights in graph G by c.

Let’s set the agent’s estimates at the vertex s: βℓ + βcℓ < a < βℓ + βcℓ + βc. Let’s
take c = 2

β , so we may take a as integer. Thus, the agent will choose to go to graph G iff

27

s

v2 s̃ t̃

t

v1

0

ℓ

0

a 0

G

Figure 8: Graph G′.

there is a path between s̃ and t̃ of length no more than cℓ. For the edges (v2, s̃) we add the
following gadget shown in the Fig. 9 and set µ so that ℓ > 0+ βµℓ so µ < 1

β . Therefore, if
the agent goes in graph G, then instead of the edge of cost ℓ, she will pass along the edge
of cost µnℓ.

u vx

0 µx

0

µ2x

µnx

Figure 9: Graph G′.

Thus, if an agent goes through graph G, his path will be at least µnℓ, otherwise his
path is equal to a and a < βℓ(1 + c) + βc < βℓ+ 2ℓ+ 2 < 3ℓ+ 2 ≤ 5ℓ << µnl. Hence, in
graph G′ nomore than k edges can be removed so that the agent’s path becomes no more
than a iff in graph G, it is possible to remove at most k edges so that the shortest path

between s̃ and t̃ is at least l + 1. There is also no
µnℓ

5ℓ
= (

1
β
− ε)n–approximate algorithm

for the problem.

5.1.2 Decision problem

Theorem 5.2
REC-Deletion problem is NP-hard with two weights on the edges.

Proof. The proof is similar to the Theorem 5.1 except for the weights on the edges.
Let’s set the agent’s estimates at the vertex s:

1 + 2βl <
1
2

l + 1 < 1 + βl + β(l + 1).

28

Then
l − 2

4l
< β <

1/2l − 1
2l − 1

=
l − 2

4l − 2
. Thus, the agent will choose to go to graph G

if and only if there is a path between s̃ and t̃ of length no more than l. The shortest path
in graph G′ is 1/2l + 1. Hence, in graph G′ no more than k edges can be removed so that
the agent’s path becomes no more than 1/2l + 1 iff in graph G, it is possible to remove at
most k edges so that the shortest path between s̃ and t̃ is at least l + 1.

Corollary 5.2

The REC-Deletion problem is Para-NP-hard with various parameters:

1. Agent cost ℓ = 5.

2. Number of different weights on the edges (in Theorem 5.2 equals 2).

3. Number of heavy edges.

4. Number of vertices at which the agent can evaluate paths via β.

Corollary 5.3

There is no 2o(n) algorithm for REC-Deletion under ETH.

Proof. The Shortest Path Most Vital Edges problem does not have 2o(n) algorithm under
ETH, because the authors [BFN+18] have reduced the vertex cover problem to a problem
withO(n) vertices.

It turns out that if ℓ is small, then the problem can be solved in polynomial time.

Claim 5.1
REC-Deletion can be solved in polynomial time when ℓ equals 1 or 2.

Our next result works for the standard Kleinberg-Oren’s model without probabilities.
The problem can be reformulated as follows.

Reducing Cost of the Path by Deletion (RCP-Deletion)

Input: Time-inconsistent planning model M = (G, w, s, t, β), integer k.
Task: Find a set of at most k edges of the graph G, removing which reduces the
cost of the agent’s path cβ(s, t).

Theorem 5.3
RCP-Deletion problem is FPT from a pair of parameters (k, m) with complexity
m2k · poly(n).

Proof. The proof of this Theorem is similar to the Theorem 4.4.

5.2 Modification by adding

In this section we study the complexity of the Opt-REC-Addition and REC-Addition
problem, when the input graph of the problem is a path on n vertices and set A is detours
on the path (path with detours).

29

Theorem 5.4
The Opt-REC-Addition problem on paths with detours is in P.

Proof. Let graph G be a path v1, . . . , vn, and let Eadd ⊆ [n]× [n] be a set of edges that can
be added.

We use dynamic programming to solve this problem. Let dp[i][k] be theminimum cost
of the agent’s path from vi to vn in G[{vi, vi+1, . . . , vn}] with at most k added edges from
Eadd.

Consider theminimal set S ⊆ Eadd of size at most k, that leads to such optimal agent’s
path from vi to vn. It either does not contain any edge from vi or contains an edge (vi, vj)
for some j > i. Let us consider the latter case and notice that: (i) if agent does not use
(vi, vj) in its path, then S \ {(vi, vj)} is also a solution, and S is not minimal, so (vi, vj)
belongs to the agent’s path; (ii) if S contains an edge (vi′ , vj′), where i ≤ i′ < j, then
(vi′ , vj′) does not belong to the agent’s path and does not motivate the agent at any point,
so S \ {(vi′ , vj′)} is also a solution, and S is not minimal.

