Super-cubic lower bound
for generalized Karchmer-Wigderson games

Artur Ignatiev, Ivan Mihajlin, Alexander Smal
December 21, 2022
ISAAC 2022

Introduction

Motivation

We want to prove:

$$
P \neq N C^{1}
$$

Motivation

We want to prove:

$$
P \neq N C^{1}
$$

By proving the KRW conjecture.

Motivation

We want to prove:

$$
P \neq N C^{1}
$$

By proving the KRW conjecture. (no connection to Korean Wons)

Karchmer-Raz-Wigderson conjecture

Block-composition

For $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n} \rightarrow\{0,1\}$, the block-composition $f \diamond g:\left(\{0,1\}^{n}\right)^{m} \rightarrow\{0,1\}$ is defined by

$$
(f \diamond g)\left(x_{1}, \ldots, x_{m}\right)=f\left(g\left(x_{1}\right), \ldots, g\left(x_{m}\right)\right),
$$

where $x_{1}, \ldots, x_{m} \in\{0,1\}^{n}$.

The KRW conjecture

For any non-constant $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$

$$
\mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)
$$

where $D(f)$ is the De Morgan formula complexity of f.

Karchmer-Raz-Wigderson conjecture

Block-composition

For $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n} \rightarrow\{0,1\}$, the block-composition $f \diamond g:\left(\{0,1\}^{n}\right)^{m} \rightarrow\{0,1\}$ is defined by

$$
(f \diamond g)\left(x_{1}, \ldots, x_{m}\right)=f\left(g\left(x_{1}\right), \ldots, g\left(x_{m}\right)\right),
$$

where $x_{1}, \ldots, x_{m} \in\{0,1\}^{n}$.

The KRW conjecture

For any non-constant $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$

$$
\mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)
$$

where $D(f)$ is the De Morgan formula complexity of f. KRW conjecture implies $P \nsubseteq N^{1}$.

Communication complexity

Introduced by Andrew Yao in 1979.

Bob

Communication complexity

Introduced by Andrew Yao in 1979.

Communication complexity

Introduced by Andrew Yao in 1979.

Alice and Bob want to find $z:(x, y, z) \in R$.

Communication complexity

Introduced by Andrew Yao in 1979.

Alice and Bob want to find $z:(x, y, z) \in R$.

Communication complexity

Introduced by Andrew Yao in 1979.

Alice and Bob want to find $z:(x, y, z) \in R$.

Communication complexity

Introduced by Andrew Yao in 1979.

Alice and Bob want to find $z:(x, y, z) \in R$.

Communication complexity

Introduced by Andrew Yao in 1979.

Alice and Bob want to find $z:(x, y, z) \in R$.

Communication complexity of relation R is a minimal number of messages that is enough to find z for any x and y, denoted $\operatorname{CC}(R)$.

Karchmer-Wigderson games

The Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

- Alice gets $x \in\{0,1\}^{n}$ such that $f(x)=0$.
- Bob gets $y \in\{0,1\}^{n}$ such that $f(y)=1$.
- Their goal is to find $i \in[n]$ such that $x_{i} \neq y_{i}$.

The Karchmer-Wigderson relation for f :

$$
\mathrm{KW}_{f}=\left\{(x, y, i) \mid x, y \in\{0,1\}^{n}, i \in[n], f(x)=0, f(y)=1, x_{i} \neq y_{i}\right\}
$$

Karchmer-Wigderson games

The Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

- Alice gets $x \in\{0,1\}^{n}$ such that $f(x)=0$.
- Bob gets $y \in\{0,1\}^{n}$ such that $f(y)=1$.
- Their goal is to find $i \in[n]$ such that $x_{i} \neq y_{i}$.

The Karchmer-Wigderson relation for f :

$$
\mathrm{KW}_{f}=\left\{(x, y, i) \mid x, y \in\{0,1\}^{n}, i \in[n], f(x)=0, f(y)=1, x_{i} \neq y_{i}\right\}
$$

Theorem (Karchmer, Wigderson)

For any non-constant $f:\{0,1\}^{n} \rightarrow\{0,1\}$,

$$
\mathrm{CC}\left(\mathrm{KW}_{f}\right)=\mathrm{D}(f)
$$

KRW conjecture (communication complexity formulation)

Let $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$ be non-constant functions. Then

$$
\mathrm{CC}\left(\mathrm{KW}_{f \diamond g}\right) \approx \mathrm{CC}\left(\mathrm{KW}_{f}\right)+\mathrm{CC}\left(\mathrm{KW}_{g}\right)
$$

KRW conjecture (communication complexity formulation)

