New bounds on the half-duplex communication complexity

Yuriy Dementiev ${ }^{\text {a }}$
Artur Ignatiev ${ }^{\text {a }}$
Vyacheslav Sidelnik ${ }^{\text {a }}$
Alexander Smal ${ }^{b}$
Mikhail Ushakov ${ }^{\text {a }}$

SOFSEM 2021

[^0]Communication models

Classical communication model

Introduced by Andrew Yao in 1979.

Bob

Classical communication model

Introduced by Andrew Yao in 1979.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice and Bob want to compute $f(x, y)$.

Classical communication model

Introduced by Andrew Yao in 1979.

Alice

Alice and Bob want to compute $f(x, y)$.
Communication complexity of f is a minimal number of messages that is enough to compute f, denoted $D(f)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Bob

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to compute $f(x, y)$.

Types of rounds

There are three types of rounds.

1. Normal round: one player sends, other player receives.
2. Wasted round: both players send.
3. Silent round: both players receive.

Types of rounds

There are three types of rounds.

1. Normal round: one player sends, other player receives.
2. Wasted round: both players send.
3. Silent round: both players receive.
[HIMS18] considered three variants of how silent rounds work.

- Half-duplex with silence: the players receive some special symbol (i.e., silence), neither 0 nor 1 .
- Half-duplex with zero: the players receive 0 (indistinguishable from normal round).
- Half-duplex with an adversary: the players receive bits chosen by an adversary (or some noise).

Basic bounds

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$.

Basic bounds

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$.
2. $D(f) / 2 \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f)$
(half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).

Basic bounds

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$.
2. $D(f) / 2 \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f)$
(half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).
3. $D(f) / 3 \leq D_{s}^{h d}(f)$
(half-duplex communication with silence can be simulated by a classical protocol sending three bits per each round of the original protocol).

Basic bounds

For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ the following holds.

1. $D_{s}^{h d}(f) \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f) \leq D(f)$.
2. $D(f) / 2 \leq D_{0}^{h d}(f) \leq D_{a}^{h d}(f)$
(half-duplex communication without silence can be simulated by a classical protocol sending two bits per each round of the original protocol).
3. $D(f) / 3 \leq D_{s}^{h d}(f)$
(half-duplex communication with silence can be simulated by a classical protocol sending three bits per each round of the original protocol).

Note that multiplicative constants are important.

Our results

Communication problems

We study complexity of the following communication problems.

- Disjointness: $\operatorname{DISJ}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, such that $\operatorname{DISJ}_{n}(x, y)=1 \Longleftrightarrow \forall i: x_{i}=0 \vee y_{i}=0$.
- Karchmer-Wigderson game for MODp function defined by $\operatorname{MOD} p(x)=0 \Longleftrightarrow x_{1}+\ldots+x_{n}=0 \bmod p$,
- Karchmer-Wigderson game for RecMaj function defined by

$$
\begin{aligned}
& \operatorname{RecMaj}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Maj}_{3}\left(\operatorname{RecMaj}_{\frac{n}{3}}\left(x_{1}, \ldots, x_{\frac{n}{3}}\right),\right. \\
& \left.\quad \operatorname{RecMaj}_{\frac{n}{3}}\left(x_{\frac{n}{3}+1}, \ldots, x_{\frac{2 n}{3}}\right), \operatorname{RecMaj}_{\frac{n}{3}}\left(x_{\frac{2 n}{3}+1}, \ldots, x_{n}\right)\right),
\end{aligned}
$$

The Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
Alice is given $x \in f^{-1}(0)$, Bob is given $y \in f^{-1}(1)$, and they want to find an $i \in[n]$ such that $x_{i} \neq y_{i}$.

Summary of results

	EQ_{n}	IP_{n}	DISJ_{n}	$\mathrm{KW}_{\mathrm{MOD} 2}$	
$\mathrm{D}_{s}^{\text {hd }}$	$\geq n / \log 5$	$\geq n / 1.67$	$\geq n / \log 5$	$\geq 1.12 \log n \quad \star$	
	$\leq n / \log 5+o(n)$		$\leq n / 2+O(1)$	$\leq 1.262 \log n$	
$\mathrm{D}_{0}^{h d}$	$\geq n / \log 3$	$\geq n / 1.234$	$\geq n / \log 3$	$\geq 1.62 \log n \quad \star$	
	$\leq n / \log 3+o(n)$		$\leq 3 n / 4+o(n)$	$\leq 1.893 \log n$	
$\mathrm{D}_{a}^{\text {hd }}$	$\geq n / \log 2.5$	$\geq n$	$\geq n / \log 2.5$	$=2 \log n$	\star

Other bounds:

$$
\begin{array}{ll}
\mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {MOD3 }}\right) \leq 1.893 \log n, & \mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {RecMaj }}\right) \leq 2 \log _{3} n, \\
\mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {MOD5 }}\right) \leq 2.46 \log n, & \mathrm{D}_{0}^{h d}\left(\mathrm{KW}_{\text {RecMaj }}\right) \leq 2 \log _{3} n, \\
\mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {MOD11 }}\right) \leq 3.48 \log n . &
\end{array}
$$

For arbitrary $p \geq 7, \mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {MOD }}\right) \leq 1.16\left\lceil 1+\log _{3} \frac{p}{2}\right\rceil \cdot \log n$.
For arbitrary $p>2$, lower bounds (\star) applies to $K_{M O D}$.

