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Introduction



Motivation

We want to prove:

P 6= NC1

.

By proving the KRW conjecture.

(no connection to Korean Wons)
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Karchmer–Raz–Wigderson conjecture

Block-composition

For f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}, the
block-composition f � g : ({0, 1}n)m → {0, 1} is defined by

(f � g)(x1, . . . , xm) = f (g(x1), . . . , g(xm)),

where x1, . . . , xm ∈ {0, 1}n.

The KRW conjecture

For any non-constant f , g : {0, 1}m → {0, 1}

D(f � g) ≈ D(f ) + D(g),

where D(f ) is the De Morgan formula complexity of f .
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KRW conjecture implies P 6⊆ NC1.
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Communication complexity

Introduced by Andrew Yao in 1979.

Alice Bob

Alice and Bob want to find z : (x , y , z) ∈ R.

Communication complexity of relation R is a minimal number of messages that is

enough to find z for any x and y , denoted CC(R).
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Karchmer–Wigderson games

The Karchmer–Wigderson game for f : {0, 1}n → {0, 1}:

• Alice gets x ∈ {0, 1}n such that f (x) = 0.

• Bob gets y ∈ {0, 1}n such that f (y) = 1.

• Their goal is to find i ∈ [n] such that xi 6= yi .

The Karchmer–Wigderson relation for f :

KWf = {(x , y , i) | x , y ∈ {0, 1}n, i ∈ [n], f (x) = 0, f (y) = 1, xi 6= yi}.

Theorem (Karchmer, Wigderson)

For any non-constant f : {0, 1}n → {0, 1},

CC(KWf ) = D(f ).
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KRW conjecture (communication complexity formulation)

Let f , g : {0, 1}m → {0, 1} be non-constant functions. Then

CC(KWf �g ) ≈ CC(KWf ) + CC(KWg ).

X a b Y0 6= 1
f fg g

Solve KWf on (a, b) first, then solve KWg on (Xi ,Yi ).
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Universal relation

The universal relation of length n,

Un = {(x , y , i) | x , y ∈ {0, 1}n, i ∈ [n], xi 6= yi}.

Known results:

• [Edmonds, Impagliazzo, Rudich, Sgall, 01] and [Håstad, Wigderson, 98]:

CC(Un �Un) = 2n − o(n).

• [Gavinsky, Meir, Weinstein, Wigderson, 16], improved by [Meir, Koroth, 19]:

CC(f �Un) ≥ logL(f ) + n − O(log∗ n).

• [Mihajlin, S. 21]:

∃g : {0, 1}n → {0, 1} : CC(Un � g) ≥ 1.5n − o(n).

∃g : {0, 1}n → {0, 1}n : CC(Idn �2 g) ≥ 1.5n − o(n).
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Our results



XOR-composition

For n,m ∈ N, and functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1}n

the XOR-composition f �m g : {0, 1}nm → {0, 1} is defined by

(f �m g)(x1, . . . , xm) = f (g(x1)⊕ · · · ⊕ g(xm)) ,

where xi ∈ {0, 1}n and ⊕ denotes bit-wise XOR.

Theorem 1

For all n,m ∈ N, there exists g : {0, 1}n → {0, 1}n such that

CC(Idn �m g) ≥ (2− 2−m+1)n − O(log n).
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Generalized Karchmer–Wigderson games

Definition

The generalized Karchmer–Wigderson game for f : {0, 1}n → {0, 1}`:

• Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n.

• They are promised that f (x) 6= f (y).

• Their goal is to find i ∈ [n] such that xi 6= yi .

Theorem 2

There exists f : {0, 1}n → {0, 1}log n such that any communication protocol for

generalized Karchmer–Wigderson game for f has size at least Ω(n3.156).
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Proof of Theorem 1

Theorem 1

For all n,m ∈ N, there exists g : {0, 1}n → {0, 1}n such that

CC(Idn �m g) ≥ (2− 2−m+1)n − O(log n).

Proof by induction on the number of inner functions:

• Consider Idn � (g1, . . . , gm) instead of Idn � g .

