Inconsistent Planning: When in doubt, toss a coin!

Yuriy Dementiev, ${ }^{1}$ Fedor V. Fomin, ${ }^{2}$ Artur Ignatiev ${ }^{1}$

Introduction

Time-inconsistent behavior is the term in behavioral economics and psychology describing the behavior of an agent optimizing a course of future actions but changing his optimal plans in the hort run without new circumstances [1].
and short-term decision-making is the notion of present bias. According to [2], when considering trade-offs between two future moments, present-biased preferences give stronger relative weight to the earlier moment as it gets closer.
A simple mathematical model of present bias was suggested in [3]. In Akerlof's model, the salience actor causes the agent to put more weight on immediate events than on the future. Kleinberg and Oren [4, 5] introduced an elegant graph-theoretic model encapsulating the salience actor and scenarios of Akerlof. The approach is based on analyzing how an agent traverses from a source s to a target t in a directed edge-weighted graph G.
New model

An instance of the time-inconsistent planning model is a 6 -tuple $M=(G, w, s, t, p, \beta)$ where: $G=(V(G), E(G))$ is a directed acyclic n-vertex graph called a task graph.
(2) $w: E(G) \rightarrow \mathbb{N}$ is a function representing the costs of transitions between states. The transition of the agent from state u to state v along arc $u v \in E(G)$ is of cost $w(u v)$.
3 The agent starts from the start vertex $s \in V(G), t \in V(G)$ is the target vertex.
(For each edge $u v$ of the task graph, we assign the probability $p(u, v)$ of transition $u \rightarrow v$. For every $u \in V(G), \sum_{u v \in E(G)} p(u, v)=1$. Moreover, the probability can be positive only for edges that could serve for transitions of the agent

- $\beta \leq 1$ is the agent's present-bias paramete

Agent actions in the model:

- An agent is initially at vertex s and his task is to reach the target t.

When standing at a vertex v, the agent evaluates all possible paths from v to $t: v-t$ path $P \subseteq G$ with edges $e_{1}, e_{2}, \ldots, e_{p}$ is evaluated to perceived cost

$$
\zeta_{M}(P)=w\left(e_{1}\right)+\beta \cdot \sum_{i=2}^{p} w\left(e_{i}\right) .
$$

For a vertex v, its perceived cost to the target is the minimum perceived cost of any path to t, $\zeta_{M}(v)=\min \left\{\zeta_{M}(P) \mid P\right.$ is a $v-t$ path $\}$.

- Then the agent picks the first edge of one of the perceived paths (with perceived cost $\zeta_{M}(v)$), according to the distribution p, and traverses this edge, say $v u$.
- At the vertex u, the agent repeats the procedure and so moves on until he reaches the vertex t. We can define the cost of agent's path with present-bias β as discrete random variable C_{β} with the irrationality of the time-inconsistent planning model $M=(G, w, s, t, p, \beta)$ is

$$
X_{\beta}=\frac{C_{\beta}}{d(s, t)}
$$

Questions
The Estimating the Cost of Irrationality (ECI) problem

- Input: A time-inconsistent planning model $M=(G, w, s, t, p, \beta)$, and $W \geq 0$
- Task: Compute $\operatorname{Pr}\left(X_{\beta} \leq W\right.$

The Minimum Cost of Irrationality (MCI) problem

- Input: A time-inconsistent planning model $M=(G, w, s, t, p, \beta)$.
- Task: Compute the minimum value W such that $\operatorname{Pr}\left(X_{\beta} \leq W\right)>0$ and compute $\operatorname{Pr}\left(X_{\beta} \leq W\right)$.
Example

Figure 1:Task graph G with the source point $s=$ Monday and the target point $t=$ Reviews.
Let $c=6, x=3, \beta=\frac{1}{2}$. Bob does not have preferences between two actions of minimum perceived osts and thus pursue one of the actions with probability $p=1 / 2$.

