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Karchmer—Raz-Wigderson conjecture

Block-composition

For f:{0,1}" — {0,1} and g : {0,1}" — {0,1}, the
block-composition f ¢ g : ({0,1}")™ — {0,1} is defined by

(Fog)(xt,. - yxm) = f(g(x1),...,8(xm)),

where xi, ..., x, € {0,1}". §
The KRW conjecture /g>/g\ .
For any non-constant f, g : {0,1}" — {0,1} X1 X2 5

D(f o g) =~ D(f) + D(g),

where D(f) is the De Morgan formula complexity of f.
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where D(f) is the De Morgan formula complexity of f.

KRW conjecture implies P Z NC.
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Communication complexity

Introduced by Andrew Yao in 1979.

Alice by Bob
E I'\J;( by
x € {0,1}" bs y € {0,1}"

Alice and Bob want to find z: (x,y,z) € R.

Communication complexity of relation R is a minimal number of messages that is
enough to find z for any x and y, denoted CC(R).



Karchmer-Wigderson games

The Karchmer-Wigderson game for f : {0,1}" — {0, 1}:

o Alice gets x € {0,1}" such that f(x) = 0.
e Bob gets y € {0,1}" such that f(y) = 1.
e Their goal is to find i € [n] such that x; # y;.

The Karchmer-Wigderson relation for f:

KWr ={(x,y,1) [ x,y € {0,1}7, i € [n], f(x) = 0, f(y) = L, xi # yi}.



Karchmer-Wigderson games

The Karchmer-Wigderson game for f : {0,1}" — {0, 1}:

o Alice gets x € {0,1}" such that f(x) = 0.
e Bob gets y € {0,1}" such that f(y) = 1.
e Their goal is to find i € [n] such that x; # y;.

The Karchmer-Wigderson relation for f:
KWf = {(vav I) | X,y € {07 1}n7i€ [n]7 f(X) = 07 f(.y) = 17Xi #yl}

Theorem (Karchmer, Wigderson)

For any non-constant f : {0,1}" — {0,1},

CC(KWy) = D(F).



KRW conjecture (communication complexity formulation)

Let f,g:{0,1}™ — {0,1} be non-constant functions. Then

CC(KWog) ~ CO(KWr) + CC(KW,).



KRW conjecture (communication complexity formulation)

Let f,g:{0,1}™ — {0,1} be non-constant functions. Then

CC(KWog) ~ CO(KWr) + CC(KW,).

g f f g



KRW conjecture (communication complexity formulation)

Let f,g:{0,1}™ — {0,1} be non-constant functions. Then

CC(KWog) ~ CO(KWr) + CC(KW,).

g f f 8

Solve KWs on (a, b) first, then solve KW, on (X, Y;).



KRW conjecture (communication complexity formulation)

Let f,g:{0,1}™ — {0,1} be non-constant functions. Then

CC(KWog) ~ CO(KWr) + CC(KW,).

g f f 8

| [ [0 |

Solve KWs on (a, b) first, then solve KW, on (X, Y;).



KRW conjecture (communication complexity formulation)

Let f,g:{0,1}™ — {0,1} be non-constant functions. Then

CC(KWog) ~ CO(KWr) + CC(KW,).
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ol 1 [ [0] [ T[1]

Solve KWs on (a, b) first, then solve KW, on (X, Y;).



Universal relation

The universal relation of length n,

Un = {(Xaya ’) | X,y € {0,1}”,[6 [n]7Xi 7&}/1'}‘



Universal relation

The universal relation of length n,
Un ={(y,0) | x,y €{0,1}",7 € [n], xi # yi}.

Known results:

e [Edmonds, Impagliazzo, Rudich, Sgall, 01] and [Hastad, Wigderson, 98]:

CC(U,oU,) =2n—o(n).
e [Gavinsky, Meir, Weinstein, Wigderson, 16], improved by [Meir, Koroth, 19]:
CC(f o Up) > logL(f) + n— O(log™ n).
e [Mihajlin, S. 21]:

dg: {0,1}" — {0,1}: CC(U,©og) > 1.5n— o(n).
dg:{0,1}" — {0,1}": CC(Id, H> g) > 1.5n — o(n).



Our results




XOR-composition

For n,m € N, and functions f : {0,1}" — {0,1} and g : {0,1}" — {0,1}"
the XOR-composition f B, g : {0,1}™ — {0, 1} is defined by

(fEBmg)(Xla---;Xm) = f(g(xl)@"'@g(xm))a

where x; € {0,1}" and & denotes bit-wise XOR.

Theorem 1

For all n,m € N, there exists g : {0,1}" — {0,1}" such that

CC(Id, Bm g) > (2 — 27" — O(log n).



Generalized Karchmer—Wigderson games

Definition

The generalized Karchmer-Wigderson game for f : {0,1}" — {0,1}":
e Alice gets x € {0,1}", Bob gets y € {0,1}".
e They are promised that f(x) # f(y).
e Their goal is to find i € [n] such that x; # y;.

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for

generalized Karchmer-Wigderson game for f has size at least Q(n3-156).
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Proof of Theorem 1

Theorem 1

For all n,m € N, there exists g : {0,1}" — {0,1}" such that

CC(Id, B, g) > (2 — 2™ Yn — O(log n).

