New bounds on the half-duplex communication complexity

Yuriy Dementiev^a Artur Ignatiev^a Vyacheslav Sidelnik^a <u>Alexander Smal^b</u> Mikhail Ushakov^a

SOFSEM 2021

^bSt. Petersburg Department of Steklov Institute of Mathematics of RAS

^aSt. Petersburg State University

Communication models

Introduced by Andrew Yao in 1979.

Alice

Bob

Introduced by Andrew Yao in 1979.

Alice

 $y \in \{0,1\}^n$

1

Introduced by Andrew Yao in 1979.

Alice

 $y \in \{0,1\}^n$

Introduced by Andrew Yao in 1979.

Introduced by Andrew Yao in 1979.

Introduced by Andrew Yao in 1979.

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute f(x, y). Communication complexity of f is a minimal number of messages that is enough to compute f, denoted D(f).

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice

a the second second

Bob

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice

Bob

 $y \in \{0,1\}^n$

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice

Bob

 $x \in \{0,1\}^n$

 $y \in \{0,1\}^n$

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute f(x, y).

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute f(x, y).

There are three types of rounds.

- 1. Normal round: one player sends, other player receives.
- 2. Wasted round: both players send.
- 3. Silent round: both players receive.

There are three types of rounds.

- 1. Normal round: one player sends, other player receives.
- 2. Wasted round: both players send.
- 3. Silent round: both players receive.

[HIMS18] considered three variants of how silent rounds work.

- Half-duplex with silence: the players receive some special symbol (i.e., silence), neither 0 nor 1.
- Half-duplex with zero: the players receive 0 (indistinguishable from normal round).
- Half-duplex with an adversary: the players receive bits chosen by an adversary (or some noise).

For every $f \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ the following holds.

1.
$$D_s^{hd}(f) \le D_0^{hd}(f) \le D_a^{hd}(f) \le D(f).$$

For every $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ the following holds.

- 1. $D_s^{hd}(f) \le D_0^{hd}(f) \le D_a^{hd}(f) \le D(f).$
- 2. $D(f)/2 \le D_0^{hd}(f) \le D_a^{hd}(f)$

(half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).

For every $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ the following holds.

- 1. $D_s^{hd}(f) \le D_0^{hd}(f) \le D_a^{hd}(f) \le D(f).$
- 2. $D(f)/2 \le D_0^{hd}(f) \le D_a^{hd}(f)$

(half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).

3. $D(f)/3 \le D_s^{hd}(f)$

(half-duplex communication with silence can be simulated by a classical protocol sending three bits per each round of the original protocol).

For every $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ the following holds.

- 1. $D_s^{hd}(f) \le D_0^{hd}(f) \le D_a^{hd}(f) \le D(f).$
- 2. $D(f)/2 \le D_0^{hd}(f) \le D_a^{hd}(f)$

(half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).

3. $D(f)/3 \le D_s^{hd}(f)$

(half-duplex communication with silence can be simulated by a classical protocol sending three bits per each round of the original protocol).

Note that multiplicative constants are important.

Our results

We study complexity of the following communication problems.

- Disjointness: $\text{DISJ}_n : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, such that $\text{DISJ}_n(x,y) = 1 \iff \forall i : x_i = 0 \lor y_i = 0$.
- Karchmer-Wigderson game for MOD*p* function defined by $MODp(x) = 0 \iff x_1 + \ldots + x_n = 0 \mod p$,
- Karchmer-Wigderson game for RecMaj function defined by

$$\begin{aligned} \mathsf{RecMaj}_n(x_1,\ldots,x_n) &= \mathsf{Maj}_3(\mathsf{RecMaj}_{\frac{n}{3}}(x_1,\ldots,x_{\frac{n}{3}}),\\ \mathsf{RecMaj}_{\frac{n}{3}}(x_{\frac{n}{3}+1},\ldots,x_{\frac{2n}{3}}), \mathsf{RecMaj}_{\frac{n}{3}}(x_{\frac{2n}{3}+1},\ldots,x_n)), \end{aligned}$$

The Karchmer–Wigderson game for $f : \{0,1\}^n \to \{0,1\}$: Alice is given $x \in f^{-1}(0)$, Bob is given $y \in f^{-1}(1)$, and they want to find an $i \in [n]$ such that $x_i \neq y_i$.

Summary of results

	EQ_n	IP _n	DISJ _n	$\mathrm{KW}_{\mathrm{MOD2}}$	
\mathbf{D}_{s}^{hd}	\geq $n/\log 5$	$\geq n/1.67$	$\geq n/\log 5$	$\geq 1.12 \log n$	*
	$\leq n/\log 5 + o(n)$		$\leq n/2 + O(1)$	$\leq 1.262 \log n$	
D_0^{hd}	$\geq n/\log 3$	$\geq n/1.234$	$\geq n/\log 3$	$\geq 1.62 \log n$	*
	$\leq n/\log 3 + o(n)$		$\leq 3n/4 + o(n)$	$\leq 1.893 \log n$	
D_a^{hd}	\geq <i>n</i> /log 2.5	$\geq n$	$\geq n/\log 2.5$	$= 2 \log n$	*