- $d(s, t)=c=6, \operatorname{Pr}\left(C_{\beta} \leq 6\right)=\frac{1}{2}, \operatorname{Pr}\left(X_{\beta} \leq 1\right)=\frac{1}{2}$
- $\operatorname{Pr}\left(X_{\beta} \leq 9 / 6=3 / 2\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^{2}$
- $1 \leq i \leq 4, \operatorname{Pr}\left(X_{\beta} \leq 1+(i-1) / 2\right)=\sum_{j=1}^{i}\left(\frac{1}{2}\right)$
$\operatorname{Pr}\left(X_{\beta} \leq 3\right)=1$.

Lower Bound

Theorem

The ECI problem is \#P-hard and W[1]-hard parameterized by vc (G) and by fvs (G)
To obtain prove \#P-hard and W[1]-hardness of ECI, we reduce from Counting Partitions and Iodified k-Sum.

The Counting Partitions problem

- Input: Set of positive integers $S=\left\{s_{1}, \ldots, s_{n}\right\}$

Task: Count per partitions of S into sets S_{1} and S_{2} such that the sums of numbers in both sets are equal.

Figure 2:Gadget used in \#P-hardness proo

Sketch of the reduction:

All paths in the graph are feasible for the agen

- Partition of $S \longleftrightarrow$ agent's path of cost $\frac{n \cdot W}{\beta}$.

The Modified k-Sum problem

- Input: Sets of integers $X_{1}, X_{2}, \ldots, X_{k}$ and integer T.
- Parameter:
- Task: Decide whether there is $x_{1} \in X_{1}, x_{2} \in X_{2}, \ldots, x_{k} \in X_{k}$ such that $x_{1}+\ldots+x_{k}=T$.
Theorem
- Minimum Cost of Irrationality and Maximum Cost of Irrationality
admits an algorithm with running time $\mathcal{O}\left(n^{3}\right)$.
- ECI admits an algorithm with running time $\left.\mathcal{O}(L W \cdot d(s, t)\rfloor \cdot n^{2}+n^{3}\right)$.
- E($\left.X_{\beta}\right)$ and $\operatorname{Var}\left(X_{\beta}\right)$ are computable in time $\mathcal{O}\left(n^{3}\right)$.
- ECI in XP parameterized by fvs (G).
- ECI is FPT parameterized by fes (G).

Sketch of the algorithm,

- Preprocessing: topological sorting of vertices, as well as the calculation of the shortest paths between all pairs of vertices in a graph.
- Dynamic programming in the direction from s to t. Precomputed shortest distances are used to model the agent's decisions at the vertices in linear time.
- For the MCI problem, the following values are calculated at each vertex v : the cost of the agent's shortest path from s to v, and probability with which the agent will come to vertex v
along the minimum cost path along the minimum cost path
- For the ECI problem, at each vertex v we calculate an array of size $\lfloor W \cdot d(s, t)\rfloor$, where the绪
- To obtain parametrized algorithms for the ECI problem, we estimate the number of different s-t paths in the graph as functions of the parameters.

Open questions

The Reducing the Mathematical Expectation of Irrationality problem

- Input: A time-inconsistent planning model $M=(G, w, s, t, p, \beta)$, and integer k.
- Task: Is there a set $S \subseteq E,|S| \leq k$ such that in $G-S$ the mathematical expectation of C_{β} has decreased

Of course, there is a brute-force algorithm solving the problem in time $n^{\mathcal{O}(k)}$ by calling our polynomial-time algorithm for each of the $\binom{n}{k}$ possibilities of deleting k edges (or vertices). But whether the problem is FPT parameterized by k, is an interesting open question.

References
[1] Richard H Thaler and LJ Ganser
Misbehaving: The making of behavioral economics.
[2] Ted O'Donoghue and Matthew Rabin.
Doing it now or later.
American economic
American ceonomic revieu, 89(1)-103-124 1999
(3) George A. Akerlof. Procrastination and obedience.

Procrastination and obedience: Papers and Proceedings, 81(2):1-19, 1991
American Economic Review:
[4] Jon M. Kleinberg and Sigal Oren.
Timeinconsistent planning; a comp
Time-inconsistent planning: a computational problem in behavioral economics.
(5] Jon M. Kleinberg and Sigal Oren.
[5] Jon M. Kleinberg and Sigal Oren. Timeinconsistent plamning: a computational problem in behavioral economics.

