INCONSISTENT PLANNING: WHEN IN DOUBT. TOSS A COIN!

YURIY DEMENTIEV, FEDOR V. FOMIN, ARTUR IGNATIEV

St Petersburg University

St Petersburg

36th AAAI Conference on Artificial Intelligence February 22 - March 1, 2022

PRESENT-BIAS PLANNING

- Behavioral Economic
- Study the impact of the gap between the anticipated costs of future actions and their real costs.
- Time-inconsistent planning: procrastination, abandonment, etc.
- Akerlof (1991): Graph theoretical model, where the cost of an action in the future is assumed to be β times smaller than its actual cost, for some $\beta < 1$.

KLEINBERG-OREN'S MODEL (EC 2014)

5-tuple
$$M = (G, w, s, t, \beta)$$
, where:

- $G = (V(G), E(G)) \mathsf{DAG}$
- ▶ $w: E(G) \rightarrow \mathbb{N} \text{cost-function}$
- ▶ $s \in V(G)$ start vertex
- $t \in V(G)$ target vertex
- ▶ $\beta \leq 1$ agent's present-bias parameter.

In vertex *v* agent evaluates a path $P \subseteq G$ with edges $e_1, e_2, ..., e_p$ to cost $\zeta_M(P) = w(e_1) + \beta \cdot \sum_{i=2}^p w(e_i)$

OUR APPROACH

- Now when an agent is faced with multiple choices, he tosses a coin.
- The cost of the path traversed by the agent, $C_{\beta}(s, t)$, is a random variable.
- Definition (cost of irrationality)

The cost of irrationality of the time-inconsistent planning model is $X_{\beta} = \frac{C_{\beta}(s, t)}{d(s, t)}$.

EXAMPLE

•
$$\Pr(X_{\beta} \le 1 + (i-1)/2) = \sum_{j=1}^{i} \left(\frac{1}{2}\right)^{j}$$
 for $1 \le i \le 4$

 $Pr(X_{\beta} \le 3) = 1$

- The instance of the time-inconsistent planning model is a $M = (G, w, s, t, p, \beta)$
- For each edge uv of the task graph, we assign the probability p(u, v) of transition $u \rightarrow v$. For every $u \in V(G)$, $\sum_{uv \in E(G)} p(u, v) = 1$.
- The probability can be positive only for edges that could serve for transitions of the agent.
- Feasible path -s-t path P: Pr(agent traverses P) > 0.

COMBINATORIAL RESULTS

Theorem

- There is a family of graphs $\{G_n\}_{n=1}^{\infty}$ with an exponential number (in the number of vertices) of feasible paths of different costs.
- Supports a probabilistic tie breaking option.
- Difference between the costs of the minimum and maximum feasible paths in the graph can be exponential.

PROBLEMS

- Estimating The Cost of Irrationality (ECI) Input: $M = (G, w, s, t, p, \beta)$ and $W \ge 0$. Task: Compute $Pr(X_{\beta} \le W)$.
- Minimum Cost of Irrationality (MCI)

Input: $M = (G, w, s, t, p, \beta)$.

Task: Compute the minimum value W such that $Pr(X_{\beta} \leq W) > 0$ and compute $Pr(X_{\beta} \leq W)$.

Maximum Cost of Irrationality

Input: $M = (G, w, s, t, p, \beta)$.

Task: Compute the minimum value W such that $Pr(X_{\beta} \leq W) = 1$.

COMPUTATIONAL RESULTS

The ECI problem is #P-hard.

COMPUTATIONAL RESULTS

- The MCI problem admits an algorithm with running time $\mathcal{O}(n^3)$.
- The ECI problem admits an algorithm with running time $\mathcal{O}(\lfloor W \cdot d(s,t) \rfloor \cdot n^2 + n^3).$
- The values $\mathbf{E}(X_{\beta})$ and $\mathbf{Var}(X_{\beta})$ are computable in time $\mathcal{O}(n^3)$.
- Using Chebyshev's inequality: $\Pr(|C_{\beta} - \mathbf{E}(C_{\beta})| \le 2\sqrt{\operatorname{Var}(C_{\beta})}) \ge \frac{3}{4}$

PARAMETERIZED COMPLEXITY

- Parameterized problem $-Q \subseteq \Sigma^* \times \mathbb{N}$. Input of Q is a pair (I, k), where k is the parameter of the problem.
- *Q* is FPT if it can be decided whether $(I, k) \in Q$ in time $f(k) \cdot |I|^{\mathcal{O}(1)}$.
- The W-hierarchy is a collection of computational complexity classes: FPT = W[0] \subseteq W[1] \subseteq W[2] \subseteq
- It is widely believed that $FPT \neq W[1]$.

PARAMETERIZED RESULTS

- The ECI problem is W[1]-hard parameterized by vc(G) and by fvs(G).
- The ECI problem admits an algorithm of running time $n^{\mathcal{O}(\text{fvs}(G))} \cdot \text{fvs}(G)^{\text{fvs}(G)}$.
- The ECI problem is solvable in time $2^{fes(G)} \cdot poly(n)$.

OPEN PROBLEMS

• We gave a polynomial time algorithm computing $\mathbf{E}(X_{\beta})$. In what class of complexity does the following problem lie: delete at most k edges (or vertices) such that in the resulting graph the expected cost of irrationality is less than $\mathbf{E}(X_{\beta})$?