Other bounds:

$$\begin{split} &\mathrm{D}^{hd}_{s}(\mathrm{KW}_{\mathrm{MOD3}}) \leq 1.893 \log n, \quad \mathrm{D}^{hd}_{s}(\mathrm{KW}_{\mathrm{RecMaj}}) \leq 2 \log_{3} n, \\ &\mathrm{D}^{hd}_{s}(\mathrm{KW}_{\mathrm{MOD5}}) \leq 2.46 \log n, \quad \mathrm{D}^{hd}_{0}(\mathrm{KW}_{\mathrm{RecMaj}}) \leq 2 \log_{3} n, \\ &\mathrm{D}^{hd}_{s}(\mathrm{KW}_{\mathrm{MOD11}}) \leq 3.48 \log n. \end{split}$$

For arbitrary $p \ge 7$, $D_s^{hd}(KW_{MODp}) \le 1.16 \left[1 + \log_3 \frac{p}{2}\right] \cdot \log n$. For arbitrary p > 2, lower bounds (*) applies to KW_{MODp} . We introduce non-deterministic half-duplex communication complexity based on an alternative definition of classical non-deterministic complexity. We introduce non-deterministic half-duplex communication complexity based on an alternative definition of classical non-deterministic complexity.

We prove bound relating it to the classical non-deterministic complexity.

For any function $f: \{0,1\}^n imes \{0,1\}^n o \{0,1\}$, we show that

$$\begin{split} \mathrm{N}^{hd}_{s}(f) &= \mathrm{N}(f)/\log 5 + \Theta(\log \mathrm{N}(f)), \\ \mathrm{N}^{hd}_{0}(f) &= \mathrm{N}(f)/\log 3 + \Theta(\log \mathrm{N}(f)), \\ \mathrm{N}^{hd}_{a}(f) &\geq \mathrm{N}(f)/\log 3, \end{split}$$

Highlights of the proofs

We start with proving a weaker bound.

Lemma

For all $n \in \mathbb{N}$, $D_0^{hd}(\text{DISJ}_n) \leq 5n/6 + O(\log n)$.

- The players split input strings into blocks of length 2.
- [Phase 1] The players spend n/2 rounds to compare all blocks.
- For some blocks the situation is not clear.
- [Phase 2] Send additional information for every pair of blocks that was processed in a silent round.

Note that we need some case analysis to ensure that there will be at most n/3 silent rounds.

Upper bound on $D_0^{hd}(DISJ)$ (contd.)

Theorem

For all $n \in \mathbb{N}$, $\mathbb{D}_0^{hd}(\mathrm{DISJ}_n) \leq 3n/4 + o(n)$.

- The players split input strings into blocks of length 2.
- [Phase 1] The players spend n/2 rounds to compare all blocks.
- For some blocks the situation is not clear.
- [Phase 2] Compose new inputs from all the blocks processed in silent rounds and run the protocol recursively.

Given that the number of silent rounds is at most n/3 we get

$$\mathrm{D}_0^{hd}(\mathrm{DISJ}_n) \leq \sum_{i=0}^{\lceil \log_3(n) \rceil} \frac{n}{2 \cdot 3^i} + o(n) \leq \frac{3n}{4} + o(n).$$

Lower bounds on $\mathrm{KW}_{\mathrm{MOD}\textit{p}}$

Theorem For any $p \ge 2$,

$$\begin{split} & \mathrm{D}_s^{hd}(\mathrm{KW}_{\mathrm{MOD}p}) > 1.12 \log n, \\ & \mathrm{D}_0^{hd}(\mathrm{KW}_{\mathrm{MOD}p}) > 1.62 \log n, \\ & \mathrm{D}_a^{hd}(\mathrm{KW}_{\mathrm{MOD}p}) \geq 2 \log n - O(1). \end{split}$$

- There is a probability distribution over the inputs:
 - at the beginning each player has uncertainty roughly log *n* bits about the input of the
 - at the end each player knows the input of the other player.
- Each player learns roughly log *n* bits of information.
- We upper bound the amount of information the players can learn in one round for all the half-duplex models.

Open problems

- 1. Is there any $\alpha < 1$ such that for any function f, $D_0^{hd}(f) \le \alpha n + o(n)$?
- 2. Is there any function f, such that at the same time $D(f) \ge n o(n)$ and $D_a^{hd}(f) \le \alpha n + o(n)$ for some $\alpha < 1$.
- 3. Prove new lower bound for disjointness using information-theoretic methods.
- 4. Prove an upper bound on $D_0^{hd}(KW_{MODp})$.
- 5. Prove better upper bound on $D_s^{hd}(\text{RecMaj})$.
- 6. Upper bounds on IP_n in all the models.

Thanks for your attention!

Ternary search

- $D_s^{hd}(KW_{MOD2}) \le 2\log_3 n + O(1) < 1.262\log n$.
- $D_0^{hd}(KW_{MOD2}) \le 3 \log_3 n + O(1) < 1.893 \log n$.
- $D_s^{hd}(KW_{RecMaj}) \leq 2\log_3 n$.
- $D_0^{hd}(KW_{RecMaj}) \le 2\log_3 n$.

Binary search + encoding [Chin90]

- $D_s^{hd}(KW_{MOD5}) \le 2.46 \log n$.
- $D_s^{hd}(KW_{MOD11}) \leq 3.48 \log n$.
- For all $p \ge 7$, $D_s^{hd}(KW_{MODp}) \le 1.16 \left\lceil 1 + \log_3 \frac{p}{2} \right\rceil \cdot \log n$.