Let $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$ be non-constant functions. Then

$$
\mathrm{CC}\left(\mathrm{KW}_{f \diamond g}\right) \approx \mathrm{CC}\left(\mathrm{KW}_{f}\right)+\mathrm{CC}\left(\mathrm{KW}_{g}\right) .
$$

KRW conjecture (communication complexity formulation)

Let $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$ be non-constant functions. Then

$$
\mathrm{CC}\left(\mathrm{KW}_{f \diamond g}\right) \approx \mathrm{CC}\left(\mathrm{KW}_{f}\right)+\mathrm{CC}\left(\mathrm{KW}_{g}\right) .
$$

Solve $K W_{f}$ on (a, b) first, then solve $K W_{g}$ on $\left(X_{i}, Y_{i}\right)$.

KRW conjecture (communication complexity formulation)

Let $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$ be non-constant functions. Then

$$
\mathrm{CC}\left(\mathrm{KW}_{f \diamond g}\right) \approx \mathrm{CC}\left(\mathrm{KW}_{f}\right)+\mathrm{CC}\left(\mathrm{KW}_{g}\right) .
$$

Solve $K W_{f}$ on (a, b) first, then solve $K W_{g}$ on $\left(X_{i}, Y_{i}\right)$.

KRW conjecture (communication complexity formulation)

Let $f, g:\{0,1\}^{m} \rightarrow\{0,1\}$ be non-constant functions. Then

$$
\mathrm{CC}\left(\mathrm{KW}_{f \diamond g}\right) \approx \mathrm{CC}\left(\mathrm{KW}_{f}\right)+\mathrm{CC}\left(\mathrm{KW}_{g}\right) .
$$

Solve $K W_{f}$ on (a, b) first, then solve $K W_{g}$ on $\left(X_{i}, Y_{i}\right)$.

Universal relation

The universal relation of length n,

$$
\mathrm{U}_{n}=\left\{(x, y, i) \mid x, y \in\{0,1\}^{n}, i \in[n], x_{i} \neq y_{i}\right\}
$$

Universal relation

The universal relation of length n,

$$
\mathrm{U}_{n}=\left\{(x, y, i) \mid x, y \in\{0,1\}^{n}, i \in[n], x_{i} \neq y_{i}\right\}
$$

Known results:

- [Edmonds, Impagliazzo, Rudich, Sgall, 01] and [Håstad, Wigderson, 98]:

$$
\mathrm{CC}\left(\mathrm{U}_{n} \diamond \mathrm{U}_{n}\right)=2 n-o(n) .
$$

- [Gavinsky, Meir, Weinstein, Wigderson, 16], improved by [Meir, Koroth, 19]:

$$
\mathrm{CC}\left(f \diamond \mathrm{U}_{n}\right) \geq \log \mathrm{L}(f)+n-O\left(\log ^{*} n\right) .
$$

-

$$
\begin{aligned}
& \exists g:\{0,1\}^{n} \rightarrow\{0,1\}: \quad \mathrm{CC}\left(\mathrm{U}_{n} \diamond g\right) \geq 1.5 n-o(n) . \\
& \exists g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}: \quad \mathrm{CC}\left(\operatorname{Id}_{n} \boxplus_{2} g\right) \geq 1.5 n-o(n) .
\end{aligned}
$$
\]

Our results

XOR-composition

For $n, m \in \mathbb{N}$, and functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ the XOR-composition $f \boxplus_{m} g:\{0,1\}^{n m} \rightarrow\{0,1\}$ is defined by

$$
\left(f \boxplus_{m} g\right)\left(x_{1}, \ldots, x_{m}\right)=f\left(g\left(x_{1}\right) \oplus \cdots \oplus g\left(x_{m}\right)\right),
$$

where $x_{i} \in\{0,1\}^{n}$ and \oplus denotes bit-wise XOR.

Theorem 1

For all $n, m \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that

$$
\mathrm{CC}\left(\mathrm{Id}_{n} \boxplus_{m} g\right) \geq\left(2-2^{-m+1}\right) n-O(\log n) .
$$

Generalized Karchmer-Wigderson games

Definition

The generalized Karchmer-Wigderson game for $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$:

- Alice gets $x \in\{0,1\}^{n}$, Bob gets $y \in\{0,1\}^{n}$.
- They are promised that $f(x) \neq f(y)$.
- Their goal is to find $i \in[n]$ such that $x_{i} \neq y_{i}$.

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.