Proof by induction on the number of inner functions:

e Consider Id, B (g1,-..,8m) instead of Id, H g.
e Assume a lower bound for CCsys(Id, B (g1, ..., 8m))
e Prove a lower bound for CCZthS(Id,, M (gi,...,8m MUX)).

e Extract a hard function gp11 such that a lower bound holds for
CCsxs(Id, B (g1, ---,8m, &m+1))-

10
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Multiplexer relation

o Alice gets g : {0,1}" — {0,1}" and x € {0,1}".
e Bob gets the same g and y € {0,1}".

e They are promised that g(x) # g(y).

e Goal: find i € [n] such that x; # y;.

How we use it?

e Assume that we have a lower bound for CC(Id, B (g1, - ., gm, MUX)).

e There exists the “hardest” gp,41 such that the same lower bound holds for
CC(Idn H (gl, s m, gmfl)-

e To make this plan works we need to allow players to choose a protocol
after they see their inputs.

11
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Half-duplex communication model
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Half-duplex communication model

Players talk over half-duplex channel (“wakie-talkie") [HIMS18]

Alice by Bob
- normal @_
AN/ b,
v wasted
n b3 g n
X E O sﬁent ye{od
bs

Alice and Bob want to find z: (x,y,z) € R.

Half-duplex communication complexity CC"(R) = required number of rounds.

12



Toy problem
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Toy problem

Lemma
For all n € N, there exists f : {0,1}" — {0,1}" such that

CC(KWy) > CCh(MUX,) — O(log n).

Proof.

e Suppose that CC(KW¢) < d for all f:{0,1}" — {0,1}.
e The following protocol solves MUX,:

e Alice follows the optimal protocol for f on x.
e Bob follows the optimal protocol for f on y.

e Hence, CCM(MUX,) < d.

Why this protocol does not work with classical model?

13



Proof of Theorem 2

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

14



Proof of Theorem 2

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

The proof follows the ideas of Hastad's Q(n®) De Morgan formula lower bound.

14



Proof of Theorem 2

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

The proof follows the ideas of Hastad's Q(n®) De Morgan formula lower bound.

e Lower bound on the XOR-composed Andreev’s function Andr, », is defined by

Andrn,m(f>g>xla cee aXmIogn) = (f Bm g)(@(Xl), T 7@(Xmlogn))-

14



Proof of Theorem 2

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

The proof follows the ideas of Hastad's Q(n®) De Morgan formula lower bound.

e Lower bound on the XOR-composed Andreev’s function Andr, », is defined by

Andrn,m(f>g>xla cee aXmIogn) = (f Bm g)(@(Xl), T 7@(Xmlogn))-

e Apply random restriction that kills many variables.

14



Proof of Theorem 2

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

The proof follows the ideas of Hastad's Q(n®) De Morgan formula lower bound.

e Lower bound on the XOR-composed Andreev’s function Andr, », is defined by

Andrn,m(f>g>xla cee aXmIogn) = (f Bm g)(@(Xl), T 7@(Xmlogn))-

e Apply random restriction that kills many variables.

e Show that the protocol shrinks significantly.

14



Proof of Theorem 2

Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

The proof follows the ideas of Hastad's Q(n®) De Morgan formula lower bound.

e Lower bound on the XOR-composed Andreev’s function Andr, », is defined by

Andrn,m(f>g>xla cee aXmIogn) = (f Bm g)(@(Xl), T 7@(Xmlogn))-

e Apply random restriction that kills many variables.
e Show that the protocol shrinks significantly.

e Show that w.h.p. every internal @&(x;) have at least one variable that survived.

14
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Theorem 2

There exists f : {0,1}" — {0,1}'°8" such that any communication protocol for
generalized Karchmer-Wigderson game for f has size at least Q(n315).

The proof follows the ideas of Hastad's Q(n®) De Morgan formula lower bound.

e Lower bound on the XOR-composed Andreev’s function Andr, », is defined by

Andrn,m(f>g>xla cee aXmIogn) = (f Bm g)(@(Xl), T 7@(Xmlogn))-

Apply random restriction that kills many variables.

Show that the protocol shrinks significantly.

Show that w.h.p. every internal @&(x;) have at least one variable that survived.

Apply Theorem 1.

14



e Generalize random restriction technique for communication protocols.

e See at the corresponding De Morgan formula.

e Shrinkage theorem for protocols.

e Hastad's Shrinkage Theorem can be used for protocols.

e Convert depth lower bound into size lower bound.

e Use Hrapchenko's balancing theorem.

15



Open questions

1. Show a better lower bound for block-composition of a universal relation and some
function.

2. Non-trivial lower bounds for generalized Karchmer-Wigderson games for functions
from {0,1}" — {0,1}™ for m = «log n for large enough «.

3. Show n* lower bound for generalized Karchmer-Wigderson games for function
from {0,1}" — {0,1}'°8" (avoid balancing?).

4. Are there interesting upper and lower bounds for generalized
Karchmer—Wigderson outside of the scope of KRW conjecture?

16
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