Non-deterministic communication complexity

We introduce non-deterministic half-duplex communication complexity based on an alternative definition of classical non-deterministic complexity.

Non-deterministic communication complexity

We introduce non-deterministic half-duplex communication complexity based on an alternative definition of classical non-deterministic complexity.

We prove bound relating it to the classical non-deterministic complexity.

For any function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$, we show that

$$
\begin{aligned}
& \mathrm{N}_{s}^{h d}(f)=\mathrm{N}(f) / \log 5+\Theta(\log \mathrm{N}(f)), \\
& \mathrm{N}_{0}^{h d}(f)=\mathrm{N}(f) / \log 3+\Theta(\log \mathrm{N}(f)), \\
& \mathrm{N}_{a}^{h d}(f) \geq \mathrm{N}(f) / \log 3,
\end{aligned}
$$

Highlights of the proofs

Upper bound on $\mathrm{D}_{0}^{\text {hd }}$ (DISJ)

We start with proving a weaker bound.

Lemma

For all $n \in \mathbb{N}, \mathrm{D}_{0}^{h d}\left(\operatorname{DISJ}_{n}\right) \leq 5 n / 6+O(\log n)$.

- The players split input strings into blocks of length 2.
- [Phase 1] The players spend $n / 2$ rounds to compare all blocks.
- For some blocks the situation is not clear.
- [Phase 2] Send additional information for every pair of blocks that was processed in a silent round.

Note that we need some case analysis to ensure that there will be at most $n / 3$ silent rounds.

Upper bound on $\mathrm{D}_{0}^{\text {hd }}$ (DISJ) (contd.)

Theorem

For all $n \in \mathbb{N}, \mathrm{D}_{0}^{h d}\left(\mathrm{DISJ}_{n}\right) \leq 3 n / 4+o(n)$.

- The players split input strings into blocks of length 2.
- [Phase 1] The players spend $n / 2$ rounds to compare all blocks.
- For some blocks the situation is not clear.
- [Phase 2] Compose new inputs from all the blocks processed in silent rounds and run the protocol recursively.

Given that the number of silent rounds is at most $n / 3$ we get

$$
\mathrm{D}_{0}^{h d}\left(\operatorname{DISJ}_{n}\right) \leq \sum_{i=0}^{\left\lceil\log _{3}(n)\right\rceil} \frac{n}{2 \cdot 3^{i}}+o(n) \leq \frac{3 n}{4}+o(n)
$$

Lower bounds on $\mathrm{KW}_{\text {MODp }}$

Theorem

For any $p \geq 2$,

$$
\begin{aligned}
& \mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\mathrm{MOD} p}\right)>1.12 \log n, \\
& \mathrm{D}_{0}^{h d}\left(\mathrm{KW}_{\mathrm{MOD} p}\right)>1.62 \log n, \\
& \mathrm{D}_{a}^{h d}\left(\mathrm{KW}_{\mathrm{MOD} p}\right) \geq 2 \log n-O(1) .
\end{aligned}
$$

- There is a probability distribution over the inputs:
- at the beginning each player has uncertainty roughly $\log n$ bits about the input of the
- at the end each player knows the input of the other player.
- Each player learns roughly $\log n$ bits of information.
- We upper bound the amount of information the players can learn in one round for all the half-duplex models.

Open problems

Open problems

1. Is there any $\alpha<1$ such that for any function f, $D_{0}^{h d}(f) \leq \alpha n+o(n) ?$
2. Is there any function f, such that at the same time $D(f) \geq n-o(n)$ and $D_{a}^{h d}(f) \leq \alpha n+o(n)$ for some $\alpha<1$.
3. Prove new lower bound for disjointness using information-theoretic methods.
4. Prove an upper bound on $\mathrm{D}_{0}^{h d}\left(\mathrm{KW}_{\text {MOD }}\right)$.
5. Prove better upper bound on $\mathrm{D}_{s}^{h d}(\operatorname{RecMaj})$.
6. Upper bounds on IP_{n} in all the models.

Thanks for your attention!

Upper bounds on the Karchmer-Wigderson games

Ternary search

- $\mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {MOD } 2}\right) \leq 2 \log _{3} n+O(1)<1.262 \log n$.
- $\mathrm{D}_{0}^{h d}\left(\mathrm{KW}_{\text {MOD2 }}\right) \leq 3 \log _{3} n+O(1)<1.893 \log n$.
- $\mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {RecMaj }}\right) \leq 2 \log _{3} n$.
- $\mathrm{D}_{0}^{\text {hd }}\left(\mathrm{KW}_{\text {RecMaj }}\right) \leq 2 \log _{3} n$.

Binary search + encoding [Chin90]

- $\mathrm{D}_{s}^{\text {hd }}\left(\mathrm{KW}_{\text {MOD5 }}\right) \leq 2.46 \log n$.
- $\mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\text {MOD11 }}\right) \leq 3.48 \log n$.
- For all $p \geq 7, \mathrm{D}_{s}^{h d}\left(\mathrm{KW}_{\mathrm{MOD} p}\right) \leq 1.16\left\lceil 1+\log _{3} \frac{p}{2}\right\rceil \cdot \log n$.

[^0]: ${ }^{a}$ St. Petersburg State University
 ${ }^{b}$ St. Petersburg Department of Steklov Institute of Mathematics of RAS