• Assume a lower bound for CCS×S(Idn � (g1, . . . , gm)).

• Prove a lower bound for CCphd
S×S(Idn � (g1, . . . , gm,MUX)).

• Extract a hard function gm+1 such that a lower bound holds for

CCS×S(Idn � (g1, . . . , gm, gm+1)).
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Multiplexer relation

• Alice gets g : {0, 1}n → {0, 1}n and x ∈ {0, 1}n.

• Bob gets the same g and y ∈ {0, 1}n.

• They are promised that g(x) 6= g(y).

• Goal: find i ∈ [n] such that xi 6= yi .

How we use it?

• Assume that we have a lower bound for CC(Idn � (g1, . . . , gm,MUX)).

• There exists the “hardest” gm+1 such that the same lower bound holds for

CC(Idn � (g1, . . . , gm, gm+1).

• To make this plan works we need to allow players to choose a protocol

after they see their inputs.
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Half-duplex communication model

Players talk over half-duplex channel (“wakie-talkie”) [HIMS18]

Alice Bob

Alice and Bob want to find z : (x , y , z) ∈ R.

Half-duplex communication complexity CChd(R) = required number of rounds.
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Toy problem

Lemma

For all n ∈ N, there exists f : {0, 1}n → {0, 1}n such that

CC(KWf ) ≥ CChd(MUXn)− O(log n).

Proof.

• Suppose that CC(KWf ) ≤ d for all f : {0, 1}n → {0, 1}.
• The following protocol solves MUXn:

• Alice follows the optimal protocol for f on x .

• Bob follows the optimal protocol for f on y .

• Hence, CChd(MUXn) < d .

Why this protocol does not work with classical model?
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Proof of Theorem 2

Theorem 2

There exists f : {0, 1}n → {0, 1}log n such that any communication protocol for

generalized Karchmer–Wigderson game for f has size at least Ω(n3.156).

The proof follows the ideas of Håstad’s Ω̃(n3) De Morgan formula lower bound.

• Lower bound on the XOR-composed Andreev’s function Andrn,m is defined by

Andrn,m(f , g , x1, . . . , xm log n) = (f �m g)
(
⊕(x1), · · · ,⊕(xm log n)

)
.

• Apply random restriction that kills many variables.

• Show that the protocol shrinks significantly.

• Show that w.h.p. every internal ⊕(xi ) have at least one variable that survived.

• Apply Theorem 1.
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The proof follows the ideas of Håstad’s Ω̃(n3) De Morgan formula lower bound.

• Lower bound on the XOR-composed Andreev’s function Andrn,m is defined by

Andrn,m(f , g , x1, . . . , xm log n) = (f �m g)
(
⊕(x1), · · · ,⊕(xm log n)

)
.

• Apply random restriction that kills many variables.

• Show that the protocol shrinks significantly.

• Show that w.h.p. every internal ⊕(xi ) have at least one variable that survived.

• Apply Theorem 1.

14



Proof of Theorem 2

Theorem 2

There exists f : {0, 1}n → {0, 1}log n such that any communication protocol for

generalized Karchmer–Wigderson game for f has size at least Ω(n3.156).
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Theorem 2: necessary ingredients

• Generalize random restriction technique for communication protocols.

• See at the corresponding De Morgan formula.

• Shrinkage theorem for protocols.

• Håstad’s Shrinkage Theorem can be used for protocols.

• Convert depth lower bound into size lower bound.

• Use Hrapchenko’s balancing theorem.
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Open questions

1. Show a better lower bound for block-composition of a universal relation and some

function.

2. Non-trivial lower bounds for generalized Karchmer–Wigderson games for functions

from {0, 1}n → {0, 1}m for m = α log n for large enough α.

3. Show n4 lower bound for generalized Karchmer–Wigderson games for function

from {0, 1}n → {0, 1}log n (avoid balancing?).

4. Are there interesting upper and lower bounds for generalized

Karchmer–Wigderson outside of the scope of KRW conjecture?
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Thank You!
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