Techniques

Proof of Theorem 1

Theorem 1

For all $n, m \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that

$$
\mathrm{CC}\left(\mathrm{Id}_{n} \boxplus_{m} g\right) \geq\left(2-2^{-m+1}\right) n-O(\log n) .
$$

Proof by induction on the number of inner functions:

- Consider $\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}\right)$ instead of $\operatorname{Id}_{n} \boxplus g$.
- Assume a lower bound for $\mathrm{CC}_{S \times S}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}\right)\right)$.
- Prove a lower bound for $\mathrm{CC}_{S \times S}^{\text {phd }}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, \mathrm{MUX}\right)\right)$.
- Extract a hard function g_{m+1} such that a lower bound holds for $\mathrm{CC}_{S \times S}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, g_{m+1}\right)\right)$ 。

Multiplexer relation

- Alice gets $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $x \in\{0,1\}^{n}$.
- Bob gets the same g and $y \in\{0,1\}^{n}$.
- They are promised that $g(x) \neq g(y)$.
- Goal: find $i \in[n]$ such that $x_{i} \neq y_{i}$.

Multiplexer relation

- Alice gets $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $x \in\{0,1\}^{n}$.
- Bob gets the same g and $y \in\{0,1\}^{n}$.
- They are promised that $g(x) \neq g(y)$.
- Goal: find $i \in[n]$ such that $x_{i} \neq y_{i}$.

How we use it?

Multiplexer relation

- Alice gets $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $x \in\{0,1\}^{n}$.
- Bob gets the same g and $y \in\{0,1\}^{n}$.
- They are promised that $g(x) \neq g(y)$.
- Goal: find $i \in[n]$ such that $x_{i} \neq y_{i}$.

How we use it?

- Assume that we have a lower bound for $\mathrm{CC}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, \mathrm{MUX}\right)\right)$.

Multiplexer relation

- Alice gets $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $x \in\{0,1\}^{n}$.
- Bob gets the same g and $y \in\{0,1\}^{n}$.
- They are promised that $g(x) \neq g(y)$.
- Goal: find $i \in[n]$ such that $x_{i} \neq y_{i}$.

How we use it?

- Assume that we have a lower bound for $\mathrm{CC}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, \mathrm{MUX}\right)\right)$.
- There exists the "hardest" g_{m+1} such that the same lower bound holds for $\mathrm{CC}\left(\mathrm{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, g_{m+1}\right)\right.$.

Multiplexer relation

- Alice gets $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $x \in\{0,1\}^{n}$.
- Bob gets the same g and $y \in\{0,1\}^{n}$.
- They are promised that $g(x) \neq g(y)$.
- Goal: find $i \in[n]$ such that $x_{i} \neq y_{i}$.

How we use it?

- Assume that we have a lower bound for $\mathrm{CC}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, \mathrm{MUX}\right)\right)$.
- There exists the "hardest" g_{m+1} such that the same lower bound holds for $\mathrm{CC}\left(\operatorname{Id}_{n} \boxplus\left(g_{1}, \ldots, g_{m}, g_{m+1}\right)\right.$.
- To make this plan works we need to allow players to choose a protocol after they see their inputs.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.

Half-duplex communication model

Players talk over half-duplex channel ("wakie-talkie") [HIMS18]

Alice and Bob want to find $z:(x, y, z) \in R$.
Half-duplex communication complexity $\mathrm{CC}^{h d}(R)=$ required number of rounds.

Toy problem

Lemma

$$
\begin{aligned}
& \text { For all } n \in \mathbb{N} \text {, there exists } f:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { such that } \\
& \qquad \mathrm{CC}\left(\mathrm{KW}_{f}\right) \geq \mathrm{CC}^{h d}\left(\mathrm{MUX}_{n}\right)-O(\log n) .
\end{aligned}
$$

Toy problem

Lemma

For all $n \in \mathbb{N}$, there exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that

$$
\mathrm{CC}\left(\mathrm{KW}_{f}\right) \geq \mathrm{CC}^{h d}\left(\mathrm{MUX}_{n}\right)-O(\log n)
$$

Proof.

- Suppose that $\mathrm{CC}\left(\mathrm{KW}_{f}\right) \leq d$ for all $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- The following protocol solves MUX_{n} :
- Alice follows the optimal protocol for f on x.
- Bob follows the optimal protocol for f on y.
- Hence, CC ${ }^{h d}\left(\mathrm{MUX}_{n}\right)<d$.

Toy problem

Lemma

For all $n \in \mathbb{N}$, there exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that

$$
\mathrm{CC}\left(\mathrm{KW}_{f}\right) \geq \mathrm{CC}^{h d}\left(\mathrm{MUX}_{n}\right)-O(\log n)
$$

Proof.

