Several Stories about High-Multiplicity EFx Allocation

Nikita Morozov, ${ }^{1}$ Artur Ignatiev, ${ }^{2}$ Yuriy Dementiev ${ }^{2}$

${ }^{1}$ Constructor University Bremen, Germany
${ }^{2}$ HSE University, St. Petersburg, Russia
nmorozov@jacobs-university.de, aaignatiev@hse.ru, ydementyev@hse.ru

Introduction
Fair and efficient allocation of resources is a very important issue in Economics and Computer Science. First mentioned in the mid-20th century, it arises in a variety of practical applications, such
as dividing rewards among groups, allocating students to courses, and assigning tasks within a team. One of the most popular notion of fairness is envy-freeness (EF), which requires that every agent prefers their own bundle of goods to that of any other. However in the case of indivisible goods, EF allocations may not exist. This motivated the study of its relaxations. One of the actual and relevant relaxations of EF proposed by Caragiannis et al. [1], is called envy-free up to any item (EFx). Each agent's bundle should be worth at least as much as any other agent's bundle minus any single item for the allocation to be EFx. The existence of EFx allocations is considered as the iggest open question in fair
ivision of indivisble goods. The standard notion of effic
other one makes an agent better off without making someone else worse off. An important question in fair division is whether the notions of fairness can be achieved in conjunction with the efficiency notions PO. In general, EFx + PO allocations are not guaranteed to exist [3]. In this paper we focus
on the algorithmic complexity of finding EFx + PO (EFx and at the same time PO allocation).

Setting

N is a set of n agent

M is a set of m goods that cannot be divided or shared.
Each agent $i \in N$ is equipped with an additive valuation function $v_{i}: 2^{M} \rightarrow \mathbb{N}>0$, which assigns a non-negative integer and $v_{i}(S)=\sum_{g \in S} v_{i}(g)$ for any subset of items $S \subseteq M$
Item type is a vector of length n, where the i-th coordinate is the value of the good's utility for the i-th agent. We will use k to denote the number of item types.
A fair allocation instance is denoted by $I=(N, M, v)$ where $v=\left(v_{1}, \ldots, v_{n}\right)$ is the vector of valuation functions and can be represented by a table with a row per agent and a column per good, such that An allocation is a tuple of subsets of $M: A=\left(A_{1}, \ldots, A_{n}\right)$, such that each agent $i \in N$ receives the bundle, $A_{i} \subseteq M, A_{i} \cap A_{j}=\emptyset$ for every pair of agents $i, j \in N$, and $\bigcup_{i \in[n]} A_{i}=M$.

Fairness and Efficiency

After the definitions we move to out task. We have to create the algorithm to search for $\mathrm{EFx}+\mathrm{PO}$ Search for EFx allocation. If not found, return False.
2 Check the found allocation for PO
© If the partition is $\mathrm{EFx}+\mathrm{PO}$, return it. Otherwise, go back to the first step.

Hardness
Theorem
The problem of existence of an EFx + PO allocation is NP-hard even for two agents.

To obtain prove NP-hardness of our problem, we reduce from Partition. Partition problem

- Input: A set of positive integers $S=s_{1}, \ldots, s_{n}$
- Question. Does there exist a partition of S into two sets S_{1} and S_{2} such that the sums of
the numbers in the sets are equal?

Sketch of the reduction:

- Create an input for Partition with zero-weighted goods (0 for one of the agents, 1 to the other).
- Construct Partition solution from EFx and PO allocation and vice versa.

Integer Linear Programming
For simplicity of presentation, we will formulate an ILP for two agents. EFx restrictions for two gents can be simplified as follows:

$$
\begin{gathered}
0 \leq x_{i} \leq m_{i}, 0 \leq i \leq k . \\
\sum_{i=1}^{k} a_{i} x_{i}+\min _{j: m_{j}-x_{j} \neq 0} a_{j} \geq \sum_{i=1}^{k} a_{i}\left(m_{i}-x_{i}\right) . \\
\sum_{i=1}^{k} b_{i}\left(m_{i}-x_{i}\right)+\min _{j: x_{j} \neq 0} b_{j} \geq \sum_{i=1}^{k} b_{i} x_{i} .
\end{gathered}
$$

Here x_{i} is the variable meaning number of goods of type i that the first agent has, a_{i}, b_{i}-the utility of the object of type i for the first and the second agents, m_{i} - the number of goods of type i. Moreover, Pareto-optimality could be obtained in a similar fashion. It is also necessary to ensure hat the search method does not return previously checked allocations. This problem can be solve by introducing additional constraints in the ILP problem.

