
New bounds on the half-duplex

communication complexity

Yuriy Dementieva

Artur Ignatieva

Vyacheslav Sidelnika

Alexander Smalb

Mikhail Ushakova

SOFSEM 2021

aSt. Petersburg State University
bSt. Petersburg Department of Steklov Institute of Mathematics of RAS



Communication models
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Classical communication model

Introduced by Andrew Yao in 1979.

Alice Bob

x ∈ {0, 1}n y ∈ {0, 1}n

b1

b2

b3

Alice and Bob want to compute f (x , y).

Communication complexity of f is a minimal number of

messages that is enough to compute f , denoted D(f ).
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Half-duplex communication model

Players talk over half-duplex channel (“wakie-talkie”) [HIMS18]
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Types of rounds

There are three types of rounds.

1. Normal round: one player sends, other player receives.

2. Wasted round: both players send.

3. Silent round: both players receive.

[HIMS18] considered three variants of how silent rounds work.

• Half-duplex with silence: the players receive some special

symbol (i.e., silence), neither 0 nor 1.

• Half-duplex with zero: the players receive 0

(indistinguishable from normal round).

• Half-duplex with an adversary: the players receive bits

chosen by an adversary (or some noise).
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Basic bounds

For every f : {0, 1}n × {0, 1}n → {0, 1} the following holds.

1. Dhd
s (f ) ≤ Dhd

0 (f ) ≤ Dhd
a (f ) ≤ D(f ).

2. D(f )/2 ≤ Dhd
0 (f ) ≤ Dhd

a (f )

(half-duplex communication without silence can be simulated

by a classical protocol sending two bits per each round of the

original protocol).

3. D(f )/3 ≤ Dhd
s (f )

(half-duplex communication with silence can be simulated by

a classical protocol sending three bits per each round of the

original protocol).

Note that multiplicative constants are important.
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Our results



Communication problems

We study complexity of the following communication problems.

• Disjointness: DISJn : {0, 1}n × {0, 1}n → {0, 1},
such that DISJn(x , y) = 1 ⇐⇒ ∀i : xi = 0 ∨ yi = 0.

• Karchmer-Wigderson game for MODp function defined by

MODp(x) = 0 ⇐⇒ x1 + . . .+ xn = 0 mod p,

• Karchmer-Wigderson game for RecMaj function defined by

RecMajn(x1, . . . , xn) = Maj3
(
RecMaj n

3
(x1, . . . , x n

3
),

RecMaj n
3
(x n

3
+1, . . . , x 2n

3
),RecMaj n

3
(x 2n

3
+1, . . . , xn)

)
,

The Karchmer–Wigderson game for f : {0, 1}n → {0, 1}:
Alice is given x ∈ f −1(0), Bob is given y ∈ f −1(1), and they want

to find an i ∈ [n] such that xi 6= yi .
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Summary of results

EQn IPn DISJn KWMOD2

Dhd
s

≥ n/ log 5 ≥ n/1.67 ≥ n/ log 5 ≥ 1.12 log n ?

≤ n/ log 5 + o(n) ≤ n/2 + O(1) ≤ 1.262 log n

Dhd
0

≥ n/ log 3 ≥ n/1.234 ≥ n/ log 3 ≥ 1.62 log n ?

≤ n/ log 3 + o(n) ≤ 3n/4 + o(n) ≤ 1.893 log n

Dhd
a ≥ n/ log 2.5 ≥ n ≥ n/ log 2.5 = 2 log n ?

Other bounds:

Dhd
s (KWMOD3) ≤ 1.893 log n,

Dhd
s (KWMOD5) ≤ 2.46 log n,

Dhd
s (KWMOD11) ≤ 3.48 log n.

Dhd
s (KWRecMaj) ≤ 2 log3 n,

Dhd
0 (KWRecMaj) ≤ 2 log3 n,

For arbitrary p ≥ 7, Dhd
s (KWMODp) ≤ 1.16

⌈
1 + log3

p
2

⌉
· log n.

For arbitrary p > 2, lower bounds (?) applies to KWMODp.
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Non-deterministic communication complexity

We introduce non-deterministic half-duplex communication

complexity based on an alternative definition of classical

non-deterministic complexity.

We prove bound relating it to the classical non-deterministic

complexity.

For any function f : {0, 1}n × {0, 1}n → {0, 1}, we show that

Nhd
s (f ) = N(f )/ log 5 + Θ(logN(f )),

Nhd
0 (f ) = N(f )/ log 3 + Θ(logN(f )),

Nhd
a (f ) ≥ N(f )/ log 3,
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Highlights of the proofs



Upper bound on Dhd
0 (DISJ)

We start with proving a weaker bound.

Lemma

For all n ∈ N, Dhd
0 (DISJn) ≤ 5n/6 + O(log n).

• The players split input strings into blocks of length 2.

• [Phase 1] The players spend n/2 rounds to compare all blocks.

• For some blocks the situation is not clear.

• [Phase 2] Send additional information for every pair of blocks

that was processed in a silent round.

Note that we need some case analysis to ensure that there will be

at most n/3 silent rounds.
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Upper bound on Dhd
0 (DISJ) (contd.)

Theorem

For all n ∈ N, Dhd
0 (DISJn) ≤ 3n/4 + o(n).

• The players split input strings into blocks of length 2.

• [Phase 1] The players spend n/2 rounds to compare all blocks.

• For some blocks the situation is not clear.

• [Phase 2] Compose new inputs from all the blocks processed

in silent rounds and run the protocol recursively.

Given that the number of silent rounds is at most n/3 we get

Dhd
0 (DISJn) ≤

dlog3(n)e∑
i=0

n

2 · 3i
+ o(n) ≤ 3n

4
+ o(n).
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Lower bounds on KWMODp

Theorem
For any p ≥ 2,

Dhd
s (KWMODp) > 1.12 log n,

Dhd
0 (KWMODp) > 1.62 log n,

Dhd
a (KWMODp) ≥ 2 log n − O(1).

• There is a probability distribution over the inputs:
• at the beginning each player has uncertainty roughly log n bits

about the input of the

• at the end each player knows the input of the other player.

• Each player learns roughly log n bits of information.

• We upper bound the amount of information the players can

learn in one round for all the half-duplex models.
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Open problems

Open problems

1. Is there any α < 1 such that for any function f ,

Dhd
0 (f ) ≤ αn + o(n)?

2. Is there any function f , such that at the same time

D(f ) ≥ n − o(n) and Dhd
a (f ) ≤ αn + o(n) for some α < 1.

3. Prove new lower bound for disjointness using

information-theoretic methods.

4. Prove an upper bound on Dhd
0 (KWMODp).

5. Prove better upper bound on Dhd
s (RecMaj).

6. Upper bounds on IPn in all the models.
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Thanks for your attention!
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Upper bounds on the Karchmer-Wigderson games

Ternary search

• Dhd
s (KWMOD2) ≤ 2 log3 n + O(1) < 1.262 log n.

• Dhd
0 (KWMOD2) ≤ 3 log3 n + O(1) < 1.893 log n.

• Dhd
s (KWRecMaj) ≤ 2 log3 n.

• Dhd
0 (KWRecMaj) ≤ 2 log3 n.

Binary search + encoding [Chin90]

• Dhd
s (KWMOD5) ≤ 2.46 log n.

• Dhd
s (KWMOD11) ≤ 3.48 log n.

• For all p ≥ 7, Dhd
s (KWMODp) ≤ 1.16

⌈
1 + log3

p
2

⌉
· log n.
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