That means that the minimal solution S either does not contain any edge from vi, or

contains exactly one edge (vi, vj) such that w(vi, vj) < w(vi, vi+1) + β
j−1
∑

h=i+1
w(vh, vh+1),

and S \ {(v,vj)} ⊆ {vj, vj+1, . . . , vn}2. That makes us consider the following dynamic
programming:

dp[i][k] = min


dp[i + 1][k] + w(vi, vi+1)

min
j>i

{dp[j][k − 1] + w(vi, vj) | (vi, vj) ∈ Eadd,

w(vi, vj) < β
j−1
∑

h=i+1
w(vh, vh+1)}

Such dynamic programming can be computed in polynomial time, and the answer to
opt-REC-by-adding is dp[1][k].

Corollary 5.4

REC-Addition problem on paths is in P.

Next, we show that the problem is NP-hard for the case when there can be no more
than two paths from s to t in the resulting graph.

Theorem 5.5
REC-Addition problem is NP-hard.

5.3 Modification with a budget

In this section, we will explore the complexity of the Reducing Expectation of Cost
with the Budget problem. We will be considering a scenario in which we are given a dedi-
cated budget for modifying the weight of edges. We may increase or decrease the weight
of these edges until they reach zeroweightwithin our budget. The change in theweight of
the edges can only be natural. There are also two settings, in one if the edge has reached
zero weight, we leave it, in the other if the edge becomes zero, then it disappears from
the graph.

30

We prove that the REC-Budget problem is NP-hard in two settings with zero arcs. To
prove this, we reduce classical NP-hard knapsack problem.

Knapsack

Input: Sets of items with a integer weight w1, . . . , wn and integer value ℓ1, . . . , ℓn,
and limit on the total weight L, and integerW.
Task: Decide whether there is subset of items with total weight no more than L
and total value at leastW.

Theorem 5.6
REC-Budget problem is NP-hard.

6 Conclusion

In this work, we use the graph-theoretical model of Kleinberg and Oren to introduce
the principal-agent problem, where the principal could reduce the choices to guarantee
that the agent will accomplish some selected tasks. We conclude with directions for fur-
ther research and some concrete open problems. While we consider only the scenario
of deleting and adding arcs, several other natural models would be exciting to explore.
The process of adding and deleting arcs could be simulated by changing the weights of
the arcs. This more general model, where the principal could change the weights of the
arcs in order to motivate the agent, is much more algorithmically challenging. Another
attractive model is where the principal motivates the agent by putting rewards for ac-
complishing some intermediate tasks like in [AK17].

As a concrete open question, for the T-path-Deletion problem, we obtained a kernel
whose size is polynomial in the size of a feedback edge set of G. We do not know if a
kernel whose size is bounded by a size (even exponential) of a vertex cover of G exists.

6.1 List of papers

This thesis is based on the following papers.

(i) Inconsistent planning: When in doubt, toss a coin!

Yuriy Dementiev, Fedor Fomin, and Artur Ignatiev. AAAI 2022. Conference on Ar-
tificial Intelligence (AAAI).

(ii) How to guide a present-biased agent through prescribed tasks?

TatianaBelova, YuriyDementiev, Fedor Fomin, PetrGolovach, Artur Ignatiev. Preprint.
Under review in ECAI 2024.

References

[AK17] Susanne Albers and Dennis Kraft. On the value of penalties in time-
inconsistent planning. In 44th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 10:1–10:12, 2017.

[AK19] Susanne Albers and Dennis Kraft. Motivating time-inconsistent agents: A
computational approach. Theory Comput. Syst., 63(3):466–487, 2019.

31

[Ake91] George A. Akerlof. Procrastination and obedience. American Economic Review:
Papers and Proceedings, 81(2):1–19, 1991.

[BBD06] PabloBurzyn, Flavia Bonomo, andGuillermoDurán. NP-completeness results
for edge modification problems. Discrete Applied Mathematics, 154(13):1824–
1844, 2006.

[BFN+18] Cristina Bazgan, Till Fluschnik, André Nichterlein, Rolf Niedermeier, and
Maximilian Stahlberg. Amore fine-grained complexity analysis of finding the
most vital edges for undirected shortest paths, 2018.

[BFN+19] Cristina Bazgan, Till Fluschnik, André Nichterlein, Rolf Niedermeier, and
Maximilian Stahlberg. Amore fine-grained complexity analysis of finding the
most vital edges for undirected shortest paths. Networks, 73(1):23–37, 2019.

[CDFG23] Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golo-
vach. A survey of parameterized algorithms and the complexity of edge mod-
ification. Comput. Sci. Rev., 48:100556, 2023.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[DFI22] Yuriy Dementiev, Fedor Fomin, and Artur Ignatiev. Inconsistent planning:
When in doubt, toss a coin! Proceedings of the 36th AAAI Conference on Artifi-
cial Intelligence (AAAI), 36(9):9724–9731, Jun. 2022.