Upper bound
Number of EFx allocations plays crucial role in the runtime estimation, so we prove lower bound and construct an example:

Lemma
and construct an example:
The total number of allocations in the problem with m objects and two agents does not exceed $\left(\left\lceil\frac{m+k}{k}\right\rceil\right)^{k}$, where k is the number of different types of items.

Example
The number of EFx-allocations can be equal to $\frac{m^{k}}{2^{k} k_{k}}$ on some inputs with two agents.
 second player and 0 for the first player, and for all other types, the i-th item has value a_{i} for the number of items of type i held by the first player. We write the EFx condition for both players a follows:
$a_{2} x_{2}+\ldots+a_{k} x_{k}+\min _{j: x_{j} \neq m_{j}} a_{j} \geq\left(m_{2}-x_{2}\right) a_{2}+\ldots+\left(m_{k}-x_{k}\right) a_{k}$
$\left(m_{1}-x_{1}\right) a_{1} \geq x_{1} a_{1}$
In the second condition, there is no minimum because it is equal to zero. It is easy to see that botin conditions are satisfied when $x_{1} \leq \frac{m_{1}}{2}$ and $x_{i} \geq \frac{m_{i}}{2}$ if $i \geq 2$. In this case, the number of EFx-allocations satisfying the condition at least $\frac{m^{k}}{2^{k} k^{k}}$

Evaluation

At a glance, there's a significant difference between the average number of allocations and even th 99% quantile from the upper estimate, and the relative deviation only increases with the increasing number of types.
To study the impact of the weight constraint on the number of allocations, we introduced a new to the overal relative difference. This is the ratio of the difference in the average number of solution .

$$
\text { relative difference }=\frac{\overline{\text { solutions }_{1}}-\overline{\text { solutions }} 2}{},
$$

The main outcome is that the impact of weight differences decreases as the number of types grows. This is due to the fact that, with a small number of types, the weight difference plays a significant role that cannot be offset by the size of the sets.
Example
For instance, there are only 2 EFx allocations for an input of 2 types and 12 items: $\{(1,1): 11,(1000,1000): 1\}$ (allocations and bundles are described in the format "type - numbe
of items of this type"). If an ageent's bundle is: $\{(1,1): a,(1000,1000) \cdot b\}$ where $a b 0$, they of items of this type $)$. If an agents sundie is: $\{(1,1): a,(1000,1000): b\}$, where $a, b>0$, the
would be envied because the minimum condition from the definition of EFx will not be met. However, by changing the boundary from 1000 to 10 , a similar input becomes $\{(1,1): 11,(10,10): 1\}$ and the number of allocations of interest to us increases.

Open questions

- Is it possible to prove some probabilistic upper bound on the number of EFx allocations? - Is there a lower bound on the percentage of EFx allocations that are PO.

If we obtain a probabilistic estimate for the number of EFx allocations, we can then compute the expected runtime of our algorithm. We observe that this number is significantly smaller than the lower bound, suggesting the feasibility of such an estimate. The second question is potentially more significant, as it allows us to estimate the expected number of iterations. If, under certai conditions, almost every EFx allocation is also a PO allocation, then it implies that it will take on a few iterations to find an allocation.

References

[1] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. The unreasonable fairness of maximum nash welfare
 York, NY, USA, 2016. Association for Computting Machinery
[2] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li. Hervé Moulin, Alexandros A Voudouris, and Xiaowe Wu
Fair division of indivisible goods: Recent progress and open question
Artificial n netelliencoce
(3) Beniamin Plaut and Tim Roughoarden.

Almost envy-freeness with general valuations

