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Introduction

Fair and efficient allocation of resources is a very important issue in Economics and Computer
Science. First mentioned in the mid-20th century, it arises in a variety of practical applications, such
as dividing rewards among groups, allocating students to courses, and assigning tasks within a team.
One of the most popular notion of fairness is envy-freeness (EF), which requires that every agent
prefers their own bundle of goods to that of any other. However in the case of indivisible goods,
EF allocations may not exist. This motivated the study of its relaxations. One of the actual and
relevant relaxations of EF proposed by Caragiannis et al. [1], is called envy-free up to any item
(EFx). Each agent’s bundle should be worth at least as much as any other agent’s bundle minus
any single item for the allocation to be EFx. The existence of EFx allocations is considered as the
biggest open question in fair division. We refer to overview paper [2] for a detailed overview of fair
division of indivisible goods.
The standard notion of efficiency is Pareto optimality (PO). An allocation is said to be PO if no
other one makes an agent better off without making someone else worse off. An important question
in fair division is whether the notions of fairness can be achieved in conjunction with the efficiency
notions PO. In general, EFx + PO allocations are not guaranteed to exist [3]. In this paper we focus
on the algorithmic complexity of finding EFx + PO (EFx and at the same time PO allocation).

Setting

1 N is a set of n agents.
2 M is a set of m goods that cannot be divided or shared.
3 Each agent i ∈ N is equipped with an additive valuation function vi : 2M → N≥0, which assigns

a non-negative integer and vi(S) =
∑

g∈S vi(g) for any subset of items S ⊆ M .
4 Item type is a vector of length n, where the i-th coordinate is the value of the good’s utility for

the i-th agent. We will use k to denote the number of item types.
A fair allocation instance is denoted by I = (N, M, v) where v = (v1, ..., vn) is the vector of valuation
functions and can be represented by a table with a row per agent and a column per good, such that
cell (i, g) contains the value vi(g).
An allocation is a tuple of subsets of M : A = (A1, . . . , An), such that each agent i ∈ N receives
the bundle, Ai ⊆ M, Ai ∩ Aj = ∅ for every pair of agents i, j ∈ N , and

⋃
i∈[n] Ai = M .

Fairness and Efficiency

Definition

An allocation A is envy-free (EF) if it satisfies:
∀i, j ∈ N : ui(Ai) ≥ ui(Aj).

Definition

An allocation A is envy-free up to any item (EFx) if it satisfies:
∀i, j ∈ N : ui(Ai) + min

z∈Aj

ui(z) ≥ ui(Aj).

Definition

An allocation A is pareto-optimal (PO) if there is no other allocation B such that:{
∀ i ∈ N : ui(Bi) ≥ ui(Ai),
∃ j ∈ N : uj(Bj) > uj(Aj).

After the definitions we move to out task. We have to create the algorithm to search for EFx + PO
allocations. Our concept:
1 Search for EFx allocation. If not found, return False.
2 Check the found allocation for PO.
3 If the partition is EFx + PO, return it. Otherwise, go back to the first step.

Hardness

Theorem

The problem of existence of an EFx + PO allocation is NP-hard even for two agents.

To obtain prove NP-hardness of our problem, we reduce from Partition.

Partition problem

• Input: A set of positive integers S = s1, . . . , sn.
• Question: Does there exist a partition of S into two sets S1 and S2 such that the sums of

the numbers in the sets are equal?

Sketch of the reduction:
• Create an input for Partition with zero-weighted goods (0 for one of the agents, 1 to the

other).
• Construct Partition solution from EFx and PO allocation and vice versa.

Integer Linear Programming

For simplicity of presentation, we will formulate an ILP for two agents. EFx restrictions for two
agents can be simplified as follows:

0 ≤ xi ≤ mi, 0 ≤ i ≤ k.
k∑

i=1

aixi + min
j: mj−xj ̸=0

aj ≥
k∑

i=1

ai(mi − xi).

k∑
i=1

bi(mi − xi) + min
j: xj ̸=0

bj ≥
k∑

i=1

bixi.

Here xi is the variable meaning number of goods of type i that the first agent has, ai, bi—the utility
of the object of type i for the first and the second agents, mi—the number of goods of type i.
Moreover, Pareto-optimality could be obtained in a similar fashion. It is also necessary to ensure
that the search method does not return previously checked allocations. This problem can be solved
by introducing additional constraints in the ILP problem.

Upper bound

Number of EFx allocations plays crucial role in the runtime estimation, so we prove lower bound
and construct an example:

Lemma

The total number of allocations in the problem with m objects and two agents does not exceed
(⌈m+k

k ⌉)k, where k is the number of different types of items.

Example
The number of EFx-allocations can be equal to mk

2kkk on some inputs with two agents.
Consider a problem with two agents and k types of items. Let the first type have value a1 for the
second player and 0 for the first player, and for all other types, the i-th item has value ai for the
first player and 0 for the second player. Let mi be the number of items of type i and xi be the
number of items of type i held by the first player. We write the EFx condition for both players as
follows:

a2x2 + ... + akxk + min
j:xj ̸=mj

aj ≥ (m2 − x2)a2 + ... + (mk − xk)ak

(m1 − x1)a1 ≥ x1a1

In the second condition, there is no minimum because it is equal to zero. It is easy to see that both
conditions are satisfied when x1 ≤ m1

2 and xi ≥ mi
2 if i ≥ 2. In this case, the number of

EFx-allocations satisfying the condition at least mk

2kkk
.

Evaluation

Figure 1:Number of EFx allocations for max weight = 10

At a glance, there’s a significant difference between the average number of allocations and even the
99% quantile from the upper estimate, and the relative deviation only increases with the increasing
number of types.
To study the impact of the weight constraint on the number of allocations, we introduced a new
metric called relative difference. This is the ratio of the difference in the average number of solutions
to the overall average number of solutions:

relative difference = solutions1 − solutions2
solutions

,

The main outcome is that the impact of weight differences decreases as the number of types grows.
This is due to the fact that, with a small number of types, the weight difference plays a significant
role that cannot be offset by the size of the sets.
Example
For instance, there are only 2 EFx allocations for an input of 2 types and 12 items:
{(1, 1) : 11, (1000, 1000) : 1} (allocations and bundles are described in the format “type — number
of items of this type”). If an agent’s bundle is: {(1, 1) : a, (1000, 1000) : b}, where a, b > 0, they
would be envied because the minimum condition from the definition of EFx will not be met.
However, by changing the boundary from 1000 to 10, a similar input becomes
{(1, 1) : 11, (10, 10) : 1} and the number of allocations of interest to us increases.

Open questions

• Is it possible to prove some probabilistic upper bound on the number of EFx allocations?
• Is there a lower bound on the percentage of EFx allocations that are PO?
If we obtain a probabilistic estimate for the number of EFx allocations, we can then compute the
expected runtime of our algorithm. We observe that this number is significantly smaller than the
lower bound, suggesting the feasibility of such an estimate. The second question is potentially
more significant, as it allows us to estimate the expected number of iterations. If, under certain
conditions, almost every EFx allocation is also a PO allocation, then it implies that it will take only
a few iterations to find an allocation.
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