[DM22] Sarah Dean and Jamie Morgenstern. Preference dynamics under personal-
ized recommendations. In EC ’22: The 23rd ACM Conference on Economics and
Computation, Boulder, CO, USA, July 11 - 15, 2022, pages 795–816. ACM, 2022.

[EKMR17] Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Poly-
nomial kernels for weighted problems. J. Comput. Syst. Sci., 84:1–10, 2017.

[ESG16] Owain Evans, Andreas Stuhlmüller, and Noah Goodman. Learning the prefer-
ences of ignorant, inconsistent agents. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), volume 30, 2016.

[FLO02] Shane Frederick, George Loewenstein, and Ted O’Donoghue. Time discount-
ing and time preference: A critical review. Journal of Economic Literature,
40(2):351–401, 2002.

[FLSZ19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ker-
nelization. Theory of Parameterized Preprocessing. Cambridge University Press,
2019.

[FS20] Fedor V. Fomin and Torstein J. F. Strømme. Time-inconsistent planning: Sim-
ple motivation is hard to find. In Proceeding of the 34th AAAI Conference on
Artificial Intelligence (AAAI), pages 9843–9850. AAAI Press, 2020.

[FT87] András Frank and Éva Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Comb., 7(1):49–65, 1987.

32

[GILP16] Nick Gravin, Nicole Immorlica, Brendan Lucier, and Emmanouil Poun-
tourakis. Procrastination with variable present bias. In ACM Conference on
Economics and Computation (EC), page 361, 2016.

[GT11] Petr A. Golovach andDimitriosM. Thilikos. Paths of bounded length and their
cuts: Parameterized complexity and algorithms. Discret. Optim., 8(1):72–86,
2011.

[HS23] Joseph YHalpern and Aditya Saraf. Chunking tasks for present-biased agents.
In Proceedings of the 24th ACMConference on Economics and Computation (EC),
pages 853–884, 2023.

[KO14] Jon M. Kleinberg and Sigal Oren. Time-inconsistent planning: a computa-
tional problem in behavioral economics. In ACMConference on Economics and
Computation (EC), pages 547–564, 2014.

[KO18] Jon M. Kleinberg and Sigal Oren. Time-inconsistent planning: a computa-
tional problem in behavioral economics. Commun. ACM, 61(3):99–107, 2018.

[KOR16] Jon M. Kleinberg, Sigal Oren, and Manish Raghavan. Planning problems for
sophisticated agents with present bias. In ACM Conference on Economics and
Computation (EC), pages 343–360, 2016.

[KOR17] Jon M. Kleinberg, Sigal Oren, and Manish Raghavan. Planning with multiple
biases. InACMConference on Economics andComputation (EC), pages 567–584,
2017.

[Lai94] David I. Laibson. Hyperbolic Discounting and Consumption. PhD thesis, Mas-
sachusetts Institute of Technology, Department of Economics, 1994.

[LSP22] Nixie S. Lesmana, Huangyuan Su, and Chi Seng Pun. Reinventing policy iter-
ation under time inconsistency. Trans. Mach. Learn. Res., 2022, 2022.

[MLLC04] Samuel M. McClure, David I. Laibson, George Loewenstein, and Jonathan D.
Cohen. Separate neural systems value immediate and delayed monetary re-
wards. Science, 306(5695):503–507, 2004.

[MPS22] Seth A Meyer, Jessica Pomplun, and Joshua Schill. Present bias in partially
sophisticated and assisted agents. Mathematical Social Sciences, 118:36–47,
2022.

[NSS01] Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of
some edgemodification problems. Discrete Applied Mathematics, 113(1):109–
128, 2001.

[OR99] Ted O’Donoghue and Matthew Rabin. Doing it now or later. American eco-
nomic review, 89(1):103–124, 1999.

[OS19] Sigal Oren and Dolav Soker. Principal-agent problems with present-biased
agents. In Proceedings of the 12th International Symposium on Algorithmic
Game Theory (SAGT), pages 237–251. Springer, 2019.

[Sam37] Paul A. Samuelson. A note onmeasurement of utility. The Review of Economic
Studies, 4(2):155–161, 02 1937.

33

[TG15] Richard H Thaler and LJ Ganser. Misbehaving: The making of behavioral eco-
nomics. 2015.

[TTW+17] Pingzhong Tang, Yifeng Teng, Zihe Wang, Shenke Xiao, and Yichong Xu.
Computational issues in time-inconsistent planning. In Proceedings of the
31st Conference on Artificial Intelligence (AAAI). AAAI Press, 2017.

34

