SEVERAL STORIES ABOUT HIGHMULIPLLCITYY EFX ALLOCATION

NIKITA MOROZOV, ARTUR IGNATIEV, YURIY DEMENTIEV
C)ONSTRUCTOR UNIVERSITY

38th AAAI Conference on Artificial Intelligence
February 20 - February 27, 2024

SETTING

- N is a set of n agents.
- M is a set of m goods that cannot be divided or shared.
- Each agent $i \in N$ is equipped with an additive valuation function $v_{i}: 2^{M} \rightarrow \mathbb{N}_{\geq 0}$, which assigns a non-negative integer
- $v_{i}(S)=\sum v_{i}(g)$ for any subset of items $S \subseteq M$.
- Item type is a vector of length n, where the i-th coordinate is the value of the good's utility for the i-th agent.

FAIRNESS AND EFFICIENCY

An allocation A is envy-free up to any item (EFx) if it satisfies:

$$
\forall i, j \in N: u_{i}\left(A_{i}\right)+\min _{z \in A_{j}} u_{i}(z) \geq u_{i}\left(A_{j}\right) .
$$

An allocation A is pareto-optimal (PO) if there is no other allocation B such that:

$$
\left\{\begin{array}{l}
\forall i \in N: u_{i}\left(B_{i}\right) \geq u_{i}\left(A_{i}\right), \\
\exists j \in N: u_{j}\left(B_{j}\right)>u_{j}\left(A_{j}\right) .
\end{array}\right.
$$

- State-of-the-art approaches are too slow
- What if we change parameters?
- We choose the number of EFx allocations as an additional parameter
- The problem of existence of an EFx + PO allocation is NP-hard even for two agents.
- The problem of searching for EFx + PO allocation allows for an FPT -algorithm based on the number of agents n, the number of EFx allocations s, and the number of item types k. Its running time is:

$$
O^{*}\left(\left(2 s n k+4 k n^{2}\right)^{5 s n k+10 k n^{2}} s\right)
$$

- The total number of EFx allocations in the problem with m objects and two agents does not exceed $\left(\left\lceil\frac{m+k}{k}\right\rceil\right)^{k}$, where k is the number of different types of items.
- In practice number of EFx allocations is lower.