- Suppose that $\mathrm{CC}\left(\mathrm{KW}_{f}\right) \leq d$ for all $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- The following protocol solves MUX_{n} :
- Alice follows the optimal protocol for f on x.
- Bob follows the optimal protocol for f on y.
- Hence, CC ${ }^{h d}\left(\mathrm{MUX}_{n}\right)<d$.

Why this protocol does not work with classical model?

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.
The proof follows the ideas of Håstad's $\tilde{\Omega}\left(n^{3}\right)$ De Morgan formula lower bound.

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.
The proof follows the ideas of Håstad's $\tilde{\Omega}\left(n^{3}\right)$ De Morgan formula lower bound.

- Lower bound on the XOR-composed Andreev's function $\mathrm{Andr}_{n, m}$ is defined by

$$
\operatorname{Andr}_{n, m}\left(f, g, x_{1}, \ldots, x_{m} \log n\right)=\left(f \boxplus_{m} g\right)\left(\oplus\left(x_{1}\right), \cdots, \oplus\left(x_{m} \log n\right)\right)
$$

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.
The proof follows the ideas of Håstad's $\tilde{\Omega}\left(n^{3}\right)$ De Morgan formula lower bound.

- Lower bound on the XOR-composed Andreev's function $\mathrm{Andr}_{n, m}$ is defined by

$$
\operatorname{Andr}_{n, m}\left(f, g, x_{1}, \ldots, x_{m} \log n\right)=\left(f \boxplus_{m} g\right)\left(\oplus\left(x_{1}\right), \cdots, \oplus\left(x_{m} \log n\right)\right)
$$

- Apply random restriction that kills many variables.

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.

The proof follows the ideas of Håstad's $\tilde{\Omega}\left(n^{3}\right)$ De Morgan formula lower bound.

- Lower bound on the XOR-composed Andreev's function Andr ${ }_{n, m}$ is defined by

$$
\operatorname{Andr}_{n, m}\left(f, g, x_{1}, \ldots, x_{m} \log n\right)=\left(f \boxplus_{m} g\right)\left(\oplus\left(x_{1}\right), \cdots, \oplus\left(x_{m} \log n\right)\right)
$$

- Apply random restriction that kills many variables.
- Show that the protocol shrinks significantly.

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.

The proof follows the ideas of Håstad's $\tilde{\Omega}\left(n^{3}\right)$ De Morgan formula lower bound.

- Lower bound on the XOR-composed Andreev's function Andr ${ }_{n, m}$ is defined by

$$
\operatorname{Andr}_{n, m}\left(f, g, x_{1}, \ldots, x_{m} \log n\right)=\left(f \boxplus_{m} g\right)\left(\oplus\left(x_{1}\right), \cdots, \oplus\left(x_{m} \log n\right)\right)
$$

- Apply random restriction that kills many variables.
- Show that the protocol shrinks significantly.
- Show that w.h.p. every internal $\oplus\left(x_{i}\right)$ have at least one variable that survived.

Proof of Theorem 2

Theorem 2

There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ such that any communication protocol for generalized Karchmer-Wigderson game for f has size at least $\Omega\left(n^{3.156}\right)$.

The proof follows the ideas of Håstad's $\tilde{\Omega}\left(n^{3}\right)$ De Morgan formula lower bound.

- Lower bound on the XOR-composed Andreev's function Andr ${ }_{n, m}$ is defined by

$$
\operatorname{Andr}_{n, m}\left(f, g, x_{1}, \ldots, x_{m} \log n\right)=\left(f \boxplus_{m} g\right)\left(\oplus\left(x_{1}\right), \cdots, \oplus\left(x_{m} \log n\right)\right)
$$

- Apply random restriction that kills many variables.
- Show that the protocol shrinks significantly.
- Show that w.h.p. every internal $\oplus\left(x_{i}\right)$ have at least one variable that survived.
- Apply Theorem 1.

Theorem 2: necessary ingredients

- Generalize random restriction technique for communication protocols.
- See at the corresponding De Morgan formula.
- Shrinkage theorem for protocols.
- Håstad's Shrinkage Theorem can be used for protocols.
- Convert depth lower bound into size lower bound.
- Use Hrapchenko's balancing theorem.

Open questions

1. Show a better lower bound for block-composition of a universal relation and some function.
2. Non-trivial lower bounds for generalized Karchmer-Wigderson games for functions from $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ for $m=\alpha \log n$ for large enough α.
3. Show n^{4} lower bound for generalized Karchmer-Wigderson games for function from $\{0,1\}^{n} \rightarrow\{0,1\}^{\log n}$ (avoid balancing?).
4. Are there interesting upper and lower bounds for generalized Karchmer-Wigderson outside of the scope of KRW conjecture?

Thank You!

